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Abstract 

A potential therapeutic candidate for neutralizing SARS-CoV-2 infection is engineering high-

affinity soluble ACE2 decoy proteins to compete for binding of the viral spike (S) protein. 

Previously, a deep mutational scan of ACE2 was performed and has led to the identification of a 

triple mutant ACE2 variant, named ACE22.v.2.4, that exhibits nanomolar affinity binding to the 

RBD domain of S. Using a recently developed transfer learning algorithm, TLmutation, we sought 

to identified other ACE2 variants, namely double mutants, that may exhibit similar binding affinity 

with decreased mutational load. Upon training a TLmutation model on the effects of single 

mutations, we identified several ACE2 double mutants that bind to RBD with tighter affinity as 

compared to the wild type, most notably, L79V;N90D that binds RBD with similar affinity to 

ACE22.v.2.4. The successful experimental validation of the double mutants demonstrated the use 

transfer and supervised learning approaches for engineering protein-protein interactions and 

identifying high affinity ACE2 peptides for targeting SARS-CoV-2.  
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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a positive-sense RNA-

enveloped virus that causes coronavirus disease 2019 (COVID-19) and has since emerged as a 

global pandemic1. As of December 2021, the COVID-19 outbreak has resulted in over 250 million 

reported cases and claimed over 5 million deaths around the world2. Even with the successful 

development of mRNA-based vaccines, issues regarding vaccine hesitancy, vaccine availability in 

low- and middle-income countries, and emerging variants of concern presents a dire need for 

alternative therapeutic options for COVID-19. 

 

Extensive work has characterized the primary mechanism of SARS-CoV-2 entry to be facilitated 

by the interactions involving the spike (S) protein and the angiotensin converting enzyme 2 

(ACE2) receptor3,4. S is trimeric class I viral fusion glycoprotein that consists of soluble S1 and 

membrane-tethered S2 subunits. The S1 subunit contains the receptor-binding domain (RBD) 

which, when directly binds with the peptidase domain of ACE2, initiates the cleavage and 

shedding of S1, thereby exposing the S2 subunit for membrane fusion and viral RNA release into 

the host cell5. As such, S is a major target for anti-SARS-CoV-2 therapeutics, including 

monoclonal antibodies that compete with ACE2 for RBD binding and neutralize virus infection5. 

However, mutations in S present in emerging variants of SARS-CoV-2, including B.1.1.7 (Alpha), 

B.1.351 (Beta), P.1 (Gamma), G.1.617.2 (Delta), and BA.1 (Omicron) enables SARS-CoV-2 to 

bind to ACE2 with greater affinity than the wild-type strain6,7. The N501Y mutation identified in 

the Alpha, Beta, Gamma, and Omicron strains introduces additional π-π and cation-π interactions 

with ACE2 residues that increase the binding affinity by 10-fold as compared to the wild-type 

RBD8. Furthermore, the E484K mutation in the Beta and Gamma variants introduces new 

electrostatic interactions with neighboring acidic residues on ACE29. Consequently, due to these 
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altered molecular interactions, SARS-CoV-2 variants are more likely to evade the immune 

response and reduce the efficacy of neutralizing antibodies and vaccines10. 

 

Efforts in developing therapeutic alternatives have focused on engineering soluble ACE2 (sACE2) 

constructs that acts as a high-affinity decoy for the viral S protein. sACE2, in which the 

transmembrane domain is removed, has been previously shown to be capable of binding to the S 

protein and is currently undergoing clinical trails for treating COVID-193,11. Recently, Chan and 

colleagues performed a deep mutational scan of ACE2 and uncovered several amino acid 

substitutions throughout the ACE2 receptor that enhance the binding affinity to S of SARS-CoV-

212. They further characterized a sACE2 derivative containing the three mutations T27Y, L79T, 

and N330Y, referred to as sACE22.v2.4 (Figure 1A), to exhibit a 35-fold increase in binding 

affinity to SARS-CoV-2, and further tighter affinity for SARS-CoV-2 variants that contain the 

N501Y mutation12,13. In vivo characterization further demonstrates that inoculation of 

sACE22.v2.4 in mice prevents acute lung vascular endothelial injury induced by SARS-CoV-2 and 

improves survival14. While the mutations introduced in sACE22.v2.4 were chosen intuitively, it 

presents an opportunity to identify other potential high-affinity sACE2 derivatives, specifically 

double mutants, with a decreased mutational load. 

 

Given that the search space of ACE2 double mutants consist of over two million combinations, it 

is impractical to experimental evaluate all possible mutants. Therefore, we employed an in silico 

screening using our previous described algorithm TLmutation15 to identify ACE2 double mutant 

derivatives that might achieve tight binding to the SARS-CoV-2 S protein. The TLmutation 

platform is an adaptation of the variant effect predictor EVmutation (part of the EVCoupling 
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package) which uses sequence and evolutionary information to determine the effect of a mutation 

based on a residue’s site-specific conservation and coevolutionary coupled interactions16. 

However, as the effect of a mutation predicted by EVmutation is a measure of overall survivability, 

the native function of the protein may be masked and may not necessarily correlate to a specific 

function of study. To overcome this, the TLmutation platform implements a supervised algorithm 

to train a model with the experimental scores from a deep mutational scan. In doing so, the weights 

of the site-specific conservation and coevolutionary couplings are decoupled from a function of 

overall survival and fitted to the experimentally tested function of the protein. We have previously 

demonstrated the use of TLmutation to successfully incorporate deep mutational scanning data to 

decouple protein function from overall survival to enhance the prediction of variant effects in 13 

individual proteins15. More applicable to this current study, the TLmutation algorithm supersedes 

the performance of the EVmutation for predicting the effect of higher order mutations15. 

 

We first constructed a EVmutation model trained on a multiple sequence alignment consists of 

sequences above 80% sequence identify and totaled in over 8,000 sequences. As we expect this 

model to gauge protein survival rather than binding function, we then construct a TLmutation 

model by training the preliminary model on the 2,340 single point mutation obtained from deep 

mutagenesis of the human ACE2 receptor scanned for enhanced binding of the RBD domain12. 

The performance of the single mutation model was evaluated using a 5-fold cross validation in 

which the dataset was randomly split into an 80/20 train/test set. Across five folds, the 

experimental effect of ACE2 single mutations on RBD binding had the highest correlation with 

the TLmutation score compared to other variant effect predictors16–19  (Figure 1B). As such, the 

TLmutation algorithm demonstrates the ability to decouple overall survivability and predict a 
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particular function of interest. We find that DeepSequence, which models the evolutionary 

information into a latent representation19 and is considered a top preforming method for predicting 

deep mutational scans20, performed subpar to TLMutation (Figure 1B). We suspect that as ACE2 

binding to S is not evolutionary favored, the multiple sequence alignment used to train 

DeepSequence and EVmutation does not discriminate mutations that may optimize RBD binding.  

 

As TLmutation utilizes coevolutionary couplings to make predictions, we used the model trained 

on single point mutations to predict the effect of ACE2 double mutants. To validate the predictions 

generated by the model, we selected 18 ACE2 double mutants from the following different 

categories: 9 double mutants that scored in the top 1% of TLmutation; 4 double mutants in which 

each single mutation independently enhances binding, but scored less than the top 1%; 2 double 

mutants with a TLmutation score in the lowest 1% to serve as negative controls; and 3 double 

mutants consisting of the combination of single mutations in sACE22.v2.4 (Table S1). The ACE2 

mutants were evaluated by expression of full-length, myc-tagged protein in human Expi293F cells, 

which were tested by flow cytometry for binding to superfolder GFP (sfGFP)-fused RBD (Figure 

2). The predicted constructs exhibited levels of expression similar with the wild-type ACE2, 

suggesting these mutants do not significantly alter the stability of the receptor (Figure S1). With 

the exception of the two negative controls, all the mutants tested were observed to bind better or 

on par with the wild type (Figure 2). Additionally, the TLmutation scores correlated more to the 

experimental results as compared to EVmutation and DeepSequence (TLmutation R2 = 0.52, 

EVmutation R2 = 0.09, DeepSequence R2 = 0.23, Figure 3A-C). 
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Double mutants containing the combination of sACE22.v2.4 mutations, T27Y;L79T, 

T27Y;N330Y, and L79T;N330Y, bound to RBD with greater affinity than the single mutant 

variants, and had similar affinity as sACE22.v2.4. When examining the in silico mutagenesis 

predictions for these double mutants, TLmutation score the sACE22.v2.4 double mutants in the 

top 14%, with T27Y;N330Y and L79T;N330Y scoring in the upper 5%. DeepSequence scored all 

three mutants in the top 11%, whereas in EVmutation, it was score in the top 25% of all double 

mutants. When incorporating the newly experimental results of double mutants to the original 

single mutation training set, TLmutation, EVmutation, and DeepSequence predicted sACE22.v2.4 

to be highly deleterious in function. We hypothesize the limited dataset of double mutations was 

not adequate to distinguish critical couplings to accurately predict higher order mutations. 

 

For the nine mutants that scored in the top 1% of the TLmutation predictions, three mutants 

D67A;N387N, A387N;S511Q, and N394D;S511Q failed to be distinguishable from the wild type. 

The remaining mutants from the same group were observed to perform better than the wild type. 

Two ACE2 mutants exhibited over a two-fold relative binding increase over the wild type. For the 

L91P;N330Y mutant, both single mutations exhibited a relative binding fold enhancement of under 

two12; however, when expressed together, the relative binding increased over 2.5 fold. We have 

previously conducted molecular dynamics simulations of sACE22.v2.4 with the RBD domain of 

SARS-CoV-2 and observed the N330Y mutation to interact with backbone carbonyls of P499 on 

RBD further to stabilize the associated complex14 (Figure 4A). Interestingly, L91P is not directly 

located on the ACE2 binding interface and may allosterically stabilize the α2 helix for favorable 

S binding12. It is also possible that the proline introduction may alter the dynamics of the 

glycosylation motif at position 90. The best performing double mutant, L79V;N90D (Figure 4B), 
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bound RDB-sfGFP exceptionally well, equivalent to sACE22.v2.4. This double mutant scored 

within the top 0.7% of all TLmutation double mutants, whereas in EVmutation and DeepSequence, 

it scored in the top 5th and 2nd percentile, respectively. However, this mutant disrupts the N90 

glycan which has been shown to interact with RBD21 and could impair glycosylation that is 

required for in vivo compatibility, solubility, and reduced drug immunogenicity in ways that are 

unpredictable. Overall, the TLmutation algorithm successfully predicted higher order ACE2 

mutants with tight RBD binding activity from single mutation data, but nonetheless the 

sACE22.v2.4 derivative remains a top candidate for drug development as it combines high affinity 

spike protein binding and preserves the native glycosylation sites. 

 

With regards to engineering a soluble ACE2 peptide for high RBD binding activity, the search 

space of possible combination of mutations is unfathomable to experimentally evaluate. 

Furthermore, identifying variants of high activity cannot be solely obtained from intuition, 

sequence conservation, or single mutational data alone (Figure S2). Indeed, many high scoring 

(above a TLmutation score of 2 or the top 0.4% of all scored variants) ACE2 double mutants 

contains residues not involved at the interface (Figure S3). As such, computational techniques that 

employ in silico mutagenesis provide a powerful and attractive approach to systematically identify 

potential candidates for further validation. A recent in silico mutagenesis study employing the 

Rosetta based modeler for protein-protein association, Flex ddG, has successfully identified a 

quadruple ACE2 mutant, S19F;T27F;K31W;N330F, to exhibit nanomolar binding affinity similar 

to the sACE22.v2.4 designed mutant22. Similar in this study, the use of a supervised transfer 

learning algorithm implemented by TLmutation successfully identify several double mutations 

that enhances binding to the RBD domain of SARS-CoV-2. Though, while the mutations initially 
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identified sACE22.v2.4 construct retains the very tight binding activity and provide the most in 

vivo compatibility, these works demonstrate the successful use of computational techniques to aid 

in the engineering of protein design. A current limitation of variant effect predictors, TLmutation 

included, is in its ability to predict higher order mutations due to the lack of training data to identify 

relevant residue couplings. As mentioned, TLmutation, EVmutation, and DeepSequence fail to 

predict sACE22.v2.4 variant to be functional in binding. However, as deep mutational datasets 

become more readily available, specifically double mutational scans, we expect the use of 

computational algorithms may not only improve in silico variant effect predictions, but further aid 

in the systematic design of protein function that considers in vivo compatibility with minimal 

mutational load. 

 

Methods 

In silico mutagenesis 

We performed an in silico screening of all possible ACE2 double mutants using our previous 

described machine learning algorithm TLmutation. The TLmutation algorithm utilizes the 

EVmutation platform in addition to deep mutational scanning data of single mutations to predict 

the ACE2 mutational landscape for RBD binding. The TLmutation algorithm was first trained on 

the experimental single mutations data12 to decouple the weights from overall organismal 

survivability of fitness. The weights were then optimized to fit the function under investigation, 

i.e. RBD binding. The performance of the algorithm was evaluated with a 5-fold cross validation 

in which the data were split into 80/20 train/test sets. The TLmutation predictions were compared 

to predictions from the EVcouplings package16, Envision web server17, the SNAP2 web server18, 

and the DeepSequence package19. For construction of the EVmutation, TLmutation, and 
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DeepSequence model, the multiple sequence alignment was constructed using the EVcouplings 

package. TLmutation and EVmutation was performed using Python 3.7 on CentosOS6.6 with 

access to AMD EPYC 7301 (1200 MHz, 126 GB RAM). DeepSequence was performed using 

Python 2.7 on Ubuntu 20.04.3 with access to an Nvidia GeForce RTX 2080TI (11GB RAM) and 

an Intel i9-10900K (3700 MHz, 32 GB RAM). The input human ACE2 sequence was truncated to 

contain only positions 10 to 529 to reduce computational cost. 

 

Assessment of ACE2 mutations from TLmutation 

Expi293F cells transfected with pCEP4- myc-ACE2 plasmids were collected 24 h post-

transfection (600 × g, 60 s), washed with ice-cold Dulbecco’s phosphate buffered saline (PBS) 

containing 0.2% bovine serum albumin (BSA), and stained with 1:50 RBD-sfGFP expression 

medium (prepared as previously described and 1:250 anti-myc Alexa 647 (clone 9B11, Cell 

Signaling Technology) in PBS-BSA. After 30 minutes incubation on ice, cells were washed twice 

in PBS-BSA and analyzed on a BD Accuri C6 using instrument software. Gates were drawn around 

the main population based on forward and side scatter properties, followed by a gate for medium 

Alexa 647 fluorescence to control for any expression differences between mutants. Mean 

superfolder GFP (sfGFP) fluorescence was measured and background fluorescence of negative 

cells was subtracted. All replicates were from independent, distinct samples. 
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Figure 1: (A) Model of ACE22.v.2.4-RBD complex based on the resolved ACE2-RBD structure 
(PDB: 6M17). ACE2 is shown in blue cartoon representation. RBD domain is shown as yellow 
cartoon. Introduced mutations (T27Y, L79T, N330Y) in ACE22.v.2.4 are shown in orange sticks. 
Figure was generated using VMD 1.9.323 (B) Performance of variant effector predictors in 
predicting ACE2 single mutants for RBD binding. Spearman’s rank correlation (ρ) is measured as 
the average correlation across a 20% test or withheld dataset, across five folds.  
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Figure 2: Performance of ACE2 double mutants predicted by TLmutation. Expi293F cells 
expressing wild type or mutant myc-ACE2 were co-incubated with a fluorescent anti-myc 
antibody and with RBD-sfGFP expression medium at a sub-saturating dilution. After gating for a 
constant level of anti-myc fluorescence to control for expression differences, bound RBD-sfGFP 
was measured by flow cytometry. Data are mean, N=2, error bars represent range. The double 
mutants belonged to 4 groups and are colored accordingly: blue, mutants that scored in the top 1% 
of TLmutation; red, that scored in the lowest 1% of TLmutation; yellow, double mutants whose 
single mutations were previously validated to significantly enhance binding; green, double mutants 
of the mutations in ACE22.v2.4.  
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Figure 3: Comparison of variant effect predictions TLmutation (B), EVmutaion (C) and 
DeepSequence (D) with experimental measurements. Points are colors according to the 4 groups 
of double mutants and are colored accordingly: blue, mutants that scored in the top 1% of 
TLmutation; red, that scored in the lowest 1% of TLmutation; yellow, double mutants whose single 
mutations were previously validated to significantly enhance binding; green, double mutants of 
the mutations in ACE22.v2.4..  
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Figure 4: Structural models of the top two ACE2 double mutants of high RBD binding. (A) The 
L91P;N330Y variant. Y330 may interact with P499 of RBD, while P91 may enable helical kinks 
to allosterically stabilize the interfacial helices. Alternatively, P91 may also alter the dynamics of 
the N90 glycan, which has been shown to shield RBD binding to ACE221. (B) The L79V;N90D 
variant. D90 disrupts the glycan which would promote RBD binding.  
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