

ORIGINAL ARTICLES

VCP-related myopathy: a case series and a review of literature

Eliana lannibelli1*, Sara Gibertini1*, Marta Cheli1, Flavia Blasevich1, Andrea Cavaliere², Giorgia Riolo¹, Alessandra Ruggieri¹, Lorenzo Maggi¹

¹ Department of Neuroimmunology and Neuromuscular Diseases. Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ² Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy *These authors contributed equally to the study

The valosin-containing protein (VCP), a widely expressed protein, controls the ubiquitin-proteasome system, endolysosomal sorting, and autophagy to maintain cellular proteostasis. Frontotemporal dementia (FTD), inclusion body myopathy, and Paget's disease of the bone (PDB) are all caused by dominant missense mutations in the VCP gene, which interfere with these mechanisms and cause a multisystem proteinopathy. We describe phenotypic and genetic findings of five patients with four different mutations in VCP gene (NM_007126): c.278G > A (p.R93H), c.463C > T (p.R155C), c.410C > T (p.P137L), c.464G > A (p.R155H), c.410C > T (p.P137L). We analysed the patient' biopsies, all characterized by a muscular phenotype, and we executed immunofluorescence staining to evaluate the presence of proteins: p62, VCP, desmin, myotilin, TDP-43. Eventually we performed a brief literature review to compare our cases with those already reported. Our report strongly suggest that VCP gene mutations can be related with a predominant skeletal muscle phenotype without any central nervous system involvement, as occasionally reported in the literature. Particularly, our patient with R93H shows only myopathic involvement while this mutation has been described once associated only to Hereditary Spastic Paraplegia. Further study will be necessary to understand such a broad and different clinical spectrum.

Key words: VCP mutations, muscular phenotype, biopsies, rimmed vacuoles

Introduction

The VCP gene, on chromosome 9p13-p12, encodes for the valosin-containg protein (VCP/ p97), a ubiquitously expressed protein belonging to the AAA+ (ATPases associated with various activities) protein family ¹. This protein is involved in several cellular functions as cell cycle regulation, DNA damage response and homotypic membrane assembly. Furthermore, VCP has a crucial role in cellular proteostasis being directly involved in endoplasmatic reticulum-associated degradation of protein (ERAD)² and Ubiquitin-proteasome system (UPS) processes ³. Loss of VCP activity leads to the accumulation of ubiquitinated proteins and impaired ERAD ^{4,5}.

Mutations in VCP gene, inherited in an autosomal dominant manner, may result in a multisystem degenerative disorder, affecting muscle, bone and brain as Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD) (MIM 167320) that show variable penetrance of its 3 main entities: the inclusion body myopathy, the Paget's disease of the bone (PDB) and the fronto-temporal dementia (FTD). Moreover, VCP mutations have also been associated to amyotrophic lateral sclerosis (ALS), distal myopathy, autosomal dominant Charcot-Marie-Tooth disease type 2Y and behavioural impairment and progressive non-fluent aphasia ⁶. VCP- and TDP-43 positive aggregates have been documented in the cytoplasmic compartment of IBMPFD skeletal muscles,

Received: January 11, 2023 Accepted: February 22, 2023

Correspondence Alessandra Ruggieri

Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy

E-mail: alessandra.ruggieri@istituto-besta.it

How to cite this article: lannibelli E. Gibertini S. Cheli M, et al. VCP-related myopathy: a case series and a review of literature. Acta Myol 2023;42:2-13. https://doi.org/10.36185/2532-1900-244

© Gaetano Conte Academy - Mediterranean Society of Myology

This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. The article can be used by giving appropriate credit and mentioning the license, but only for non-commercial purposes and only in the original version. For further information: https://creativecommons.org/licenses/by-ncnd/4.0/deed.en

although not specific since they have also been observed in a wide variety of neurodegenerative disorders including Parkinson's disease, Lewy body disease, Huntington's disease, amyotrophic lateral sclerosis and spinocerebellar ataxia type III ⁷.

Patients with *VCP* mutations, usually present in mid-adulthood with muscle weakness, sometimes associated with respiratory and cardiac muscle impairment, leading to life-threatening breathing difficulties and heart failure ^{8,6}. We here describe clinical, histological and molecular features of a small cohort of Italian patients with *VCP* mutations and a revision of the available literature.

Materials and methods

This is a retrospective study on 5 *VCP*-mutated patients (4 males, 1 female) and their follow-up at Fondazione IRCCS Istituto Neurologico Carlo Besta. All patients signed informed consent for publication.

Molecular analysis

Genomic DNA was extracted from the peripheral blood on Freedom Evo 100 (Tecan, Männedorf, Switzerland) by NucleoSpin blood Kit following the manufacturer's instructions (Macherey–Nagel, Düren, Germany). DNA quality and quantity were analysed by NanoDrop (Thermo Fisher, Foster City, CA, USA), gel electrophoresis, and fluorescence absorbance (Qubit® 2.0 Fluorometer; Thermo Fisher).

We performed a custom target gene panel testing for vacuolar, distal and myofibrillar myopathies by Next Generation Sequencing (NGS) approach, designed with Agilent's HaloPlex technology (Agilent Technologies Santa Clara, California) loaded on Illumina MiSeq sequencer. Sanger sequencing using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) on an ABI Prism 3100 Genetic Analyzer (Applied Biosystems), was performed to verify and validate the variants.

Muscle biopsy

Skeletal muscle biopsies were available for all patients except patient 3 and were obtained at the Fondazione IRCCS Istituto Neurologico Carlo Besta. Muscle tissues were frozen in liquid nitrogen-cooled isopentane and histological staining was performed on 8μ m-thick cryosections.

Immunofluorescence

Immunohistochemical staining on 4% paraformaldehyde fixed sections was carried out using the following antibodies: anti-desmin (1:100 M0760, clone D33 mouse monoclonal DAKO), anti-TDP43 (1:200 10784-2-AP rabbit monoclonal Proteintech), anti-myotilin (1:100 mouse monoclonal Novacastra Leica), anti-p62 (1:100 gp62-c guinea-pig polyclonal; Progen), anti-VCP (1:100 MA3-004 mouse; ThermoScientific). Specific secondary Alexa 488/546/555 antibodies (1: 1500; Invitrogen Life Technology) were used and visualized under a fluorescence microscope (Carl Zeiss AG, Oberkochen, Germany).

Results

Clinical, neurophysiological, histological, imaging and molecular features of included patients are summarized in Table I.

Genetic findings

Among the variants identified by NGS, only those in VCP were already reported in the literature as pathogenic and were correlating with the phenotypes in our patients. No other potential causative variants were found by NGS analysis. No other affected family members were available for segregation while the variants were absent in the healthy relatives tested.

Clinical features

The mean age of disease onset was 46 ± 5.8 years (range 40-54), with 4 patients presenting with lower limb muscle weakness, notably distal for patients 1, 3 and 5 and proximal in patients 2, while patient 4 presented with proximal upper limb muscle weakness. No familiarity for myopathy was reported in patient 2, 4 and 5, while patient 1's father had a myopathy with rimmed and patient 3 a sister with similar muscular symptoms.

At the last examination at a mean age of 51.6 ± 6.8 (range 59-43) years, the predominant pattern of muscle weakness included distal lower limb muscles in 3/5 patients, and scapular and pelvic muscles in remaining 2 cases. No cranial nerve involvement was observed, except for patient 4 showing mild tongue and orbicularis oculi muscle weakness. Notably, patients 2 and 4 showed Beevor's sign. Severity of motor dysfunction according to Walton and Gardner & Medwin scale (WGM) ⁹ was 4 in all patients, except for patient 2 that was unable to walk unassisted (WGM = 8).

Three out of 5 patients (60%) showed increased level of CK (within x 5 upper normal limit).

Heart involvement was reported only in 2/5 (40%) patients, with patient 1 presenting at the age of 61 years with mild atrial dilatation and diastolic dysfunction and patient 3 with hypertensive cardiopathy. Moreover, respiratory involvement requiring non-invasive ventilation (NIV) during night was reported only in patient 2 (20%) since the age of 54 years due to concomitant restrictive and obstructive pulmonary syndrome.

Different types of cancer were present in 3/5 (60%) patients.

Furthermore, patient 1 had also a mild lower limb sensory axonopathy. No patients showed evidence of FTD or central nervous system involvement and only patient 2 had PDB. Furthermore, no positive family history for FTD or PDB was reported, except for patient 3 whose father was affected by PDB.

All patients underwent electromyography showing always spontaneous activity with fibrillation and/or complex repetitive discharges; a myopathic pattern was found in 4 out of 5 patients, combined to neurogenic finding in 2 cases. An exclusively neurogenic pattern with myopathic signs was observed in patient 5.

Histology

The muscle biopsies were performed at a mean age of 49.2 ± 6.38 (42-58) and were undertaken in our centre for all patients but patient 3. Histological analysis showed mild to moderate myopathic changes with fibre degeneration/regeneration and rimmed vacuoles in all patients analysed, without rimmed vacuoles (Fig. 1 a-b).

Immunofluorescence staining with the selected antibodies showed comparable signals for TDP-43 (Fig. 1 c-d) and VCP (Fig. 1 g-h)

Patient 5	M/41	c.410C > T (p.P137L)	Distal lower limb weakness	er Peroneal > pelvic and scapular in (46y)	NA	4	NO	Mild myopathic and neuropathic changes, rimmed vacuoles in 1 fibre (45y)	Neuropathic pattern with SA	Severe fatty replacement of peroneal muscles (CT, 45y)	-/-	NA	No	NA	N	No (normal brain MRI)	NA	No	M
Patient 4	M/40	c.464G > A (p.R155H)	Proximal upper limb weakness	Scapular and pelvic > distal upp and lower limb plus Beevor's sig (43y)	Yes	4	Mild tongue and orbicularis ocu muscle weakness	Moderate myopathic changes with degeneration/regeneratior and rimmed vacuoles (42y)	Myopathic and neuropathic pattern with SA	Severe fatty replacement of lumbar paravertebral, ileopsoas MG, AM and VI (CT, 43y)	-/-	No	No	No	No	No	Normal	No	Vascular hypertension
Patient 3	F/46	c.410C > T (p.P137L)	Distal lower limb weakness	Distal > proximal lower limbs > scapular asymmetric, left > right side (56y)	No	4	No	Moderate myopathic changes with degeneration and inflammatory cells (48y)	Myopathic pattern with SA	Fatty replacement of TA (L $>$ R), mild substitution of AM and AL and SM (MRI, 54 years)	-/-	Father with PDB	No	Hypertensive cardiopathy	No	Normal brain MRI. NCT with mild revocation memory and attention- executive dysfunction	214 U/L	No	Depressive disorder; vascular hvnertension: hreast cancer
Patient 2	M/49	c.463C > T (p.R155C)	Proximal lower limb weakness	Scapular and pelvic girdle > distal plus Beevor's sign (54y)	Yes	ω	No	Moderate myopathic changes with degeneration/regeneration and rimmed vacuoles (53y)	Myopathic and neuropathic pattern with SA	Severe fatty replacement of lumbar paravertebral, VL and VI and moderate of AM et AL (CT, 53y)	-/+	No	No	N	Mixed restrictive/obstructive pattern; NIV during night started at 54y	No	455 - 536 U/L	55y – unknown reasons	Vascular hypertension, Renal cell carcinoma; major depressive disorder obstructive nulmonary
Patient 1	M/54	c.278G > A (p.R93H)	Distal lower limb and axial muscle weakness	Distal > proximal lower limbs > scapular asymmetric, left > right side (59y)	No	4	No	Mild unspecific changes (53y); moderate myopathic changes with degeneration/regeneration, rimmed vacuoles and inflammatory cells (58y)	Myopathic pattern plus SA (plus mild distal sensory axonopathy)	Asymmetric (R > L) fatty replacement of TA and MG with gadolinium enhancement and asymmetric (L > R) fatty replacement of AM and AL and SM and ST (MRI, 53y)	-/-	No	Traumatic fractures	Mild atrial dilatation and diastolic dysfunction	No	No (normal NCT+ brain MRI)	300 - 1032 U/L	No	Well-differentiated papillary thyroid
	Sex/age at onset	VCP mutations	Symptoms at onset	Pattern of weakness distribution at last examination (age)	Scapular winging	Walton and Gardner & Medwin at last examination	Cranial nerve involvement	Muscle biopsy (age)	EMG	Muscle imaging predominant pattern (age)	PDB/FTD	Familiarity for PDB/FTD	Fractures	Cardiac involvement	Respiratory involvement	CNS involvement	CK levels (normal range 38-174)	Death	Other simptoms

between patients and control and no desmin and myotilin positive aggregates (Fig.1 c-d/e-f). However, positivity for p62 (Fig. 1 e-f) was present in two muscle biopsies (patient 1 and 2) as also described in the literature (Tab. II).

Muscle imaging

The muscle imaging was performed through CT or MRI scans at calf and thigh levels at a mean age of 49.6 ± 9.4 (43-54) years, revealing fatty replacement, predominantly affecting adductor magnus and vastus intermedius and medialis in the thighs (Fig. 2) and tibialis anterior and medial gastrocnemius in the legs.

Discussion and conclusions

We here present 5 Italian patients affected by VCP-related myopathies. Our patients were characterized by distal lower or upper limb weakness at onset in 3 out of 5 cases, whereas remaining 2 subjects presented with predominant proximal upper or lower limb muscle weakness. Interestingly, the predominant pattern of weakness at onset was further maintained during the follow-up over the years. Two patients showed asymmetric weakness, that is present in VCP-related myopathies ¹⁰. We also reported Beevor's sign in 2 patients, suggestive of selective lower abdominal muscles, never reported before in VCP-related myopathies; Beevor's sign is usually observed in late-onset Pompe disease and in facio-scapulo-humeral dystrophy ^{11,12}. So far, a genotype-phenotype correlation has only been reported in axonal Charcot-Marie-Tooth disease that has only been associated to the amino acid changes E185H. S171R and G87E mutations as well as spastic paraplegia that has been solely related to R93H and R159C mutations ¹³ The most common mutations in the VCP gene are found within the N-terminal domain (exons 1-5), as showed in Figure 3. This domain is involved in the binding of the ubiguitin and other co-factors, such as UFD1 (ubiguitin recognition factor in ER associated degradation 1) and NPL4 (ubiguitin recognition factor), which are essential for UPS function. There are two other important domains that bind and hydrolase the ATP, the D1 and D2 domains. These domains are organized as two stacked rings with a central channel, whereas its regulatory N-domain is situated at the periphery of the D1 ring ¹⁴. The complexity of VCP's diverse molecular functions is also expressed by the broad clinical variability caused by pathogenic variants in VCP as shown in Table II revising the literature. The P137L variant described by Palmio et al. ¹⁵ in 9 patients, presenting with a distal myopathy phenotype without proximal or scapular weakness, has been also found in 2 of our patients (patient 3 and patient 5) with lower limb distal weakness at onset. However, this variant was previously reported in a patient with initial distal weakness involving the ankle extensors and a progression to both proximal and distal upper limb muscles with marked scapular wings ¹⁶. The R93H mutation found in patient 1, exhibiting lower limb and axial muscle weakness, was so far only been associated to Hereditary Spastic Paraplegia ¹⁷. One of the VCP hotspots is codon 155, in which three frequent missense mutations are present, R155C, R155H and R155P. According to model predictions, the most deleterious is R155C because it involves major conformational changes in the ATP binding site, even though all three variants cause

Figure 1. TRG staining (a-b) of patient 1. Desmin (green) and TDP-43 (red) double staining in the control tissue (c) and in the representative patient 1 (d); myotilin (green) and p62 (red) immunofluorescence in control (e) and patient 1 (f); VCP (green) staining in control (g) and patient 1's tissue (h).

a structural change affecting the ATP-ADP transition kinetics ¹⁸. In fact, R155 interacts with the N387 which is located within the D1 domain that binds and hydrolyses ATP ¹⁹. R93 and R155 are both surface-accessible residues located in the centre of cavities that may enable ligand-binding. The R155H variant present in patient 4, with mild increased parietal thicknesses of the left ventricle without cardiomyopathy, has been also reported in a patient with inclusion body myopathy and cardiomyopathy ²⁰. In patient 2 the mutation R155C is associated with Paget's disease (PDB). Moreover, the examination of the 31 cases reported in the literature and associated to the R155C mutation, reveals that 39% of them are inclusion body myopathy and 3% PDB only, while no patients present exclusively with FTD. Furthermore, 26% of patients show both inclusion body myopathy and PDB, 16% inclusion body myopathy with PDB and FTD, and 16% have inclusion body myopathy with PDB and FTD phenotypes ²¹.

Figure 2. Muscle imaging at thigh level from patients 1-4. (a) T1-MRI axial images from patient 3 displayed minimal fatty degeneration in sartorious, semimembranous and semitendinosus muscles. (b) T1-MRI from patient 1 revealed asymmetric fatty changes of adductor magnus (red star), semimembranosus, semitendinosus and long head of biceps femoris on the left side and only initial changes of sartorious on both sides. The patient had a complete fatty replacement of tibialis anterior (data not shown). (c) CT scan from patient 2 demonstrating relevant symmetrical fatty changes mainly in vastus intermedius, medialis and adductor magnus (white arrows), while asymmetric changes are visible in the vastus lateralis, with the left side more involved. Gracilis muscles are involved on both side. (d) CT scan from patient 4, showing fatty changes mainly in vastus intermedius and medialis (white arrows), rectus, and adductor magnus.

Figure 3. Representation of the VCP gene with its domains and the localization of all the reported mutations. Our identified mutations are highlighted in red.

It is known that VCP is overexpressed in many types of cancers probably due to its involvement in the DNA repair and stability as well as in the autophagy pathway for a proper proteostasis. However, despite 60% of our patients presented with cancer, no direct correlation with mutations in VCP has so far been reported, as also evident from the largest retrospective study published by the VCP International Study Group in 2022 ²² analyzing 225 patients with known VCP mutations. Our patient with Paget's disease has R155C mutation as other patients reported in the literature by Watts, Al-Obeidi, Figuroa, Guyant, Stojovic ^{16,21,23-25}. In contrast, FTD reported is associated with 6 differ-

	Walking ability	Not reported	Independent	Not reported	Not reported	Not reported	Not reported	The mean time to loss of ambulation was 13.37 ± 6.6	Not reported
	Respiratory involvement	NIV dependent at 38 years old, died of respiratory failure at the age of 41	Not reported	Not reported	Not reported	Not reported	NIV 19 months after onset of motor symptoms	Not reported	Not reported
	Cardiac involvement	Not reported	Not reported	Not reported	Not reported	Not reported	hypertension	Not reported	Not reported
	Immunohis- tochemistry	Not reported	Not reported	VCP-positive aggregates, alpha B-crystallin, myotilin, desmin	Not reported	Not reported	Not reported	Not reported	Not reported
	Neuroimaging (muscle or brain MRI) or electromyography	CT scan showed osteolytic abnormalities and no brain atrophy. EMG: active and chronic denervation potentials	138 myopathic individuals underwent EMG studies: 45/138 (32,6%) had pure myopathic changes, 16/138 (11,6%) had neurogenic alteration and 19/138 (13,7%) both	EMG: acute denervation in all examined muscles	Brain MRI suggestive of FTD	EMG: signs of active denervation, no myopathic changes, no neuropathy	EMG examination showed acute and chronic denervation	Not reported	Not reported
	VCP mutation (protein)	M158V	R155H R155C R155P R1910 R159C R159H L198W R95G R93C A232E N387H G97E A160P G128A M158I	R159C	D395A	R159C	1151V	G202W A439G R155H R1910 R155C R93C	I27V R159C
	Rimmed vacuoles at biopsy	Not reported	Muscle biopsy reports available for 115 of the symptomatic individuals. 46 (40%) out of 115 muscle biopsies showed rimmed vacuoles	Yes	Not reported	Not reported	Not reported	9/17 (53%) biopsies revealed rimmed vacuoles	Not reported
	Age at onset	36	Myopathy (43) PDB (41.2) FTD (55.9)	50	40	55.5	68	42.05	69
	Ethnicity	Japanese	European, Brazilian, Hispanic/ Apache, and African- American	Italian	Italian	Dutch	African American	English	Not reported
atures.	Prevalent phenotype	sporadic ALS	IBM, PDB, FTD, ALS and Parkinson's disease.	IBM+FTD	Early onset FTD	Slowly progressive spastic paraplegia and PDB	Sporadic ALS	92.3% muscle weakness: 27% scapular/ pelvic, 21.6% proximal UL, 13.5% proximal LL, 24.2 % both distal/proximal UL and/or LL. PDB first symptom (one case)	sIBM
ed clinical fea	Affected patients	Ĕ	231 (118M, 113F)	Ň	3 (1M,2F)	2 M	г	42 (23M, 19F)	3 (2M, 1F)
Table II. Report	Reference	Ayaki et al. (2014) ²⁹	Al-Obeidi et al. (2018) ²¹	Bersano et al. (2007) ²⁸	Bruno et al. (2021) ³⁰	de Bot et al. (2012) ³¹	DeJesus- Hernandez et al. (2011) ³²	Figueroa- Bonaparte et al. (2015) ²⁴	Gang et al. (2016) ³³

	Independent, but waddling gait	Walking difficulty	Not reported	Patients 1 and 4 lost ambulation	Not reported	Not reported	Walker at 52, wheelchair at 55 years	Walking aid (n = 14), cane (n = 9), walker (n = 11), wheelchair (n = 5)	Independent
	Not reported	Not reported	Respiratory distress (mean duration of 15 years, range 11 to 18 years). Death in 3 patients	Not reported	Not reported	Not reported	Progressive respiratory involvement	20 patients had orthopnea, 7 patients used assisted ventilation or oxygen supplementation	Patient 2 respiratory failure at age 65 years, death at age 66
	Subjects II-1 and II-2 died of a myocardial failure	Not reported	Not reported	Not reported	Not reported	Marked left ventricular dilatation and thickening of the left ventricular wall in patient II	Not reported	Cardiomyopathy (R155H, R191Q)	In patient 1 MIBG myocardial scintigraphy revealed reduced uptake
	Not reported	Not reported	Not reported	Not reported	Not reported	VCP and ubiquitin- positive aggregates	Not reported	Not reported	VCP and ubiquitin- positive aggregates
	Muscle MRI of the LL showed focal areas of fatty replacement of the gastrocnemius, quadriceps, and biceps femoris	Normal brain MRI	Patients II-4, III-1 present myopathic alteration at EMG	Patient 2 EMG showed myopathic alterations	Marked atrophy of the frontal and temporal lobes by brain MRI	Frontal and temporal atrophy in brain MRI of patient II	Cerebral MRI revealed bilateral frontal and temporal atrophy	Not reported	EMG showed myopathic change
	R155C	G97E	R93C R155C	R159H	R487H	R93C R155C R155H	R155C	R155H R155C R159C R159C R191Q G125D R191Q G125D	V87F 1126V
	Yes	Not reported	Subsarcolemmal rimmed vacuoles in II-5 and II-8	Rimmed vacuoles only in patient 4	Not reported	Yes	Yes	Not reported	Yes
	42.5	57.4	56.5	48.5	65	51.3	42	43.4	65
	Italian	Chinese	Northern- European	Austrian	Japanese	Not reported	Japanese	American English Australian Canadian Netherlands German New Zealander Brazilian Thai	Japanese
	Progressive myopathy	IBMFD	FTD in 100% (family 1), 70% (family 2). PDB more inconstant clinical feature	Progressive proximal myopathy and PDB without dementia	Sporadic ALS, with later dementia	IBMPFD	IBMPFD	53 IBM, 17 PDB, 8 patients with dementia, 6 with peripheral neuropathy, 4 with cataracts, 2 with ALS, and 1 with parkinsonism	1 patient with ALS, and 1 with parkinsonism
sər	2 (1M, 1F)	5 (3M, 2F)	2 families	4 (1M, 3F)	-	ო	M	59 (28M, 31F)	2M
Table II. continu	Gidaro et al. (2007) ³⁴	Gu et al. (2013) ³⁵	Guyant- Maréchal et al. (2006) ²⁵	Haubenberger et al. (2005) ³⁶	Hirano et al. $(2015)^{37}$	Hübbers et al. (2007) ¹⁹	lkeda et al. (2020) ³⁸	lkenaga et al. (2020) ²⁰	lnoue et al. (2017) ²⁷

	Wheelchair dependent	Independent	Not reported	Patient B: unable to walk	Progressive difficulty getting out walking up and down stairs	Not reported	Independent	Not reported	Walk with a stick until the age of 50	Need of support
	Not reported	Not reported	Not reported	Not reported	Not reported	Not reported	Not reported	Not reported	Not reported	Not reported
	Not reported	Mildly abnormal cardiac stress test with mild ischemia of the anterior cardiac wall	Not reported	Not reported	Not reported	Not reported	Not reported	Not reported	Not reported	Not reported
	Not reported	Not reported	Not reported	Not reported	TDP-43	Not reported	Not reported	Not reported	TDP-43 and p62 inclusions in rimmed vacuoles, granular cytoplasmic VCP in most fibres	Not reported
	Spontaneous activity and both myopathic or neurogenic at EMG. Frontal and internal temporal atrophy at brain MRI	Not reported	Not reported	Not reported	EMG in 4 patients showed a myopathic pattern	Not reported	Brain MRI was normal	Not reported	Abnormal findings in anterior LL muscles from subtle to severe replacement by fatty connective tissue in all others	Brain MRI revealed frontal lobe atrophy. EMG showed diffuse myopathic changes and mild spontaneous activity. Muscle MRI showed extended atrophy and fatty degeneration
	R155H	R155H	R92H	R159H I114V	R155C L198W	L386Q	R155C	R93H	P137L	R159H
	Yes	Not reported	Not reported	Not reported	2 patients' muscle biopsies showed rimmed vacuoles	Not reported	Not reported	Not reported	3 patients' muscle biopsies showed rimmed vacuolar myopathy	Not reported
	41	40	Not reported	55.5	37	60	36	Not reported	46	62
	French	Caucasian	Caucasian	Not reported	Australian	Not reported	Japanese	Not reported	Finnish	Greek
	IBMPFD	The proband present proximal LL and distal UL weakness	LOAD	ALS	1 myopathy 4 myopathy + PDB 1 IBMPFD	IBM	HSP with PDB	HSP	3 patients with distal myopathy and rapidly progressive dementia	LL myopathy and FTD(II-1), dementia(I-2) classical ALS (II- 2), behavioural symptoms (II-3)
sər	Ă	ЗЕ	ę	2F	6 (3M,3F)	-	4	-	9 (6M, 3F)	4 (3M, 1F)
Table II. contin	Jacquin et al. (2013) ³⁹	Jerath (2019) ⁴⁰	Kaleem et al. (2007) ⁴¹	Koppers et al. (2012) ⁴²	Kumar et al. (2010) ⁴³	Lévensque et al. (2016) 44	Nakamura et al. (2021) ⁴⁵	Neveling et al. (2013) ¹⁷	Palmio et al. (2011) ¹⁵	Papadimas et al. (2017) ⁴⁶

9

	Subjects II.1 and II.3 became wheelchair- bound	Not reported	Not reported	10 patients wheelchair bound after a mean disease course of 9 years and 6 required canes for walking	Not reported
	Subject II.2 present orthopnea, Subjects II.1 and II.3 died of aspiration pneumonia	Not reported	Not reported	Two patients required NIV and 7 died as a consequence of weakness and respiratory distress	Not reported
	Not reported	Not reported	Not reported	Not reported	Not reported
	TDP-43 immunoreactive cytoplasmic deposits, and numerous COX- reduced fibres	Not reported	Not reported	Not reported	Not reported
	Brain MRI showed atrophy of the frontal and temporal lobes, slightly more significant over the left temporal lobe	Male patient brain MRI showed marked symmetrical cerebral atrophy involving the frontal and parietal lobes. Female MRI was normal	Brain MRI showed left temporal lobe atrophy at 58 years old, MRI at 62 years of age showed bilateral frontal and temporal lobe atrophy	Muscle MRI showing fatty degeneration of VL, VM, RF and gluteus. At the scapular level, fatty degeneration is observed on supraspinatus, infraspinatus and deltoid. EMG: acute denervation either a myogathic pattern or a mixed myogenic/ neurogenic pattern	By brain MRI corticosubcortical and cerebellar atrophy (P5), periventricular leukoenceohalopathy (P2)
	G156S	127V	T127A N401S	P137L R155C R155S R155H A439S R159H G157R R1910	R159H
	Biopsy of subjetc. 2 revealed myopathic changes and scattered rimmed vacuoles	Not reported	Not reported	Yes	Not reported
	33.5	63.5	60.5	42	54 (FTLD) 46 (PDB)
	French Canadian	Japanese	Chinese	French and Spanish	Belgian
	Initial proximal and distal LL weakness with loss of ambulation, 12 years later distal UL weakness, later proximal arm and neck extension weakness	Male patient: deterioration in episodic memory and progressive behavioural disturbance later developing muscle weakness and tremor. Female patient: progressive speech disturbance	FTD and AD	Early involvement of the proximal UL with scapular winging. Axial and LL muscles often affected. PDB observed in 8 and cognitive impairment in 9 patients	FTLD, PDB
səri	3 (1M,2F)	2 (1F, 1M)	2F	19 (11M 8F)	2 families
Table II. continu	Pellerin et al. (2020) ⁴⁷	Rohrer et al. (2011) ⁴⁸	Shi et al. (2008) ⁴⁹	Stojkovic et al. (2009) ¹⁶	van der Zee et al. (2009) ⁵⁰
		•	-		

J.
_
3
47
5
5
2
0
<u> </u>
=
=
ell
ole II.
ble II.
able II.
Table II.

Independent	Not reported	Losing the ability to walk within a few years of onset	Not reported	3: needle
Not reported	Not reported	Case 6 died from respiratory failure	Not reported	mography; EM0
Not reported	Not reported	Cases 6 and 7 died of cardiac failure	Not reported	CT: computed to
Not reported	Not reported	Not reported	Not reported	sease of bone;
EMG of 2/4 patients: signs of diffuse acute and chronic denervation	Not reported	EMG: Myopathic (3 patients), Mixed myopathic- neurogenic (1 patient)	EMG: Myopathic (2 patients)	al sclerosis; PDB: Paget's di
R155H	R155H R155P R155C A232E R95G R191Q	N387H L198W	127V R95C	votrophic latera
Rimmed vacuolar inclusion bodies in 3 biopsies	Yes	4 patients showed rimmed vacuoles	2 patients showed rimmed vacuoles	itilation; ALS: amy
49	42	40	> 45	ivasive ver
Italian	12 from the United States and 1 from Canada	Poland and American	Not reported	y; NIV: non-ir
IBMPFD	82% patients with myopathy, 49% PDB and 30% early-onset FTD	IBMPFD	IBMPFD and Parkinson's Disease	copic gastrostor
4	13 families	Q	2	ieous endoso
Viassolo et al. (2008) ⁵¹	Watts et al. (2004) ²³	Watts et al. (2007) ⁵²	Weihl et al. (2015) ⁵³	PEG: percutan

ations at EMG; UL: upper limb; LL: lower limb; PSW: positive sharp waves; LOAD: late onset Alzheimer's disease.

ent mutations (R93H, R155C, R155H, R159C, D395A, R155C), as reported in the Table II.

Among the cases reported in the literature with clinical data, the patients showing respiratory involvement were the 8% (39/503). Amid these, around 30% (11/39) required NIV, as shown in the Table II. Notably, 14 patients died due to respiratory complications. Cardiac involvement was reported in about 20% of the cases (11/503). Our data are substantially in line with these results, suggesting that cardiac involvement and need of NIV are not specific and rare, in particular the former. In addition, about 256 patients underwent muscle biopsies and rimmed vacuoles have been detected in 106 samples (40%). Conversely, all our patients except patient 3, showed rimmed vacuoles at muscle biopsy.

For an in-depth study of the muscle tissue and correlation with the VCP mutations we performed immunofluorescence analysis to evaluate the expressions of p62. TDP-43 along with those of VCP, desmin and myotilin. In fact, desmin and myotilin have demonstrated to be sensitive diagnostic tools to depict pathological protein aggregation in MFM ²⁶, while different studies have reported the presence of aggregates of p62, TDP43 and VCP in patients with mutation in VCP gene. Additionally, Inoue and colleagues ²⁷ showed co-localization of VCP and ubiquitin positive inclusions both in the nucleus and the cytoplasm in 2 patients. Also, Bersano et al. 28 described a IBMPFD patient with the R159C mutation which biopsy was characterized by the presence of some fibres containing aggregates that were positive for VCP, alpha B-crystallin, myotilin or desmin. Finally, VCP and ubiquitin-positive cytoplasmic and nuclear inclusions were described in a patient with R155C mutation ¹⁸. Conversely, in our patients, no significant positivity was observed for any of the tested proteins. The immunoassays of our patients were performed on guadriceps muscles, whereas in other works they used different muscles, e.g., Bersano et al. 28 biceps and the gastrocnemi and Hubbers et al. 19 biceps brachii, vastus lateralis, and tibialis anterior. Also, in one of the patients in the work of Bersano et al. no positivity for protein is shown, probably related to the lower severity of the phenotype at the time of biopsy. We could hypothesize that in our patients for the same reason, too, there is no signal in the muscle tissue.

Our report confirms that the R155C, P137L, R155H mutations present in our patients can be associated to a myopathic phenotype without any CNS involvement, as previously reported in the literature ^{21,15}. Indeed, all our patients have a predominant skeletal muscular phenotype. On the other hand, R93H mutation found in patient 1 has only been reported in the literature in association with HSP ¹⁷ and not causative of a myopathy.

Further studies are needed to better clarify disease natural history and genotype-phenotype correlations in VCP-related myopathies.

Acknowledgements

This work was supported/partially supported by the Italian Ministry of Health (RRC).

We would like to thank all the patients and their families. Lorenzo Maggi is member of the ERN-NMD.

Conflict of interest statement

The Authors declare no conflict of interest.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' contributions

El: performed acquisition and analysis of data, revision of the literature and drafting of the manuscript; GR and FB: performed immunohistochemical analysis; SG and AC: acquired and analyzed genetic data; MC and LM: acquired and analyzed clinical data; SG, MC, LM and AR: revised the manuscript.

Ethical consideration

This study was approved by the Ethical Committee at the Fondazione IRCCS Istituto Neurologico C. Besta (project number 108/2020). Informed consents were obtained from the participant patients.

References

- Halawani D, Latterich M. p97: The cell's molecular purgatory? Mol Cell 2006;22:713-717. https://doi.org/10.1016/j.molcel.2006.06.003
- Rabinovich E, Kerem A, Frohlich KU, et al. Bar-Nun AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 2002;22:626-634
- Meyer H, Weihl CC. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci 2014;127:3877-3883. https://doi. org/10.1242/jcs.093831
- ⁴ Dalal H, Evans PH, Campbell JL. Recent developments in secondary prevention and cardiac rehabilitation after acute myocardial infarction. Erratum in BMJ 2004;328:926. BMJ 2004;328:693-697. https://doi.org/10.1136/ bmj.328.7441.693
- 5 Wójcik C, DeMartino GN. Intracellular localization of proteasomes. Int J Biochem Cell Biol 2003;35:579-589. https://doi.org/10.1016/s1357-2725(02)00380-1
- 6 Nalbandian A, Donkervoort S, Dec E, et al. The multiple faces of valosin-containing protein-associated diseases: inclusion body myopathy with Paget's disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis J Mol Neurosci 2011;45:522-531.
- 7 Harley J, Hagemann C, Serio A, Patani R. TDP-43 and FUS mislocalization in VCP mutant motor neurons is reversed by pharmacological inhibition of the VCP D2 ATPase domain. Brain Commun 2021;3:fcab166. https://doi.org/10.1093/ braincomms/fcab166
- 8 Mehta SG, Khare M, Ramani R, et al. Genotype-phenotype studies of VCP-associated inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia. Clin Genet 2013;83:422-431.
- Angelini C, Semplicini C, Ravaglia S, et al. New motor outcome function measures in evaluation of late-onset Pompe disease before and after enzyme replacement therapy. Muscle Nerve 2012;45:831-834. https://doi.org/10.1002/mus.23340
- Matsubara S, Shimizu T, Komori T, et al. Nuclear inclusions mimicking poly(A)-binding protein nuclear 1 inclusions in a case of inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia with a novel mutation

in the valosin-containing protein gene. Neuromuscul Disord 2016;26:436-440. https://doi.org/10.1016/j.nmd.2016.05.001

- Eger K, Jordan B, Habermann S, et al. Beevor's sign in facioscapulohumeral muscular dystrophy: an old sign with new implications. J Neurol 2010;257:436-438. https://doi.org/10.1007/s00415-009-5342-9
- Garibaldi M, Diaz-Manera J, Gallardo E, et al. Teaching video neuroimages: the beevor sign in late-onset pompe disease. Neurology 2016;86:e250-e251. https://doi.org/10.1212/WNL.00000000002772
- Posey JE, Harel T, Liu P, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med 2017;376:21-31. https://doi. org/10.1056/NEJMoa1516767
- ¹⁴ DeLaBarre B, Brunger AT. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Biol 2003;10:856-863. https://doi.org/10.1038/nsb972
- Palmio J, Sandell S, Suominen T, et al. Distinct distal myopathy phenotype caused by VCP gene mutation in a Finnish family. Neuromuscul Disord 2011;21:551-555. https://doi.org/10.1016/j.nmd.2011.05.008
- Stojkovic T, Hammouda el H, Richard P, et al. Clinical outcome in 19 French and Spanish patients with valosin-containing protein myopathy associated with Paget's disease of bone and frontotemporal dementia. Erratum in Neuromuscul Disord 2011;21:e1. Gonzalez, Pilar Camaño [corrected to Camaño, Pilar]. Neuromuscul Disord 2009;19:316-323. https://doi.org/10.1016/j.nmd.2009.02.012
- ¹⁷ Neveling K, Feenstra I, Gilissen C, et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat 2013;34:1721-1726. https://doi.org/10.1002/ humu.22450
- ¹⁸ Wu R, Wei Z, Zhang L. Structural insight into mutations at 155 position of valosin containing protein (VCP) linked to inclusion body myopathy with Paget disease of bone and frontotemporal Dementia. Saudi J Biol Sci 2021;28:2128-2138. https://doi.org/10.1016/j.sjbs.2021.02.048
- Hübbers CU, Clemen CS, Kesper K, et al. Pathological consequences of VCP mutations on human striated muscle. Brain 2007;130:381-393. https://doi. org/10.1093/brain/awl238
- Ikenaga C, Findlay AR, Seiffert M, et al. Phenotypic diversity in an international Cure VCP Disease registry. Orphanet J Rare Dis 2020;15:267. Published 2020 Sep 29. https://doi.org/10.1186/s13023-020-01551-0
- Al-Obeidi E, Al-Tahan S, Surampalli A, et al. Genotype-phenotype study in patients with valosin-containing protein mutations associated with multisystem proteinopathy. Clin Genet 2018;93:119-125. https://doi.org/10.1111/cge.13095
- Schiava M, Ikenaga C, Villar-Quiles RN, et al. Genotype-phenotype correlations in valosin-containing protein disease: a retrospective muticentre study [published online ahead of print, 2022 Jul 27]. J Neurol Neurosurg Psychiatry 2022;jnnp-2022-328921. https://doi.org/10.1136/jnnp-2022-328921
- Watts GD, Wymer J, Kovach MJ, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 2004;36:377-381. https://doi. org/10.1038/ng1332
- Figueroa-Bonaparte S, Hudson J, Barresi R, et al. Mutational spectrum and phenotypic variability of VCP-related neurological disease in the UK. J Neurol Neurosurg Psychiatry 2016;87:680-681. https://doi.org/10.1136/jnnp-2015-310362

- Guyant-Maréchal L, Laquerrière A, Duyckaerts C, et al. Valosin-containing protein gene mutations: clinical and neuropathologic features. Neurology 2006;67:644-651. https://doi.org/10.1212/01.wnl.0000225184.14578.d3
- 26 Schröder R, Schoser B. Myofibrillar myopathies: a clinical and myopathological guide. Brain Pathol 2009;19:483-492. https://doi. org/10.1111/j.1750-3639.2009.00289.x
- Inoue M, Iida A, Hayashi S, et al. Two novel VCP missense variants identified in Japanese patients with multisystem proteinopathy. Hum Genome Var 2018;5:9. https://doi.org/10.1038/s41439-018-0009-7
- Bersano A, Del Bo R, Lamperti C, et al. Inclusion body myopathy and frontotemporal dementia caused by a novel VCP mutation. Neurobiol Aging 2009;30:752-758. https://doi.org/10.1016/j.neurobiolaging.2007.08.009
- Ayaki T, Ito H, Fukushima H, et al. Immunoreactivity of valosin-containing protein in sporadic amyotrophic lateral sclerosis and in a case of its novel mutant. Acta Neuropathol Commun 2014;2:172. https://doi.org/10.1186/s40478-014-0172-0
- Bruno F, Conidi ME, Puccio G, et al. A Novel Mutation (D395A) in valosin-containing protein gene is associated with early onset frontotemporal dementia in an Italian family. Front Genet 2021;12:795029. https://doi.org/10.3389/ fgene.2021.795029
- de Bot ST, Schelhaas HJ, Kamsteeg EJ, van de Warrenburg BP. Hereditary spastic paraplegia caused by a mutation in the VCP gene. Brain 2012;135:e223-e224. https://doi.org/10.1093/brain/aws201
- DeJesus-Hernandez M, Desaro P, Johnston A, et al. Novel p.lle151Val mutation in VCP in a patient of African American descent with sporadic ALS. Neurology 2011;77:1102-1103. https://doi.org/10.1212/WNL.0b013e31822e563c
- Gang Q, Bettencourt C, Machado PM, et al. Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis. Neurobiol Aging 2016;47:218. e1-218.e9. https://doi.org/10.1016/j.neurobiolaging.2016.07.024
- Gidaro T, Modoni A, Sabatelli M, et al. An Italian family with inclusion-body myopathy and frontotemporal dementia due to mutation in the VCP gene. Muscle Nerve 2008;37:111-114. https://doi.org/10.1002/mus.20890
- Gu JM, Ke YH, Yue H, et al. A novel VCP mutation as the cause of atypical IB-MPFD in a Chinese family. Bone 2013;52:9-16. https://doi.org/10.1016/j. bone.2012.09.012
- Haubenberger D, Bittner RE, Rauch-Shorny S, et al. Inclusion body myopathy and Paget disease is linked to a novel mutation in the VCP gene. Neurology 2005;65:1304-1305. https://doi.org/10.1212/01.wnl.0000180407.15369.92
- ³⁷ Hirano M, Nakamura Y, Saigoh K, et al. VCP gene analyses in Japanese patients with sporadic amyotrophic lateral sclerosis identify a new mutation. Neurobiol Aging. 2015;36(3):1604.e1-1604.e16046. https://doi.org/10.1016/j. neurobiolaging.2014.10.012
- Ikeda M, Kuwabara T, Takai E, et al. Increased Neurofilament Light Chain and YKL-40 CSF Levels in One Japanese IBMPFD Patient With VCP R155C Mutation: A Clinical Case Report With CSF Biomarker Analyses. Front Neurol. 2020;11:757. https://doi.org/10.3389/fneur.2020.00757
- Jacquin A, Rouaud O, Soichot P, et al. Psychiatric presentation of frontotemporal dementia associated with inclusion body myopathy due to the VCP muta-

tion (R155H) in a French family. Case Rep Neurol 2013;5:187-194. https://doi. org/10.1159/000356481

- Jerath NU. Resolving a Multi-Generational neuromuscular mystery in a family presenting with a Variable Scapuloperoneal Syndrome in a c.464G > A, p.Arg155His VCP Mutation. Case Rep Genet 2019;2019:2403024. https://doi. org/10.1155/2019/2403024
- 41 Kaleem M, Zhao A, Hamshere M, Myers AJ. Identification of a novel valosin-containing protein polymorphism in late-onset Alzheimer's disease. Neurodegener Dis 2007;4:376-381. https://doi.org/10.1159/000105158
- ⁴² Koppers M, van Blitterswijk MM, Vlam L, et al. VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2012;33:837.e7-13. https:// doi.org/10.1016/j.neurobiolaging.2011.10.006
- ⁴³ Kumar KR, Needham M, Mina K, et al. Two Australian families with inclusion-body myopathy, Paget's disease of bone and frontotemporal dementia: novel clinical and genetic findings. Neuromuscul Disord 2010;20:330-334. https://doi. org/10.1016/j.nmd.2010.03.002
- 44 Lévesque S, Auray-Blais C, Gravel E, et al. Diagnosis of late-onset Pompe disease and other muscle disorders by next-generation sequencing. Orphanet J Rare Dis 2016;11:8. https://doi.org/10.1186/s13023-016-0390-6
- ⁴⁵ Nakamura T, Kawarabayashi T, Koh K, et al. Spastic Paraplegia with Paget's Disease of Bone due to a VCP Gene Mutation. Intern Med 2021;60:141-144. https:// doi.org/10.2169/internalmedicine.4617-20
- 46 Papadimas GK, Paraskevas GP, Zambelis T, et al. The multifaceted clinical presentation of VCP-proteinopathy in a Greek family. Acta Myol 2017;36:203-206.
- ⁴⁷ Pellerin D, Ellezam B, Korathanakhun P, et al. Multisystem Proteinopathy Associated with a VCP G156S Mutation in a French Canadian Family. Can J Neurol Sci 2020;47:412-415. https://doi.org/10.1017/cjn.2020.25
- ⁴⁸ Rohrer JD, Warren JD, Reiman D, et al. A novel exon 2 I27V VCP variant is associated with dissimilar clinical syndromes. J Neurol 2011;258:1494-1496. https:// doi.org/10.1007/s00415-011-5966-4
- ⁴⁹ Shi Z, Liu S, Xiang L, et al. Frontotemporal dementia-related gene mutations in clinical dementia patients from a Chinese population. J Hum Genet 2016;61:1003-1008. https://doi.org/10.1038/jhg.2016.92
- van der Zee J, Pirici D, Van Langenhove T, et al. Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His. Neurology 2009;73:626-632. https:// doi.org/10.1212/WNL.0b013e3181b389d9
- Viassolo V, Previtali SC, Schiatti E, et al. Inclusion body myopathy, Paget's disease of the bone and frontotemporal dementia: recurrence of the VCP R155H mutation in an Italian family and implications for genetic counselling. Clin Genet 2008;74:54-60. https://doi.org/10.1111/j.1399-0004.2008.00984.x
- ⁵² Watts GD, Thomasova D, Ramdeen SK, et al. Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Clin Genet 2007;72:420-426. https://doi.org/10.1111/j.1399-0004.2007.00887.x
- Weihl CC, Baloh RH, Lee Y, et al. Targeted sequencing and identification of genetic variants in sporadic inclusion body myositis. Neuromuscul Disord 2015;25:289-296. doi:10.1016/j.nmd.2014.12.009