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Abstract: Glycobiology is the study of complex carbohydrates in biological systems and 

represents a developing field of science that has made huge advances in the last half 

century. In fact, it combines all branches of biomedical research, revealing the vast and 

diverse forms of carbohydrate structures that exist in nature. Advances in structure 

determination have enabled scientists to study the function of complex carbohydrates in 

more depth and to determine the role that they play in a wide range of biological processes. 

Glycobiology research in marine systems has primarily focused on reproduction, in 

particular for what concern the chemical communication between the gametes. The current 

status of marine glycobiology is primarily descriptive, devoted to characterizing marine 

glycoconjugates with potential biomedical and biotechnological applications. In this 

review, we describe the current status of the glycobiology in the reproductive processes 

from gametogenesis to fertilization and embryo development of marine animals.  
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1. Introduction 

Glycoconjugate chemistry and glycobiology were rapidly evolving as scientific disciplines in the 

1980s. Their impact, however, on understanding fundamental biological processes was not 

immediately forthcoming. In recent years, there has been resurgence in the field with major discoveries 

leading to powerful new insights into the complex role of glycoconjugates in biological processes. 

Progress in glycobiology has shed light on a range of complex biological processes associated with, for 
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example, disease and immunology, molecular and cellular communication and developmental biology [1]. 

The diversity of complex carbohydrates has fascinated and frustrated glycobiologists for years.  

The most studied for their biological properties are mammalian sulfated polysaccharides or 

glycoconjugates constituted by glycosaminoglycans (GAGs) composed of negatively charged acidic 

chains, most of them covalently linked to proteins [2]. Glycoconjugates are also widely diffused in 

marine environment. In fact, they are responsible for a remarkably diverse array of biological activities 

in marine organisms ranging from immunity, sperm-egg binding, thrust generation in nonflagellar 

cyanobacteria, electroreception in sharks, and a multitude of cell-cell and cell-molecular recognition 

events [1]. For these reasons, there is a considerable interest in characterizing the glycan structures that 

mediate many of these processes, as many will have potential medical and biotechnological 

applications. Moreover, manipulating oligosaccharide composition in the embryo promises new 

insights into their developmental functions [3]. For example, O-linked N-acetylglucosamine (O-GlcNAc) 

is a highly dynamic post-translational modification of cytoplasmic and nuclear proteins. Although the 

function of this abundant modification is yet to be definitively elucidated, considering also that all  

O-GlcNAc proteins are phosphoproteins. Further, the serine and threonine residues substituted with  

O-GlcNAc are often sites of, or close to sites of, protein phosphorylation. This implies that there may be 

a dynamic interplay between these two post-translational modifications to regulate protein function. It 

has been demonstrated that several cellular function and developmental regulation might be affected 

by changes in O-GlcNAc levels [4]. In this respect, one of the most fascinating properties of complex 

carbohydrates moieties is their enormous information potential, considering glycocoding as an 

information management system in reproduction and embryonic development. In fact, reproduction is 

an evolutionary imperative and a fundamental feature of all known life. Understanding of the 

mechanism(s), by which the spatial/temporal regulation of early development is managed, represents a 

very topical issue. The “transitions” which occur during cell to cell cluster, cell cluster to early organ 

architecture, and early organ architecture to functional organ development are fundamental and mirror 

the evolutionary process of biological information management. All of these “transitions” involve 

increasing complexity, the development of hierarchies of information management systems (integrated 

bidirectionally), and spatial/temporal regulation, which relies on historical events to map future 

structure and function. 

Carbohydrates appear to be important functional groups in reproductive biology with variation in 

glycosylation products contributing toward reproductive functionality in male and female animals [5,6]. 

Carbohydrates are known to play essential role in various biological processes including development. 

In this review, we will present the relevance of glycobiology to gametes physiology, fertilization 

and embryo development.  

2. The Glycobiology in Oogenesis  

During oogenesis, immature oocytes are arrested at the prophase I of the meiotic process and are 

characterized by a large nucleus that is referred as the “germinal vesicle”. Along the maturation 

process oocytes grow and acquire the competence for fertilization. During the growth, large amounts 

of glycoconjugates, in particular glycoproteins, are synthesized and represent the molecular 
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constituents of cortical vesicles, vitelline envelope and yolk granules of the fully grown oocyte of 

marine organisms [7,8]. 

Cortical alveoli are membrane-limited round structures located in the oocyte cortex containing 

neutral glycoproteins, carboxylated glycoconjugates, neutral glycoproteins plus sialic acid-rich 

glycoprotein, and neutral glycoproteins plus sulfated glycoconjugates [9]. 

The major constituent of cortical alveoli of fish eggs is the hyosophorin (HSP), a highly 

glycosylated protein in which carbohydrates account for 80% to 90%. Polysialoglycoprotein (PSGP) is 

the first HSP isolated from the unfertilized eggs of rainbow trout (Salmo gairderi) [10]. Homologs 

were subsequently found in salmon [11,12] and flounder [13] and they are collectively denoted as 

hyosophorins, which respond to the following criteria: high carbohydrate content and tandem repeats 

of an identical peptide sequence.  

PSGP from rainbow trout eggs has a low protein content (about 15% by weight) and a high sialic 

acid content (about 60% by weight) most of which occurs in polysialic acid (polySia) chains linked to 

O-glycosidic carbohydrate units [14]. PSGP consists of tandem repeats of tridecaglycopeptide carrying 

three O-linked glycans with polySia chain which is an α2,8-linked polySia with chain length of up to 

25 sialic acid residues [15]. These polySia chains are capped at the non-reducing ends by deaminated 

neuraminic acid, 3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN) [16] and their biosynthesis is 

developmentally regulated and occurs at later stage of oogenesis [17]. A species-specific structural 

diversity has been revealed in polySia chain of salmonid egg PSGP. 

In rainbow trout and in Oncorhynchus fish species, PSGP sialic acid residues are exclusively  

N-glycolylneuraminic acid (Neu5Gc) while Salmo and Saluelinus fish species contain both  

N-acetylneuraminic acid (Neu5Ac) and Neu5Gc residues [14,15,18]. Hyosophorin isolated from 

flounder has a neutral fucosylated pentaantennary glycan chain [13] that in herring and  

Fundulus heteroclitus is sialylated. 

In fish, cortical alveoli contain a considerable cellular heterogeneity of glycoconjugate  

sugar residues. The glycoconjugate pattern is specie specific, being cortical alveoli rich in  

α-N-acetyl-D-glucosamine (α-GlcNAc), sialic acids, α-N-Acetyl-D-galactosamine (α-GalNAc), α- or  

β-GalNAc, β-D-Galactosyl-(1-3)-N-acetyl-D-galactosamine (β-D-Gal(1-3)-GalNAc) in swordfish [8]; 

GalNAc and α-galactose (αGal) in flatfish [19]; GlcNAc, GalNAc, Gal and sialic acid in protogynous 

teleost Epinephelus marginatus [20] and GlcNAc, GalNAc and sialic acid in bluefin tuna [7].  

The cortical alveoli of fishes, therefore, are considered homologous to the cortical granules present 

in invertebrates [21,22] and in other vertebrate species [23–25]. Several studies on the contents of 

cortical granules in sea urchins oocytes demonstrated that they contain diverse repertoire of molecules 

that includes enzymes, such as an ovoperoxidase, a glycoprotein containing both mannose (Man) and 

GlcNAc moieties [26], a protease, and a glycosidase; structural proteins such as SFE9 (soft fertilization 

envelopes clone 9), proteoliaisin, and SFE1 (soft fertilization envelope clone one); glycosaminoglycans; 

and perivitelline molecules such as glucanase and 330 kDa fibrillar glycoprotein hyaline [27]. 

In Crustaceans, mature oocytes are characterized by the presence of rod-like bodies, called cortical 

rods (CRs), arranged radially around the periphery of the oocyte plasma membranes [28–32] and 

located in the extracellular crypts formed by the invagination of the oolemma into the egg cortex. 

During spawning, CRs are released upon contact of the eggs with seawater and form a jelly investment 

around the eggs in many penaeiod shrimp species but is lacking in other crustaceans [30,31,33]. 
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yolk platelets, major source of nutrients for eggs and developing embryo [8]. The primary degradation 

products of Vg have also been shown to play a role in regulating oocyte hydration [41] and buoyancy 

of eggs [42]. In addition, the ion-binding properties of Vg serve as a major supply of minerals to the 

oocytes [43]. 

The structure of the glycan moieties of Vg has been discovered only in decapod crustaceans. Recent 

study of the composition of oligosaccharides attached to the Vg of the crayfish Cherax 

quadricarinatus showed that Vg, which is produced in the hepatopancreas and secreted to the 

hemolymph [44], is posttranslationally modified by N-linked oligosaccharides. These N-glycan 

moieties are composed of monoglucosylated and highly mannosylated glycans, ranging from 

Glc1Man9GlcNAc2 (one glucoses, nine mannoses, and two GlcNAc) to Man5GlcNAc2 (five mannoses 

and two GlcNAc). Vg is a large hydrophobic protein containing glucose-capped oligosaccharides. It 

has been suggested that glycosylation of Vg plays an important role in the folding and subunits 

assembly to achieve the mature protein in the hemolymph and ovary [45]. Glycosylation is known to 

increase solubility of proteins [46] so N-glycans might have a significant role in keeping this large, 

hydrophobic protein in the hemolymph to improve its transport in the ovary [45]. The uptake of Vg 

into the oocytes is known to be mediated by receptors [47,48]. In this respect, the glycan moiety might 

play a role in recognition and receptor-mediated endocytosis. Once taken into the oocytes, it might 

also have a role in packaging and compacting its products in yolk bodies [45]. 

In several sea urchin species, Vg is synthetized in the intestine [49] as a 195-kDa glycoprotein and 

secreted into celomic fluid of the adult. From the coelom, this glycoprotein is absorbed by the nutritive 

phagocytes (accessory cells) of the ovary, where it is stored. Then it is transported to the growing 

oocytes to be accumulated as a 180-kDa glycoprotein, termed major yolk protein (MYP) [50–52]. This 

decrease in molecular weight from Vg to MYPs seems to be a common phenomenon in sea urchin. It 

is possible that Vg is slightly modified in molecular structure after its incorporation into the gonads. 

Shyu et al. [49] presumed that this modification takes place in the oocytes, but it has also been 

suggested that it occurs in the nutritive phagocytes of both sexes immediately after incorporation [51]. 

Glycosphingolipid (GSL) is composed of a sugar chain and a ceramide consisted of a fatty acid and 

sphingoid base [53]. GSLs are ubiquitous on the outer surface of the plasma membrane in animal cells 

and play an essential role in intercellular interaction and recognition [54–57]. However, GSL functions 

have not yet been clarified because of the structural complexity of the sugar chain and ceramide 

moiety [58,59]. According to the structure of the carbohydrate moiety, GSLs have been divided in two 

main groups: neutral glycosphingolipids (NGSLs) and acidic glycosphingolipids. 

Gangliosides are more complex glycosphingolipids in which oligosaccharide chains, containing sialic 

acid, are attached to a ceramide. In the eggs of some sea urchins, the chemical structures of the major 

gangliosides have been identified as NeuGcα2-6Glcβ1-1Cer (M5) and HSO3-NeuGcα2-6Glcβ1-1Cer 

(T1). M5 ganglioside constitutes more than 90% of the egg gangliosides and 0.8% or more of the egg 

dry weight [60–62]. In unfertilized egg ganglioside M5 has been shown to be localized in the plasma 

membrane and in yolk granule, where it is associated with yolk lipoproteins and is involved in the 

uptake of yolk lipoproteins into the growing oocytes during oogenesis and transported from yolk 

granules to other cellular components during embryogenesis. M5 ganglioside associating with yolk 

lipoproteins in yolk granules may be considered a significant stored material to be utilized for early 

embryogenesis [63–65]. 
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Sea urchin oocytes contain a variety of NGLs such as glucosylceramide, melibiosylceramide, 

ceramide trihexoside, and GL-5 [61,66,67]. The chemical structures of these glycolipids was 

determined showing that ceramide moieties of these are almost identical.  

Glucosylceramide (Glcβl-1Cer) and melibiosylceramide (Galα 1-6Glcβ1-1Cer) have the same  

long-chain base compositions that are very characteristic, all of them are phytosphingosines. The fatty 

acid compositions of these glycolsphingolipids also resemble each other [68]. 

The chemical structure of the ceramide trihexoside was determined (Galβl-6Galβ1-6Glcβ1-lCer) 

and its carbohydrate structure is a novel trisaccharide. Glucosylceramide resembles ceramide 

trihexoside in ceramide structure suggesting that it is synthesized from glucosylceramide [66]. 

GL-5 chemical structure is Fucα1-3GalNAcβ1-4(Fucαl-3)GlcNAcβl-4Glcβ1-lCer. GL-5 has a 

unique saccharide sequence: the reducing terminal disaccharide core is GlcNAcβl-4Glc. The 

defucosylated core structure (GalNAcβ1-4GlcNAcβl-4Glcβ1-) is a novel trisaccharide chain. Fuc 

directly binds to GalNAc and the sugar structure is one of the shortest saccharide chains so far found 

among the difucosylated glycolipids [67,69]. Kubo et al. [68] speculate on the possible biological functions 

of these glycolsphingolipids suggesting that they could participate to sperm egg interaction process. 

Another feature of oocyte development is the formation of an extracellular eggshell, or vitelline 

envelope [70], that in some species is encompassed by a jelly-like layer. The most common molecules 

on the surface of oocyte envelope are glycoproteins [71–74] that are provided by the liver [75] or by 

the ovary [76–78] or by both of them [79]. The vitelline envelope possesses many functions, such as 

prevention of polyspermy, protection of the growing oocyte and the developing embryo, uptake of 

nutrients and other molecules during oogenesis, and guidance of the spermatozoa to the oocyte.  

The vitelline envelope of fish eggs is composed of an outer layer rich in glycolipids and of an inner 

layer, called zona radiate, containing neutral glycoproteins [7]. The zona radiata is composed of  

3–4 glycoproteins derived from glycoproteins precursors, known as choriogenins [8]. During 

oogenesis, choriogenin is synthesized in either the ovary or the liver and incorporated into the egg 

envelope [80].  

Although the biological function of these glycoconjugates is unknown, it has been suggested that 

they are involved in the hormones binding, in the transport of metabolites and ions across 

plasmalemma, and in the sperm-egg interaction process [81].  

From the vitelline envelope of the unfertilized eggs of rainbow trout (Salmo gairdneri), it was 

isolated, for the first time, a new acid glycoprotein that is designated as “KDN -glycoprotein” because 

it contains only KDN but no sialic acid as the acid carbohydrate moieties. Other carbohydrate 

components of KDN-glycoprotein are Gal and GalNAc [18]. KDN-glycoprotein consists of 500 kDa 

polypeptide chain, to which a number of O-linked glycans are attached. These oligosaccharide chains 

have a core trisaccharide Galβ1-3GalNAcα1-3GalNAc in which the terminal Gal residue is blocked by 

a single residue of KDN and the proximal GalNAc residue is linked to α2,8-linked oligo(KDN) chains 

with different degrees of polymerization [82]. KDN-glycoprotein was shown to contain also N-linked 

complex-type glycan chains as minor components. KDN-glycoprotein is the unique glycoprotein of the 

rainbow trout egg envelope but it is also the major component of vitelline envelope of chum and 

kokanee salmon. KDN-glycoprotein is located in second layer of vitelline envelope but exposed to the 

outer surface of vitelline envelope around the micropyle through which spermatozoa can penetrate the 

oocyte at fertilization. Although, little is known about the functional roles of these glycan chains, 
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probably they act as cell surface receptor for spermatozoa in fertilization [83]. An analogous family of 

mucin-type glycoprotein that contains Neu5Gc instead of KDN is the major component of cherry 

salmon vitelline envelope [84]. 

Glycoconjugates forming zona radiate of different teleost fish eggs have been well investigated. In 

the flatfish Solea senegalensis, the presence of glycans with terminal GalNAc and/or αGal and with 

terminal/internal αMan is reported. As oogenesis proceeds, the glycan pattern of zona radiata decreases 

drastically and in the last phase of maturation only few βGalNAc residues are detected. Zona radiate of 

dusky grouper Epinephelus marginatus is characterized by a higher content of GlcNAc and sialic  

acid [20] as in swordfish zona radiate in which α-L-Fuc residues are also detected [8]. During oocyte 

development, the glycan pattern changes and this may reflect the different activity of zona radiate 

during different phases of oogenesis [19]. 

Studies carried out on different species of Crustaceans, such as rock shrimp Rhynchocinetes types 

and peneaid shrimp Sycionia ingentis, have characterized oligosaccharides on the glycoproteins 

present on oocyte envelope [85,86]. They show a high concentration of glucose (Glc) and  

α1-3mannose (α1-3Man) on the oocyte at all levels of maturation. Gal, Fuc, GlcNAc and GalNAc are 

others monosaccharides detect in lowest concentration on the oocyte envelope. Fuc, Gal and GalNAc 

exclusively have a structural function 

In glycoconjugates while α-GlcNAc has great importance, together with Glc and Man, during 

gamete interaction process, in spite of its small concentration. 

Differently from Crustaceans, α-GlcNAc is highly expressed on the oocyte envelope of ascidian 

Phallusia mammillata. This monosaccharide, as well as GalNAc, is predominant with 86% by weight 

of total sugar content and Fuc, Man and Glc accounted for the remaining 14% [87]. GalNAc,  

α-GlcNAc and Man, with Gal are also the major components of the vitelline coat of another ascidian 

Halocinthia roretzi, in which monosaccharide analysis of glycans reveals also a high content of 

arabinose, xylose and rhamnose, but any information about their plausible biological significance is 

not available. Glycans are O-linked and Gal and xylose residues are detected at reducing termini. 

Several analysis suggest that 1,4-linked xylose, 1,3-linked Gal and GalNAc residues constitutes the 

core structures of anionic glycans [88]. Rhamnose is also one of the monosaccharides detected in the 

vitelline coat of another ascidian Ciona intestinalis [89]. The vitelline coat of the mature oocyte of 

Ciona intestinalis contains three glycoproteins and the most abundant carbohydrate is GalNAc, 

followed by Fuc and Gal [90].  

In different sea urchin species, the oocyte jelly coat was shown to contain two major acid 

glycoproteins, sialic acid-rich glycoprotein and fucose sulfate glycoconjugate (FSG) [91,92]. The sialic 

acid-rich glycoproteins have a low protein content and contain many O-linked sialyglycan chains 

attached to threonine residues on the core protein. The polySia chains in polysialic acid-glycoprotein 

contain Neu5Gc residues and are composed of Fuc, Gal, and GalNAc residues. Most interestingly, the 

inner residue linkages in the polySia chains contain unique (→5-Oglycolyl-Neu5Gcα2→)n, linkages [93]. 

This structure represents the first naturally occurring polySia as an integral part of a glycoprotein, 

which potentiates the FSG-induced acrosome reaction in a dose dependent manner [94]. FSGs are the 

major macromolecules present on the egg jelly coat responsible for inducing the sperm acrosome  

reaction [95–97]. They are linear polysaccharides with a repeated unit composed of sulfated  

1–4 hexose moieties. It was found that, among sea urchin species, they differ in sugar  
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composition (L-Fuc or L-Gal), glycosidic linkage (α1→3 or α1→4) and in the sulfation pattern  

(2- or 4-O-sulfate) [98,99]. These differences are responsible of species-specific induction of the 

acrosomal reaction [94,98]. 

Starfish egg jelly coat contains two glycoproteins: the first one is a high Man glycoprotein with a 

molecular mass of 80 kDa and an unique saccharide structures, but its function is not well  

clarified [100,101]; the second one is a highly sulfated Fuc-rich glycoprotein, a unique glycoprotein 

playing a key role in the trigger of sperm acrosome reaction, named acrosome reaction-inducing 

substance (ARIS) [101,102]. 

The biological activity of ARIS resides in one of the sugar fragments called fragment 1 [94,103]. 

The molecular size of this glycan is about 10 kDa and does not contain amino acid residues. Its 

structure was revealed as ten or so repeats of the following pentasacharide unit; [→4)-β-D-Xylp-

(1→3)-α-D-Galp-(1→3)-α-LFucp-4(SO3
−)-(1→3)-α-L-Fucp4(SO3

−)-(1→4)-α-L-Fucp-(1→] [104]. 

This sugar chain links to the peptide part by O-glycosidic linkage trough another sugar chain with 

different structure from fragment 1 [94]. 

The inner sugar portion of ARIS has been isolated as fragment 2. It is mostly composed of sulfated 

glycans and retains about 10% (w/w) of the protein part. Fragment 2 has a molecular mass of 400 kDa and 

its glycans are O-linked. It is composed of the heptasaccharide units of [→3)-Galp-(1→3)-Fucp-(1→3)-

Galp-(1→4)-GalNAcp-(1→4)-GlcNAcp-6(SO3
−)-(1→6)-Galp4(SO3

−)-(1→4)-GalNAcp-(1→] [105]. 

Polymerizations of outer glycans are necessary to form the layer. ARIS has another acid sugar chain 

composed of Man, GalNAc and GlcNAc, although it is not important for the biological activity [106].  

The oocytes of a tropical abalone Haliotis asinina have two protective barriers: the egg jelly coat and 

the vitelline envelope. The egg jelly contains two major glycoproteins of 107 kDa and 178 kDa, whereas 

the vitelline envelope contains a broad spectrum of protein bands ranging from 15 to 200 kDa. Glc is the 

major sugar residue of both egg jelly and vitelline envelope glycoproteins, whereas minor proportions 

of arabinose, fructose, Gal, and Fuc are present in both the egg jelly and vitelline envelope [107].  

3. The Glycobiology in Spermatogenesis 

Spermatogenesis is a developmental process during which spermatogonial stem cells produce 

highly differentiated spermatozoa. It starts with the mitotic proliferation of spermatogonia and 

formation of primary spermatocytes, passing then through meiosis into secondary spermatocytes, which 

differentiate into spermatids and finally through spermiogenesis into mature spermatozoa [108–111]. 

During spermatogenesis, glycoprotein composition significantly changes suggesting the important 

role of these components in this process [112–114]. In sperm development, some complex and not 

well known germ cell-somatic cell interactions are involved and several reports suggest that 

glycoconjugates are involved in cell adhesion during this process [115,116]. 

Spermatogenesis in fishes is characterized by a cystic mode that consist of a set of Sertoli cells 

surrounding a group of synchronously differentiating germ line cells through the respective 

developmental stages until spermatogenesis is completed and mature spermatozoa are formed. The 

development of spermatogenic cells requires a special microenvironment that is created by the Sertoli 

cells [117]. Through cytoplasmic projections, these cells surround clones of primordial germ cells 

forming cysts in the seminiferous tubules [118]. 
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The testes of the teleosts have two compartments: a tubular compartment constituted of Sertoli’s 

cells and germinative cells forming spermatogenic cysts; and an interstitial compartment that is formed 

of connective tissue and Leydig’s cells [119]. 

The identification and localization of glycoprotein oligosaccharide sequences in the testis of teleost 

fish Solea senegalesis have been well investigated [120]. Glycoproteins are localized in both 

compartments of the testis, the interstitial and germinal compartments, but also in the basal lamina 

separating them. In the interstitial stroma, a very complex glycoprotein composition, including asialo-, 

as well as sialoglycans, in N- and O- linked oligosaccharides and N-linked glycans, was discovered. It 

has been also demonstrated the glycosylation pattern of the interstitial stroma is depending  

on the testicular region analyzed. In fact Neu5Acα2,3Galβ1,4GlcNAc and GalNAcα1,3(L-Fuc α 

1,2)Galβ1,3/4GlcNAcβ1 are more abundant in the medullar region than in the cortex. This different 

pattern is due to a differential glycoprotein compound trafficking patterns from the vascular system to 

each testis region. This occurs because germ cell proliferation and differentiation take place in the 

cortical region of the testis while final sperm maturation in medullar region, in order to support distinct 

glycoprotein requirements in different phases of developmental process.  

The interstitial compartment of fish species is characterized by the presence of melano-macrophage 

centers, that contain glycans terminating with Galβ1,3GalNAc but their role is not known, and Leydig 

cells, that unlike from other teleost species, does not exhibit glycoprotein oligosaccharide sequences [121]. 

The basal lamina is characterized by glycans with terminal/internal Man, internal βGlcNAc, 

terminal Neu5Acα2,6Gal/GalNAc, Neu5acGalβ1,3GalNAc, Galβ1,3GalNAc, Galβ1,4GlcNAc, 

GalNAc, αGal and αL-Fuc. This complex glycosylation pattern is related to the presence of meshwork 

composed of several glycoconjugate components, responsible for biological function of basal laminas. 

In the germinal compartment, Sertoli cells express sialoglycans terminating with 

Neu5Acα2,3Galβ1,4GlcNAc that may be involved in the establishment of interaction between adjacent 

spermatocysts playing a key role in the organization of spermatogenic cysts. 

Different from Senegalese sole, the Sertoli cells of other fish species, such as spotted ray and Nile 

tilapia, display a more complex glycosylation pattern, but sialoglycans seem to be lacking in those 

species [121,122].  

Glycoprotein oligosaccharide sequences are absent in spermatogonia while primary spermatocytes 

express, in cytoplasm and nucleus, glycans terminating with Galβ1,3GalNAc and αGalNAc, 

respectively [120]. Since germ cell nuclear glycoproteins are associated with the chromatin, it has been 

suggested that they play a role in the regulation of transcription factors and in the control of cell  

cycle [123]. Spermatid cytoplasm exhibits N-linked glycans, containing high-Man residues, as well as 

oligosaccharides terminating with α/βGalNAc, αGal and αL-Fuc. These glycoproteins were also found 

in fine granular structures located in the cytoplasm of spermatids. 

The presence of glycoconjugates has been also demonstrated in germ cells and somatic cells, 

Leydig and Sertoli cells, in cartilaginous fish testis. In particular, germ and somatic cells undergo 

extensive modifications regarding the composition of glycoside residues at the level of surface, 

cytoplasm, and nucleus. On the surface of germ and Sertoli cells, it has been identified cadherins, 

glycoprotein superfamily containing mannosyl chains. Cadherin play a key role in establishing 

interactions between germ and somatic cells, implied in cyst and spermatoblast formation. In addition, 

germ cells and Sertoli cells undergoing apoptosis change the cellular surface composition, specifically 
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overexpressing on the cell surface GalNAc and Gal that make them susceptible to phagocytosis. 

During cyst maturation, also Leyding cells change their surface glycoconjugate composition due to a 

modification of their activity during spermatogenesis. Germ cells express new sugar residues during 

their differentiation, the presence of glycoconjugates is limited to the Golgi zone in spermatocytes, to 

acrosome formation region in spermatids, and to the acrosome in spermatozoa [121]. This finding 

suggests that the acrosome glycosylation pattern depends on stoichiometric and spatial distribution of 

binding sites and/or the activity of glycolytic enzymes and glycosyltransferases [121,124]. 

Glycoconjugates are also expressed in the germ cell nucleus where they are involved in the control of 

cell cycle [121]. 

Studies on sea urchin testis have revealed the presence of the yolk protein precursor, Vg, in 

immature male gonad as well as in the female one, suggesting that male Vg could be a precursor of 

MYP incorporated in the testicular nutritive phagocytes as a nutrient source for spermatogenesis [51]. 

As spermatogenesis proceeds, MYP decreases in quantity; in fact, it is utilized as material for 

synthesizing new substances that participate to the formation of spermatozoa and are metabolized as an 

energy source during this period [125]. 

The immature sea urchin testis also contains a large quantity of polysaccharides, most of which is 

probably glycogen in the form of granules [126,127]. The polysaccharide content decreases as 

gametogenesis proceeds in both sexes, since possibly they are used as an energy source, as suggested 

for Strongylocentrotus intermedius [127]. 

In sea urchin testis, it has also been demonstrated the expression of a heavily sialylated 

glycoprotein, named flagellasialin. Flagellasialin has a molecular mass ranging from 40 to 80 kDa and 

contains a unique polySia sulfated α2,9-linked polyNeu5Ac [128]. Flagellasialin is exclusively located 

to the flagellum where probably α2,9-linked polySia regulates voltage sensitive sodium and calcium 

channels influencing the intracellular calcium and sperm motility [129,130]. In the flagellum but also 

in the sperm head, it has been demonstrated the expression of a 190 kDa glycoprotein linked to  

α2,8-linked polyNeu5Ac structures. The biological function of this glycoprotein is not yet clarified. 

The conformational differences between α2,9- and α2,8- linked polySia structures and their  

co-localization in the same sperm might reflect functional differences of these two polySia-containing 

glycoprotein at fertilization. The α2,8-linked polyNeu5Ac structure occurs also in glycolipids, 

localized in the sperm head in order to facilitate rearrangement of the membrane proteins on the sperm 

surface upon sperm activation [131,132].  

In Decapoda it has been shown that immature germ cells and spermatozoa have different 

glycoconjugate composition. In Aristaeomorpha foliacea, immature germ cells only express  

N-linked oligosaccharides which contain terminal and internal α-D-Man, internal β-D-GlcNAc, 

NeuAcα2,6Gal/GalNAc and terminal NeuAcα2,3Galβ1,4GlcNAc. Spermatozoa express in the 

cytoplasm both N- and O-linked oligosaccharides. The N-linked oligosaccharides consist of terminal 

GlcNAc while O-linked oligosaccharides terminated with β-Gal(1-3)-GalNAc and/or α-GalNAc in the 

cytoplasm, whereas they ends with sialic acid linked to β-Gal(1-3)-GalNAc in the nucleus [133]. The 

extracellular matrix in which the spermatozoa are embedded consists of neutral and acid 

glycoconjugate. Acid polysaccharides have been reported in Albunea symnista [134] and  

Panulirus homarus [135]. Neutral glycoprotein and acid polysaccharide have been found in  

M. rosebergii [136]. Differences in glycoconjugate composition of extracellular matrix between 
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immature and mature hemispermatophores have been observed: the former expresses both N- and  

O-linked glycoconjugates while mature hemispermatophores express only O-linked oligosaccharides 

and contain more sialyl-glycoconjugates than immature ones [133]. The role of extracellular matrix in 

decapods is not well known. It has been suggested that the acid mucopolysaccharide of 

spermatophores may act as a cementing agent or an antimicrobial agent [137] or in the maintenance of 

spermatozoa during the storage within female spermathecae [133,138]. 

Previuos study on A. foliacea also demonstrates that sperm glycoprotein pattern seasonally changes 

and spermatozoa undergo maturative changes in glycoconjugate compotion during their transit from 

testis to hemispermatophore [139].  

4. The Glycobiology in Fertilization 

Fertilization is a highly specialized process of cell-cell interaction that marks the creation of a new 

individual. Although the details of fertilization vary between species, it generally consists of five major 

events. The first event is the recognition and the species-specific interaction between sperm and the 

egg coat. This interaction allows spermatozoa to undergo the acrosome reaction, an exocytosis of the 

acrosomal vesicle located on the tip of the spermatozoa head, which releases a lytic agent. These 

events enable spermatozoa to cross the extracellular matrix and reach the oocyte plasma membrane 

where binding between the two cells occurs and causes the fusion of the genetic material of 

spermatozoa and egg leading to the activation of egg metabolism, mitosis and the beginning of 

development [140–142]. 

Glycoconjugates play a number of pivotal roles in multifaceted processes during  

fertilization [1,143]. The initial interaction between oocytes and spermatozoa involves glycoproteins of 

oocyte envelope and complementary sperm surface receptors [144]. In particular, the terminal 

oligosaccharides of egg envelope glycoprotein are responsible for spermatozoa binding through 

recognition of species-specific polypeptide chains on the spermatozoa [87,145,146]. 

The first evidence supporting the function of complex glycoconjugates in fertilization was found in 

sea urchins [91]. Two carbohydrates are involved in sea urchin fertilization. The first carbohydrate is 

egg jelly coat FSG that binds a glycoprotein receptor, named suREJ located exclusively in the plasma 

membrane just on the sperm acrosomal vesicle at the anterior apex of the spermatozoa head [147,148]. 

suREJ contains one epidermal growth factor module and two C-type lectin carbohydrate- recognition 

modules [147]. After this binding, the spermatozoa undergo consecutive morphological and 

biochemical changes called the acrosomal reaction. In response to signals transduced by sperm 

receptor, acrosomal vesicles fuse with the plasma membrane and actin polymerizes to form the 

acrosomal process. The exocytosis of acrosomal vesicles expels the protein bindin that coats the 

spermatozoa acrosomal process [149]. The second carbohydrate involved in sea urchin fertilization is a 

glycoprotein receptor for bindin in the vitelline layer [150]. This receptor, namely EBR1, is a 350 kDa 

glycoprotein containing both N- and O-linked oligosaccharide chains with different biological activity, 

being inactive and active respectively. The active oligosaccharide is linked to serine or threonine via 

an O-glycosidic bond to GalNAc, which contain a Gal bound β(l→3) to the linkage sugar. The 

remainder of the structure consists of GlcNAc and Fuc residues, with the sulfate moieties on the Fuc 

residues. The O-linked oligosaccharide chains show different level of sulfation correlated to their 
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activity, being greatly enhanced with increasing sulfation. Two-step models involving carbohydrate 

and protein chains have been proposed for sperm-egg interaction in sea urchin. The first step is 

postulated to be a low-affinity ionic interaction of the sulfated O-linked oligosaccharide chains of the 

receptor with spermatozoa that is not species specific. This is followed by a high affinity,  

species-specific interaction of one or more domains of the polypeptide chain and bindin on the 

acrosomal process [151]. The species specificity of this interaction is determined by differences in the 

position of attachment of the oligosaccharide chains on the protein backbone [152]. 

In starfish, the acrosome reaction is induced by the combination of ARIS and other two components 

of the egg jelly coat: sulfated steroid saponin namely Co-ARIS and an oligopeptide known as 

asterosap [153,154]. When spermatozoa reach the egg jelly coat, the first binding occurs between 

ARIS and its receptor, specifically located to the anterior region of spermatozoa heads [155].  

The tertiary structure of the ARIS is important for its activity. The signal for a correct folding is 

derived from fragment 1. The fragment 1 has a double helix and a compact carbohydrate core with 

sulfates protruding in pairs away from the center of the helix. It has been demonstrated that the double 

helix structure of ARIS saccharide chain is important for the induction of acrosome reaction [94]. The 

binding gates calcium channels inducing an intracellular calcium increase. This signal causes 

exocytosis by which spermatozoa expose the devices essential for penetration through the egg coats 

and for fusion with the egg plasma membrane. 

In sea water, ARIS requires Co-ARIS to induce acrosome reaction [156] and microdomain  

changes [103]. Co-ARIS is composed of sulfated steroid and a pentasaccharide chain. Its activity 

requires sulfate moiety and mainly depends on the structure of steroidal side chain, while not 

necessarily requiring a specific structure of the saccharide chain [157]. Spermatozoa do not have a 

specific receptor for Co-ARIS. It has been suggested that steroid ring and side chain of Co-ARIS may 

infiltrate or be inserted into spermatozoa plasma membrane and the sulfated group and sugar chain 

contribute to keep it in the right position and orientation to interact correctly with other components of 

spermatozoa plasma membrane [101].  

Asterosap is a glutamine-rich tetratriacontapeptide with a 25-residue ring formed by a disulfide 

linkage that is essential for its biological activity [158]. It transiently increases the intracellular pH and 

calcium via the activation of asterosap receptor that is a guanylyl cyclase located in the sperm flagellar 

plasma membrane [159–161]. Calcium and pH increase are essential to trigger acrosome reaction.  

In archaeogastropods, the molecules analogous to sea urchin bindin and EBR1 are lysin and its 

receptor, most extensively studied in abalone. The abalone spermatozoa swims easily through the egg 

jelly coat and reaches the vitelline envelope. The contact between the spermatozoa and the vitelline 

envelope induces the polymerization of actin to generate acrosomal process and the exocytotic of 

acrosomal vesicle that release protein lysin onto the surface of the vitelline envelope. Lysin is a 16 kDa 

nonenzymatic, cationic protein that forms a dimer, which is able to bind a giant 1000 kDa glycoprotein 

named Vitelline Envelope Receptor for Lysin (VERL) [151]. VERL is a long, unbranched, fibrous 

glycoprotein that is composed of at least 50% saccharide, containing Glc and Man residues, and 

comprises 30% of the vitelline envelope mass [162]. Dimer binding results in monomerization and the 

tight, species-specific binding of lysin to VERL that involves the carbohydrate moieties of VERL 

linked to serine or threonine via an O-glycosidic bond. Upon binding lysin monomers, the fibrous 

VERL molecules lose cohesion and splay apart, through which the spermatozoa passes to reach the 
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egg cell membrane and the tip of its acrosomal process fuses with the egg plasma membrane [163,164]. 

Other vitelline envelope glycoproteins of 30–50 kDa, even if do not binding lysin, could be involved in 

mediating species selectivity based on their interaction with VERL [162,165]. 

In ascidians, sperm-egg binding is mediated by an enzyme-substrate complex established between a 

specific spermatozoa surface glycosidase and corresponding glycans on the surface of the vitelline  

coat [166,167]. In the alkaline seawater, this complex remains stable, since the glycosidase has an acid 

pH optimum [167–169]. In Ascidia nigra and Phallusia mamillata, N-acetyl-glucosaminidase in sperm 

membranes recognizes terminal α-GlcNAc residues on the oocyte envelope [168,170], while in  

Ciona intestinalis and Halocynthia roretzi, the sulfated, Fuc-containing glycans of vitelline coat 

glycoproteins are responsible for the spermatozoa binding to the vitelline coat. In particular, the sperm 

glycosidase, α-L-fucosidase, binds to terminal L-Fuc residues of the vitelline layer [94,101,160,171]. 

The degree of sulfation and the proper spacing of sulfate groups seem essential for biological  

activity [88]. When spermatozoa bind vitelline envelope, acrosome reaction occurs, the acrosomal 

outer membrane fuses with the plasmalemma enclosing the acrosome, resulting in exocytosis of the 

acrosomal substances. After the acrosome reaction, apical processes protrude mainly from the 

peripheral region of the apex of the spermatozoa head [172–174]. Although the chemical nature and 

the precise role of the acrosomal substances remain to be elucidated, it has been proposed that these 

acrosomal substances are responsible for membrane fusion between the apical processes and the egg 

plasma membrane [173,174]. The sperm-egg vitelline interaction activates a spermatozoa lysine 

system. In particular, three proteases are involved in spermatozoa penetration of the vitelline  

coat: two trypsin-like proteases, acrosin and spermosin, and one chymotrypsin-like protease. The  

chymotrypsin-like activity is involved in spermatozoa penetration of the vitelline coat, but spermosin 

and acrosin both function to increase the rate of fertilization [175–177]. 

In decapod crustaceans, the first sperm-egg interaction is established between the apical end of a 

sperm’s appendage (spike) and the outermost egg envelope. In particular, in Rhynchocinetes typus it 

has been demonstrated the presence of a lectin-like molecule on the tip of spermatozoa spike that 

recognized specific carbohydrates on the oocyte envelope such as GlcNAc, Glc and Man [86,178]. At 

this point, the tip of the rigid spike exerts a lytic effect upon vitelline envelope causing a perforation 

through which the spermatozoa passage to reach the plasma membrane oocyte [179–181]. 

Polyspermy is the fusion of more than one spermatozoa with an egg, which is a lethal condition to 

the embryos of most organisms [182]. At fertilization, rapid and slow changes occur to block 

polyspermy. The rapid changes are related to the modification of egg membrane potential. The slow 

changes are due to the modifications of egg vitelline envelope, which transform it to a hard layer called 

the “fertilization membrane”. The hardening of vitelline envelope is trigged by the contents of cortical 

granules that are released upon fertilization. Fertilization membrane forms a protective barrier that 

repels additional spermatozoa, but also bacteria and small eukaryotic invaders [27]. Several studies 

report that glycoconjugates are implied in to block polyspermy. 

In sea urchins, fertilization envelope formation is initiated by trypsin-like proteases that cleave both 

a sperm-binding protein [183–186] removing supernumerary spermatozoa and preventing further 

spermatozoa binding, and the proteins that connect the vitelline envelope to the plasma  

membrane [27,187]. At the same time, sugars that are released from the cortical granules attract water 

into the perivitelline space allowing the vitelline envelope lifts off the egg plasma membrane that is 
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also due to the formation of hyaline layer [27]. Hyalin is a filamentous molecule that tends to form 

aggregates forming an amorphous layer [188]. In particular, its carbohydrate residues act as receptors 

for hyaline-hyalin and hyaline-cellinteraction [27]. Then, ovoperoxidases harden the vitelline envelope 

that becomes resistant to both mechanical and enzymatic modifications [27]. Ovoperoxidase released 

in the perivitelline space interacts with another cortical granule protein, the proteoliaisin. When this 

complex is associated with the nascent fertilization envelope, ovoperoxidase catalyzes the covalent 

cross-linking of juxtaposed tyrosine residues in adjacent polypeptide chains, including SFE 1 and SFE 9, 

to form a stable, macromolecular complex [189]. Proteoliaisin targets the ovoperoxidase to the nascent 

vitelline layer/fertilization envelope [190] and protects this enzyme from proteolytic digestion [191].  

Fish spermatozoa lack an acrosome and they attach directly to the egg plasma membrane through 

the micropyle, a single, small pore in the chorion [148]. Following sperm-egg fusion, cortical alveoli 

fuse with the plasma membrane and discharge their contents, PSGP, hyaline, proteases and 

transglutaminases into the presumptive perivitelline space [15,182,192–194]. Once released from the 

cortical alveoli, proteases cleave the 200 kDa PSGP (L-PSGP) into small 9 kDa PSGP  

(H-PSGP) [15,192,193]. Both amino acid and carbohydrate compositions of L-PSGP and H-PSGP are 

identical. H-PSGP is still too large to permeate the chorion. This establishes a colloid osmotic 

pressure, which causes an influx of mostly external water that swells the perivitelline space. The 

perivitelline space cushions the embryo and bathes it in a special medium containing the 9 kDa PSGP, 

lipids, carbohydrates, and ions as well as providing a sink for nitrogenous wastes [195–197]. The 

perivitelline space also provides room for the free movement and growth of the embryo, which, due to 

its hypertonicity, absorbs water osmotically and slowly swells during embryogenesis [198]. With the 

establishment of the perivitelline space, the rise in hydrostatic pressure is aided by the hardening of the 

chorion, which contributes to the closure of the micropyle and thereby reduces the probability of 

polyspermy and microbial infection [199,200]. The hardening process is catalysed by transglutaminases 

activated of PSGP that have proteinase activity [201]. Thus, activated transglutaminase forms covalent 

ε-(γ-glutamyl)-lysine crosslinks constituents of adjacent proteins or glycoproteins of chorion [202].  

Ascidian eggs lack cortical granules and prevent polyspermy by first releasing a large quantity of 

glycosidase, followed by an electrical modification of the egg plasma membrane [87,203–205]. 

Sperm-egg binding triggers eggs to release large quantities of glycosidase that rapidly bind the 

vitelline-coat surface as spermatozoa surface glycosidase blocking the binding of supernumerary 

spermatozoa [74,101,204]. 

5. The Glycobiology in Embryo Development 

Glycoconjugates have relevance for embryo development, tissue and cell specialization and 

organogenesis. Several studies reported that glycoconjugates are involved in embryo development of 

marine invertebrates. Early studies on inhibition of glycoprotein synthesis and embryonic development 

of sea urchin revealed that tunicamycin (a mixture of homologous antibiotics that blocks  

N-glycosylation of proteins, inhibiting N-acetylglucosamine transferases) blocked the process of 

gastrulation [206,207]. Subsequently, it was established that the sensitivity of the gastrulation process 

to tunicamycin could be related to a marked increase in the level of N-linked glycoprotein synthesis, 

which occurs just before gastrulation [208]. This requirement for glycoprotein synthesis was consistent 
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with the finding that gastrulation could also be blocked by inhibiting synthesis of dolichyl  

phosphate [209,210], the lipid carrier required for oligosaccharide chain assembly in N-linked 

glycoprotein synthesis. These early studies of the effect of tunicamycin on development also revealed 

that this drug blocked spiculogenesis when added at the late gastrula stage [206]. More recently, this 

apparent requirement for N-linked glycoprotein synthesis during spicules formation has received 

greater attention. Carson et al. [211] established that addition of a monoclonal antibody (mAb 1223) to 

a culture of primary mesenchyme cells caused a block in spiculogenesis. Immunofluorescence studies 

showed that the 1223 antigen was primary mesenchyme cell-specific. Immunoblot analysis revealed 

that one of the proteins containing the 1223 epitope was a 130-kD polypeptide whose level of 

expression correlated with the acquisition of the ability of primary mesenchyme cells to accumulate 

calcium during spicule formation. These observations, coupled with subsequent studies establishing 

that the 1223 antigen was a glycoprotein, and that the mAb 1223 was directed toward a carbohydrate 

chain on the glycoprotein [212,213], led to study both the distribution of this epitope in the embryo 

and the nature of the oligosaccharide moiety in more detail. These studies have established that the 

epitope on the glycoprotein recognized by mAb 1223 is a complex, N-linked oligosaccharide chain [213] 

that is found in the cortical granules of the egg, disappears after fertilization and reappears in 

association with primary mesenchymal cells before spiculogenesis [212,214]. Moreover, some  

authors [215] demonstrated that two other independently generated monoclonal antibodies, 1G8 [216] 

and B2C2 [215] also recognized an oligosaccharide group on the same 130-kD protein, suggesting that 

it is a highly immunogenic mesenchymal cell marker. 

Given the complex nature of the carbohydrate chain of the 1223 antigen and its apparently essential 

role in a step in spiculogenesis, it seemed likely that inhibitors of the processing of oligosaccharide 

chains would block spicule formation. Kabakoff and Lennarz [217] reported the results of biochemical 

and morphological studies with such inhibitors using both intact embryos and primary mesenchyme 

cells in culture. In order to ascertain whether the processing of high mannose oligosaccharides to 

complex oligosaccharides is necessary for spiculogenesis, intact embryos and cultures of  

spicule-forming primary mesenchyme cells were treated with two glycoprotein processing inhibitors, 

deoxymannojirimycin (1-MMN) and deoxynojirimycin (1-DNJ). In both cases, normal embryonic 

development between gastrula and prisma stage was affected by impairing or completely blocking 

spicule formation (Figure 2).  

These inhibitors did not affect gastrulation in whole embryos or filopodial network formation in cell 

cultures. It was also demonstrated that (a) 1-MMN entered the embryos and blocked glycoprotein 

processing in the 24-h period before spicule formation as assessed by a twofold increase in 

endoglycosidase H sensitivity among newly synthesized glycoproteins upon addition of 1-MMN;  

(b) 1-MMN did not affect general protein synthesis until after its effects on spicule formation were 

observed; (c) Immunoblot analysis with an antibody directed towards the polypeptide chain of the  

130-kD protein (mAb A3) showed that 1-MMN did not affect the level of the polypeptide that is 

known to be synthesized just before spicule formation; (d) 1-MMN and 1-DNJ almost completely 

abolished (>95%) the appearance of mAb 1223 reactive complex oligosaccharide moiety associated 

with the 130-kD glycoprotein.  
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Figure 2. Effects of glycoprotein processing inhibitors. Eggs were fertilized and embryos 

cultured until 72 h post fertilization, when they were treated with (A) 4 mM  

1-deoxynojirimycin (1-DNJ, which blocks both glucosidase I and II; (B) 2 mM  

1-deoxymannojirimycin (1-MMN, which blocks mannosidase I); (C) untreated controls. 

The samples were fixed in 2% glutaraldeyde. Scale bar, 5 μm. (Modified from [217]).  

 

These results indicate that the conversion of high mannose oligosaccharides to complex 

oligosaccharides is required for spiculogenesis in sea urchin embryos and they suggest that the 130-kD 

protein is one of these essential complex glycoproteins. In fact, a correlation between a block in 

processing of the oligosaccharide chain of glycoproteins and impairment of spicule formation was 

established. Moreover, the conversion of high mannose ologosaccharides to complex oligosaccharides 

was required for spiculogenesis in sea urchin embryos, suggesting that the 130-kD protein was one of 

these essential complex glycoproteins.  

Gangliosides play important roles also during embryo development. In fact, revealing the 

distribution of M5 during embryogenesis is an important step in evaluating the significance of 

gangliosides in early development. Nezuo et al. [62] reported that ganglioside M5 was secreted during 

embryogenesis and localized in the extracellular matrix (ECM). Since M5 exists in unfertilized eggs in 

yolk granules, it was transported from the yolk granules to the ECM and/or the plasma membrane after 

fertilization. M5, however, is quantitatively constant during embryogenesis [218]. Using  

fluorescent-labeled ganglioside NBD-M5, similar thick layers of staining were observed in 2-, 4-,  

8-cell stage and blastula embryos (see Figure 3). A number of studies have been shown the role of 

gangliosides as mediators in the interaction of various cells with ECM in vertebrates, showing also a 

high affinity to fibronectin [219,220]. Since the sea urchin embryo is surrounded by several ECM 

components, such as molecules similar to vertebrate fibronectin, collagen and laminin [221], M5 may 

be involved in the organization of these molecules, although it remains to be determined whether M5 

actually interacts with these proteins.  
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Figure 3. Detection of NBD-M5 in early development with a confocal microscope. To 

observe the localization of NBD-M5 in living embryos, fertilized eggs pre-labeled with 

NBD-M5 were grown in artificial sea water without dye. At the end of mitosis (first cell 

division), the thick ECM (hyaline layer) near the cleavage furrow was stained (A); similar 

tick layers of staining were observed in 2- (B), 4- (C), 8-cell stage (D) and blastula before 

hatching (E and F). (F) is an higher magnification of the cortical region of (E). The 

localization of NBD-M5 did not change. Scale bar, 10 μm. (Modified from [62]).  

 

Dermatan sulfate is a macromolecule member of a class of natural, structurally complex, sulfated, 

linear polymers named glycosaminoglycans (GAGs). There are many types of GAGs generally 

grouped into four categories: (1) hyaluronic acid or hyaluronan; (2) keratan sulfate; (3) chondroitin 

sulfate (CS)/DS; and (4) heparan sulfate (HS)/heparin. They are biosynthesized as polysaccharides of 

repeating disaccharides with an N-acetylhexosamine, N-acetylgalactosamine (GalNAc), or  

N-acetylglucosamine as one of the sugars. The alternating sugar is glucuronic acid (GlcA) with the 

exception of keratan sulfate, which instead contains galactose. The hyaluronic acid is not further 

modified, whereas the other classes are modified by (1) the addition of O-sulfate groups on various 

hydroxyls (the three classes); (2) 5-epimerization of some GlcA residues to form iduronic acid (IdoA) 

residues (DS, HS, heparin), and (3) the removal of acetyl residues from some hexosamines replaced 

with N-sulfates (HS and heparin) [222]. 

Unfertilized eggs of the sea urchin Strongylocentrotus purpuratus are surrounded by a gelatinous 

layer rich in sulfated fucan. Shortly after fertilization this polysaccharide disappears, but 24 h later, the 

embryos synthesize high amounts of dermatan sulfate concomitantly with the mesenchyme  

blastula-early gastrula stage when the larval gut is forming [223]. This glycosaminoglycan has the 

same back-bone structure [4-α-L-IdoA-1→3-β-D-GalNAc-1]n as the mammalian counterpart but 

possesses a different sulfation pattern. It has a high content of 4-O and 6-O-disulfated galactosamine 

units. In addition, chains of this dermatan sulfate are considerable longer than those of vertebrate 

tissues. Adult sea urchin tissues contain high concentrations of sulfated polysaccharides, but dermatan 

sulfate is restricted to the adult body wall where it accounts for 20% of the total sulfated 

polysaccharides, indicating that it retains a biological role in the adult stage. Vilela-Silva et al. [223] 

concentrated their studies on the characterization of the sulfated polysaccharide synthesized by the 
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larvae of the sea urchin S. purpuratus. Shortly after fertilization, the sulfated fucan of egg jelly 

disappears, and by 24 h of development the embryos begin to synthetize large amounts of dermatan 

sulfate. In addition, sulfation at the 4-O-position decreases markedly in the dematan sulfate from adult 

sea urchin when compared with the glycan from larvae. The importance of dermatan sulfate for the 

development of sea urchin embryos was emphasized in several experiments where inhibitors of 

sulfation, chain elongation, or proteoglycan formation were added to the medium and inhibited 

embryonic development [207,224–227].  

Interesting data were reported on the very attractive process during embryo development, the 

transdifferentiation, also known as lineage reprogramming. In fact transdifferentiation means the 

conversion of cells from one differentiated cell type to another. Reber-Muller et al. [215] demonstrated 

that transdifferentiation at high rates is also initiated by treatment of the isolated tissue fragments with 

the monoclonal antibody (mAb)19 developed against the ECM of the medusa Podycoryne carnea. 

This antibody interferes strongly with cell-ECM interactions. Moreover, oxidation of carbohydrates 

with sodium-meta-periodate in enzyme linked immunosorbent assays (ELISAs) demonstrated that 

mAb19 is directed against a carbohydrate epitope. The results suggested that in striated muscle of the 

medusa cell adhesion and the maintenance of the differentiated state depend on carbohydrate mediated 

cell-ECM interactions. If these interactions were disturbed by mAb19 the striated muscle cells will 

undergo DNA-replication and transdifferentiate. In conclusion, medusa cells depend on the presence of 

species-specific carbohydrates for cell adhesion and spreading [216].  

6. Conclusions 

Marine environment offers a tremendous biodiversity and original polysaccharides, presenting a 

great chemical diversity that is largely species-specific. Marine polysaccharides present an enormous 

variety of structures, presenting a real potential for natural product drug discovery and for the delivery 

of new marine derived products for therapeutic applications. They are involved in a range of complex 

biological processes associated with diseases, immunology, molecular and cellular communications, 

and mainly with developmental biology. In fact, most recent findings showed that glycobiology of 

reproductive processes in marine organisms represent a rapidly advancing field and permits an 

innovative view on the carbohydrate-based interactions that lead to gametogenesis, to fertilization and 

to embryo development. In conclusion, this study is of special interest for general scientists in 

reproductive biology and medicine, for glycobiologists and for clinicians working in the fields of 

human and animal fertility.  
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