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Cytochrome P450 family 2 subfamily J member 2 (CYP2J2), a member of the monooxygenase cytochrome P450 (CYP) family and
the only member of the human CYP2J subfamily, has many functions, including regulation of oxidative stress, inflammation,
apoptosis, and immune responses. However, its role in cancer development has not been clearly elucidated. In this study,
expression levels of CYP2J2 in various cancer types were determined using the Oncomine, the Gene Expression Profiling
Interactive Analysis (GEIPA), DriverDBv3, UALCAN, and Tumor Immune Estimation Resource (TIMER) databases. The
prognostic value of CYP2J2 for KIRC was analyzed using GEPIA, UALCAN, OSkirc, and DriverDBv3 databases. We evaluated
the expression levels of CYP2J2 transcript, protein, and promoter methylation at different clinical characteristics in KIRC
through the UALCAN database. Simultaneously, CYP2J2 network-related functions were evaluated using the GeneMANIA
interactive tool while the biological processes involved in CYP2J2 and its interactive genes were investigated through Metascape
and FunRich. Then, we used TIMER to determine the correlation between CYP2J2 expression levels and immune infiltration
levels in KIRC. In KIRC, the CYP2J2 gene, RNA, and protein were found to be overexpressed. However, the methylation level of
CYP2J2 promoter in KIRC was lower than in normal tissues. Surprisingly, elevated expression levels of CYP2J2 exhibited better
prognostic outcomes in KIRC. Evaluation of protein-protein interaction networks and biological processes revealed that CYP2J2
was principally involved in immune responses, apoptosis, and other metabolic processes. Moreover, we found that the
expression levels of CYP2J2 were positively correlated with infiltration levels of B cells, CD8+T cells, neutrophils, and dendritic
cells in KIRC. Therefore, we speculated that the overexpression of CYP2J2 prolonged the survival outcome of KIRC patients,
which may be related to the change of tumor immune microenvironment. Moreover, all these new understandings of CYP2J2
may provide important value for the early diagnosis and new targeted drug therapy of KIRC.

1. Introduction

Renal cell carcinoma (RCC), a tumor whose origin is the
renal epithelium [1], can be grouped into various subtypes
based on its histological characteristics, with KIRC account-
ing for the vast majority of renal cell carcinoma subtypes.
KIRC, a metabolic disease histologically characterized by
lipid accumulation and storage [2], has been reported to be
the most frequent cause of kidney cancer-associated mortal-

ities [3]. Globally, KIRC is associated with 175,000 annual
mortalities, with about 30-35% of patients undergoing sur-
gery presenting with distant metastases [4]. Patients with
relapsed or distant metastases of KIRC exhibit poor prognos-
tic outcomes, with shorter median survival times of 21
months and 13 months [5], respectively. Several studies have
suggested tumor lymph node metastasis (TNM) staging sys-
tem is the main prognostic factor for KIRC [5–7]. However,
prognostic stratification by molecular markers (such as
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Figure 1: Continued.
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Figure 1: Expression levels of CYP2J2 in various human cancers. (a) Expression profiles of the CYP2J2 gene in tumor and paired normal
tissue samples from the Oncomine database. (b) Expression profiles of the CYP2J2 transcript in different cancer types and paired of
normal tissues from the GEPIA database. (c and d) Expression levels of the CYP2J2 gene in different cancer types compared to
corresponding normal tissues from the DriverDBV3 and TIMER database. CYP2J2: Cytochrome P450 family 2 subfamily J member 2.
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expression of specific genes) can improve the accuracy of
prognostic prediction [8]. Therefore, identifying early diag-
nostic markers and prognostic molecular biomarkers will
enhance early KIRC diagnosis, thereby informing early and
active treatment.

Through the Oncomine, GEIPA, DriverDBv3, and
TIMER databases, we found that CYP2J2 was differentially
expressed in multiple tumors, with its expression in KIRC
being most significantly elevated. The CYP2J2 gene encodes
an enzyme responsible for the oxidative metabolism of vari-
ous exogenous and endogenous compounds and is involved
in various physiological and pathological processes in the
human body [9]. It has been reported that CYP2J2 plays var-
ious roles in the human body, including anti-inflammatory
[10], regulation of cardiovascular functions [11], improving
metabolism [11], and in immune regulation [12]. In addition,
CYP2J2 has been associated with the occurrence and devel-
opment of many tumor types [13]; however, its role in KIRC
pathogenesis has not been reported.

This study is aimed at evaluating the expression levels of
CYP2J2 in KIRC as well as determining its value in predicting
survival outcomes for KIRC patients through multiple data-
bases, including Oncomine, GEPIA, UALCAN, OSkirc,
DriverDBv3, and TIMER. In order to further speculate the
possible mechanism of CYP2J2 in KIRC, we used GeneMA-
NIA, Metascape, and FunRich to investigate the functional
networks involving CYP2J2 as well as the biological processes
involving CYP2J2 interactive genes. At the same time, we
evaluated the relationships between CYP2J2 expression and
immune cell infiltration levels in KIRC through the TIMER
database. This study elucidates on the correlation between
CYP2J2 expression levels and KIRC prognosis and provides
a potential early diagnostic biomarker and therapeutic target
for KIRC.

2. Materials and Methods

2.1. Oncomine. Oncomine (https://www.oncomine.org/
resource/main.html), a database dedicated to collecting and
analyzing cancer-related data [14], has 715 datasets from
86733 samples [15]. This database was used to determine
the expression levels of CYP2J2 in a variety of cancers using
the following criteria: p value of 1E − 4, fold change as 2, gene
rank as top 10%, and data type as all (DNA and mRNA).

2.2. GEPIA. GEPIA (http://gepia.cancer-pku.cn/) generates
gene expression profiles of multiple cancer types and pairs
of normal samples using the TCGA and GTEx databases
[16]. GEPIA was used to determine the expression levels of
the CYP2J2 gene in a variety of cancers. Moreover, we evalu-
ated the correlation between CYP2J2 expression levels and
overall survival (OS) as well as disease-free survival (DFS)
for KIRC patients. Regarding the survival curve, p < 0:05
was considered statistically significant.

2.3. UALCAN. UALCAN (http://ualcan.path.uab.edu/
analysis.html) is a website with multiple functions for analyz-
ing and mining TCGA databases, thereby allowing users to
verify the expression levels of genes in various cancer types,
draw graphs describing gene expression and patient survival
information, and to assess epigenetic regulation of gene
expression by promoter methylation [17]. We determined
the expression levels of the CYP2J2 gene, transcript, protein,
and promoter methylation in KIRC and the effect of CYP2J2
on the patients’ survival time through UALCAN. Regarding
the survival curve, p < 0:05 was considered statistically
significant.

2.4. OSkirc. OSkirc (http://bioinfo.henu.edu.cn/KIRC
Combined) is a free and fast online tool that enables users
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Figure 2: Comparisons of the effects of high and low expression levels of CYP2J2 on survival time of KIRC patients using GEPIA database. (a
and b) Elevated expression levels of CYP2J2 were associated with longer OS and DFS outcomes for KIRC patients. OS: overall survival; DFS:
disease free survival; KIRC: kidney renal clear cell carcinoma.
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to easily investigate the prognostic value of genes associated
with KIRC [18]. Through this database, we used the follow-
ing criteria to detect the effect of CYP2J2 on the overall sur-
vival of KIRC patients: the data source from a combination

of GSE22541, GSE29609, GSE3, and TCGA; split patients
by upper 50% VS lower 50% and upper 30% VS lower 30%.
Regarding the survival curve, p < 0:05 was considered statis-
tically significant.
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Figure 3: Effect of CYP2J2 expression levels in UALCAN (a) and OSkirc (b and c) database on the survival of KIRC patients. Overexpression
of CYP2J2 prolonged the survival time of KIRC patients.
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Figure 4: Prognostic value of CYP2J2 expression in KIRC patients was evaluated based on DriverDBv3 database. (a and b) Overexpression of
CYP2J2 prolonged OS of KIRC patients. (c–f) Overexpression of CYP2J2 prolonged PFI and DSS of KIRC patients. OS: overall survival; PFI:
platinum-free treatment interval; DSS: disease specific survival.
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2.5. DriverDBv3. DriverDBv3 (http://driverdb.tms.cmu.edu
.tw/) is a powerful cancer multiomics database for copy num-
ber variations, miRNA expression levels, RNA expression,
methylation, and somatic mutations among other clinical
data [19]. One of the many functions of the DriverDBv3
database is that it allows users to analyze the association
between cancer and genes through “Cancer,” “Gene,” and
“Customized analysis.” In this study, DriverDBv3 was used
to assess the expression levels of CYP2J2 in different cancer
types and to evaluate its prognostic value in KIRC patients.
Regarding the survival curve, p < 0:05 was considered statis-
tically significant.

2.6. GeneMANIA. GeneMANIA (http://genemania.org/) is
an easy-to-use website for establishing protein-protein inter-
actions (PPI), protein-DNA interactions, and genetic interac-
tions [20]. In this study, the functions and networks of the
CYP2J2 protein were determined through GeneMANIA.

2.7. Metascape and FunRich. Metascape (http://metascape
.org/gp/index.html) is an effective tool for comprehensive
genomics analysis in the era of big data. It integrates func-
tional enrichment, gene annotation, and interactive group
analysis [21]. FunRich (3.1.3 exe) is a user-friendly bioinfor-
matics tool for performing various analyses on generated data-
sets [22]. We obtained the interactive genes of CYP2J2 through
the GeneMANIA network. Then, these genes were inputted
into Metascape and FunRich for functional evaluations.

2.8. TIMER. TIMER (https://cistrome.shinyapps.io/timer/) is
a simple and practical cancer web server that allows users to
evaluate the immunological, genomic, and clinical features of

tumors by inputting function-specific parameters [23]. In
this study, TIMER was used to determine the expression
levels of CYP2J2 in various cancers and to evaluate the corre-
lation between the expression levels of CYP2J2 and immune
infiltration levels in KIRC.

3. Results

3.1. Expression Levels of CYP2J2 in Different Cancer Types.
Using the Oncomine database, which contained total unique
analyses of 443 about CYP2J2, we detected diversities in
CYP2J2 gene expression profiles between tumor and
matched normal tissues. Compared to normal tissues, ele-
vated expression levels of CYP2J2 were observed in bladder,
kidney, lung, lymphoma, and ovarian cancer types, while
suppressed expression levels of CYP2J2 were observed in
cervical, colorectal, esophageal, head and neck, and liver can-
cer types (Figure 1(a)). Although the expression of CYP2J2
was elevated in a variety of cancers, it was found that elevated
CYP2J2 expression levels were most significant in kidney
cancer. Then, we analyzed the RNA sequencing data of
CYP2J2 through GEPIA. Compared to matched normal tis-
sues, expression levels of CYP2J2 transcripts per million in
KIRC were most significant among various tumors
(Figure 1(b)). Moreover, expression levels of the CYP2J2 gene
in the DriverDBv3 and TIMER database were also the highest
in KIRC (Figures 1(c) and 1(d)). These findings showed that
the CYP2J2 expression level in KIRC was significantly upreg-
ulated compared with normal tissues. Therefore, CYP2J2
may have a potential diagnostic value for KIRC and the
correlation between CYP2J2 and KIRC was worth fur-
ther exploring.

Top (1–25) over–expressed genes in kidney renal clear cell
carcinoma (KIRC)
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Figure 5: CYP2J2 gene is one of the top [1–25] overexpressed genes in KIRC tumor tissues compared to corresponding normal tissues.
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3.2. Potential Prognostic Values of CYP2J2 in KIRC. To deter-
mine whether CYP2J2 expression levels are correlated to the
prognosis of cancer patients, we evaluated the prognostic
value of CYP2J2 in cancer using GEPIA. We found that, even
though CYP2J2 expression levels were upregulated or down-
regulated in various tumor types, CYP2J2 expression levels
only had significant correlations with the overall survival
time (OS) and disease-free survival (DFS) of KIRC. More-
over, the results indicated that overexpression of CYP2J2 in

KIRC prolonged the OS and DFS (Figure 2). Based on the
unique prognostic value of CYP2J2 in KIRC, we further
analyzed the relationship between CYP2J2 and KIRC using
other databases.

From the UALCAN database, it was found that CYP2J2
overexpression was associated with longer survival outcomes
in KIRC patients (Figure 3(a)). Furthermore, we combined
the GSE22541, GSE29609, GSE3, and TCGA datasets from
OSkirc to verify the effect of CYP2J2 on the survival outcome
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Figure 6: Expression of CYP2J2 mRNA in KIRC was evaluated by box plot using the UALCAN database. (a–f) Box plots showing the
association of sample types, cancer stage, patient’s race, age, tumor grade, and nodal metastasis status with CYP2J2 expression in KIRC.
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of KIRC patients, and the results also showed that overexpres-
sion of CYP2J2 prolonged OS in patients with KIRC
(Figures 3(b) and 3(c)). For the DriverDBv3 database, overex-
pression of CYP2J2 in KIRC predicted better prognostic out-
comes when compared to its low expression level (Figure 4),
which was basically consistent with the results obtained from
GEPIA, UALCAN, and OSkirc databases. Therefore, it can
be concluded that the expression levels of CYP2J2 had a very
momentous potential prognostic value for KIRC.

3.3. Reanalysis of CYP2J2 Expression in KIRC. To better elu-
cidate on the relationship between CYP2J2 and KIRC, we
determined the expression levels of the CYP2J2 gene in KIRC
using the UALCAN database. The CYP2J2 gene was one of
the top [1–25] overexpressed gene in KIRC (Figure 5), which
further indicated that expression levels of the CYP2J2 gene in
KIRC tumor tissues were significantly higher than those of
normal tissues. Further analyses revealed that the expression
levels of the CYP2J2 transcript in KIRC tumor tissues were
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Figure 7: The protein expression level of CYP2J2 in ccRCC was evaluated using box plots in UALCAN database. (a–e) Box plots showing the
association of sample types, cancer stage, patient’s race, age, and tumor grade with CYP2J2 protein expression level in ccRCC. ccRCC: clear
cell renal cell carcinoma; ccRCC=KIRC.
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significantly higher compared to matched normal samples
(Figure 6(a)). Then, the UALCAN database was used to
assess various clinical characteristics of KIRC, including can-
cer stage, patients’ race, age, tumor grade, and nodal metasta-
sis status. Further analyses showed that expression levels of
the CYP2J2 transcript in KIRC patients were higher in char-
acteristics such as cancer stage 1, Caucasian race, age from 81
to 100 years old, grade 2, and N0 than other clinical charac-
teristics (Figures 6(b)–6(f)). These findings imply that over-
expression of CYP2J2 can be used as an early diagnostic
marker of KIRC.

3.4. Potential Diagnostic Values of CYP2J2 Protein Expression
in KIRC. Expression levels of the CYP2J2 protein in KIRC
were evaluated through the UALCAN database. Compared
to matched normal tissues, expression levels of the CYP2J2
protein in KIRC were significantly elevated (Figure 7(a)).
From the Oncomine, GEPIA, DriverDBV3, and UALCAN
databases, expression levels of the CYP2J2 gene, transcript,
and protein in KIRC were significantly elevated compared
to matched normal tissues. Furthermore, to investigate the
factors mediating the expression of the CYP2J2 protein, we
evaluated the correlation between expression levels of the
CYP2J2 protein and different clinical characteristics
(Figures 7(b)–7(e)), findings of which were basically consis-
tent with the expression trend of the CYP2J2 transcript.

Given the transcript and protein levels of CYP2J2 were sig-
nificantly elevated in the early stages of KIRC, it was con-
cluded that CYP2J2 can be used as an early diagnostic
marker for KIRC.

3.5. Promoter Methylation Level of CYP2J2 in KIRC.We used
the UALCAN database to evaluate promoter methylation
level of CYP2J2 in KIRC. Compared to normal tissues, the
methylation level of the CYP2J2 promoter in KIRC was lower
(Figure 8(a)). Moreover, we evaluated the methylation level
of the CYP2J2 promoter on the basis of different clinical
characteristics, which showed a reverse trend with the
expression level of the CYP2J2 transcript and protein
(Figures 8(b)–8(d)). From the above results, we can infer that
elevating the methylation level of the CYP2J2 promoter was
likely to downregulate CYP2J2 expression in KIRC.

3.6. PPI Network of CYP2J2. PPI showed functional networks
between the CYP2J2 protein and other proteins. CYP2J2 was
mainly enriched in responses to xenobiotic stimulus, xenobi-
otic metabolic process, monooxygenase activity, oxygen
binding, steroid metabolic process, and drug metabolic pro-
cess (Figure 9).

3.7. Functional Enrichment Analyses of CYP2J2. Biological
processes of CYP2J2 interactive genes were evaluated by
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Figure 8: Promoter methylation levels of CYP2J2 in KIRC were evaluated by box plot using the UALCAN database. (a–d) Box plots showing
the association of sample types, patient’s race, age, and nodal metastasis status with promoter methylation level of CYP2J2 in KIRC.
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Metascape. We found that response to stimulus, metabolic
process, biological regulation, immune system process,
multicellular organismal process, cellular component organi-
zation or biogenesis, and developmental process was signifi-
cantly regulated by these genes (Figure 10(a)), implying
that CYP2J2 plays a very important role in metabolic process,
immune regulation, response to stimulus, and cellular com-
ponent organization or biogenesis. We also evaluated the
biological processes of CYP2J2 interactive genes through
FunRich (Figure 10(b)), and findings were very similar to

those of Metascape. This further confirmed the biological
processes involved in CYP2J2 interactive genes.

3.8. Correlation between CYP2J2 Expression Levels and
Immune Cell Infiltration Levels in KIRC.We used the TIMER
web server to visualize the correlation between CYP2J2 gene
expression levels and immune infiltration levels in KIRC. We
found that the expression levels of CYP2J2 were positively
correlated with B cells, CD8+T cells, neutrophil, and den-
dritic cell infiltration levels in KIRC. However, it was not
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Figure 9: The PPI network of CYP2J2 was constructed by GeneMANIA. PPI: protein-protein interaction.
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correlated with infiltration levels of CD4+T cells and macro-
phages (Figure 11).

4. Discussion

Globally, KIRC is one of the most common malignancies,
accounting for 80% of all kidney malignancies [24]. Due to
the absence of a clear clinical biomarker for screening KIRC
patients, approximately 15% of KIRC patients have metasta-
tic tumors at the time of diagnosis [25]. Moreover, prognostic

outcomes for patients with the same TNM stage and patho-
logical grade may be different [26]. Therefore, it is imperative
to identify biomarkers for the early diagnosis of KIRC and to
determine their prognosis.

CYP2J2 is a member of the monooxygenase cytochrome
P450 family, and it is highly expressed in the endothelium,
myocardium, and kidneys [11]. It has been reported that
CYP2J2 plays crucial roles in various diseases. For example,
overexpression of CYP2J2 is beneficial in the treatment of
diabetes [10] and in the reduction of cardiac hypertrophy
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Figure 10: Biological processes involved in CYP2J2 interactive genes. (a) Heat map from Metascape showing the major biological processes
involving the CYP2J2 interactive genes. (b) Pie chart from FunRich showing the major biological processes involving CYP2J2 interactive
genes.
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[27]. However, CYP2J2 is significantly expressed in various
tumors [28, 29], including KIRC, but it remains unknown if
CYP2J2 overexpression in KIRC is beneficial or harmful.

Therefore, we investigated the correlation between
CYP2J2 expression and KIRC using various databases,
including Oncomine, GEPIA DriverDBv3, and TIMER data-
bases. These databases showed that, among all tumors,
CYP2J2 expression levels were significantly elevated in KIRC,
implying that CYP2J2 may be a potential diagnostic marker
for KIRC. Then, using UALCAN, GEPIA, OSkirc, and Dri-
verDBv3 databases, we evaluated the effect of CYP2J2 expres-
sion on the survival time of KIRC patients. We found that
overexpression of CYP2J2 prolonged the survival time of
KIRC patients. These results suggest that CYP2J2 can be used
as an important prognostic marker for KIRC patients. In
addition, we reanalyzed the expression levels of the CYP2J2
gene and transcript in KIRC through UALCAN and found
that their expression levels were significantly elevated in
KIRC tumor tissues than in paracancerous normal samples.
Moreover, expression levels of the CYP2J2 transcript in
KIRC patients were higher in stage 1, grade 2, andN0 clinical
features than in other clinical features. The expression trend
of the CYP2J2 protein was basically consistent with that of
the transcript, which implied that CYP2J2 can be used as
an early diagnostic marker for KIRC patients. Some studies
have reported that KIRC patients with lower grade, lower
stage, and no lymph node metastasis are more likely to have
longer survival outcomes than those with other clinical char-
acteristics [5, 30], which was in agreement with our results.
Taken together, these results indicate that CYP2J2 is a poten-
tial biomarker for the early diagnosis and prognosis of KIRC
patients. Next, we evaluated the promoter methylation levels
of CYP2J2 in KIRC through the UALCAN database, which
exhibited a reverse trend with the expression levels of
CYP2J2 transcript and protein. The result suggests that an
enhanced promoter methylation level of CYP2J2 is likely to
downregulate the CYP2J2 expression in KIRC patients.

To further determine the reasons why elevated expres-
sion levels of CYP2J2 are beneficial in the prognosis of KIRC
patients, we evaluated the PPI network of CYP2J2 through
GeneMANIA, while the biological processes involved in
CYP2J2 interactive genes were evaluated through Metascape
and FunRich. Since CYP2J2 was found to be involved in
many biological processes, there were many possibilities for
the specific reasons why CYP2J2 overexpression was benefi-
cial in the prognosis of KIRC patients. We found that biolog-
ical functions of CYP2J2 were correlated with immune
processes; therefore, we postulated that this may be one of
the reasons as to why KIRC patients with elevated CYP2J2
expression levels have better prognoses. Based on this
assumption, we used TIMER to investigate the relationship
between expression levels of CYP2J2 and immune cell
infiltration levels in KIRC. The expression levels of CYP2J2
were positively correlated with infiltration levels of B cells,
CD8+T cells, neutrophils, and dendritic cells in KIRC. In
addition, it has been reported that B cell infiltration in KIRC
can prolong the cancer-specific survival [31], CD8+T cell
infiltration prolonged the OS outcomes of KIRC patients
[32], and upregulation of the abundance of neutrophils was

associated with a favorable prognosis of KIRC patients [33],
while dendritic cells can effectively inhibit tumor recurrence
and metastasis [34]. These results suggest that overexpres-
sion of CYP2J2 is beneficial to the prognosis of patients with
KIRC by regulating the immune microenvironment of the
tumor. However, CYP2J2-associated metabolic processes,
apoptosis, and stimulus responses may also influence the
prognosis of KIRC patients. Even though the mechanism
by which CYP2J2 mediates the prognosis of KIRC patients
has not been established, our findings suggest that CYP2J2
could be an important marker for the diagnosis and progno-
sis of KIRC patients and may be a potential therapeutic target
for KIRC patients.

5. Conclusions

Expression levels of CYP2J2 in KIRC were most significant
among various tumors and higher in stage 1, grade 2, and
N0 clinical features than in other clinical features. Elevated
expression of CYP2J2 can prolong survival outcomes in
patients with KIRC. The biological processes involved in
CYP2J2 interactive genes were significantly correlated with
the responses of immune system processes. The expression
levels of CYP2J2 were positively correlated with infiltration
levels of B cells, CD8+T cells, neutrophils, and dendritic cells
in KIRC. CYP2J2 can be used as an early diagnostic marker
and prognostic predictor of KIRC. Mechanistically, overex-
pression of CYP2J2 improves the prognosis of KIRC patients
by regulating the immune microenvironment of the tumor.
More studies are needed to confirm our findings and to facil-
itate the clinical use of CYP2J2 as a prognostic marker or as a
therapeutic target for KIRC.
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