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Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature
of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy
number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements
involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells.
We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform.
The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different
stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in
distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process,
which outperforms other similar algorithms.

1. Introduction

Cancer is the most serious and dangerous disease to human
health in the world. Over the past few decades, researchers
have been working on the diagnosis and treatment of cancer.
Owing to these great efforts, our understanding of cancer
has been greatly improved, and early clinical diagnosis and
reliable treatment are critical for cancer [1]. Cancer is the
result of an imbalance in the cell cycle of the organism.
Each cell of the organism contains a complete genome and
has great spontaneity [1]. When the genome is no longer
regulated by normal tissue and the spontaneity of cells
is activated, then cancer develops. Tumor cells succumb
to different evolutionary pressures and result in constant
replication, growth, invasion, and metastasis [1].

In the early days, Nowell [2] proposed the “clonal evolu-
tion” theory that combines evolutionary biology with tumor
biology. The model suggests a tumor is most likely to start
with a mutated cell. Owing to the expansion of one or more
cell subclones, tumor cells show high heterogeneity, which is
an important characteristic of tumor development [3]. These
tumor cells show significant differences even in the same
tissue of the same individual. It has been shown that tumor

heterogeneity is evolving along with tumor progression [3].
Tumor heterogeneity has been shown to have a significant
impact on the diagnosis and treatment of cancer [3, 4].

Because of the evolutionary nature of tumor devel-
opment, phylogenetic models were used to infer tumor
evolution through genetic variation data [5]. Navin et al.
[6] found that a single breast tumor may contain multiple
cell subclones, and their chromosome copy numbers vary
considerably via single-cell DNA copy number data on CGH
platform. The development of next-generation sequencing
allows people to infer SNVs and their allele frequencies in
heterogeneous tumor cell populations. Because of the huge
number of SNVs, inference of a complete tumor progres-
sion model to explain the observed data has encountered
computational difficulties. Nik-Zainal et al. [7] reconstructs
phylogenetic tree from inferred SNV frequencies based on
two assumptions: (i) no mutation occurs twice in the course
of cancer evolution and (ii) no mutation is ever lost. Strino et
al. [8] proposed a linear algebra approach based on the two
hypotheses to limit the number of possible trees, which can
handle up to 25 SNVs. Detection of clones based on SNV
frequency data is necessary for inferring phylogeny. Jiao et
al. [9] proposes PhyloSub, a Bayesian nonparametric model,
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to infer the phylogeny and genotype of the major subclonal
lineages represented in the population of cancer cells. Miller
et al. [10] proposed a variational Bayesian mixture model to
identify the number and genetic composition of subclones
by analyzing the variant allele frequencies. Hajirasouliha et
al. [11] formulate the problem of constructing the subpop-
ulations of tumor cells from the variant allele frequencies
(VAFs) as binary tree partition and present an approximation
algorithm to solve the max-BTP problem. El-Kebir et al.
[12] formulate the problem of reconstructing the clonal
evolution of a tumor using SNV as the VAF factorization
problem and derives an integer linear programming solution
to the VAF factorization problem. Popic et al. [13] propose
LICHeE, a novel method to infer the phylogenetic tree of
cancer progression from multiple somatic samples. Because
of copy number alterations, loss of heterozygosity (LOH),
and normal contamination, the allele frequencies of related
SNV need to be corrected [14]. Copy number variation is
segment loss or duplication of genome sequence ranging
from kilo bases (Kb) tomega bases (Mb) in size, which covers
360Mb and encompasses hundreds of genes, disease loci,
and functional elements [15]. CNVs affect gene expressions in
human cell-lines, which also play a major role in cancer [16].
Subramanian et al. [17] develop a novel pipeline for building
trees of tumor evolution from the unmixed tumor copy
number variations (CNVs) data. Oesper et al. [18] introduce
ThetA, an algorithm to infer the most likely collection
of genome and its proportions in a sample, and identify
subclonal CNVs using high-throughput sequencing data. Ha
et al. [19] also present a novel probabilistic model, TITAN,
to infer CNA and LOH events while accounting for mixtures
of cell populations, thereby estimating the proportion of
cells harboring each event. Some tumor progression analysis
tools combine VAFs of SNVs and population frequencies
of structure variations to reconstruct subclonal composition
and tumor evolution. PhyloWGS [20] uses copy number
alterations to correct the VAFs of affected SNVs and greatly
improves subclonal reconstruction compared to existing
methods. As tumor is a heterogeneity system, Jiang et al.
[21] propose Canopy to identify cell populations and infer
phylogenies using both somatic copy number alterations
and single-nucleotide alterations from one or more samples
derived from a single patient. Li and Xie [22] propose a
software package called PyLOH to deconvolve the mixture
of normal and tumor cells using copy number alterations
and LOH information. Yu et al. [23] introduce CloneCNA
to address normal cell contamination, tumor aneuploidy,
and intratumor heterogeneity issues and automatically detect
clonal and subclonal somatic copy number alterations from
heterogeneous tumor samples. El-Kebir et al. [24] develop
SPRUCE to construct phylogenetic trees jointly from SNVs
and CNAs, which overcomes complexities in simultaneous
analysis of SNVs and CNAs.

The samples of the above studies are mixture of cancer
cells and stromal cells; analyzing single cells is the most
informative approach to assess the heterogeneity within a
tumor [5]. Single-cell analysis is not only one more step
towards more-sensitive measurements, but also a decisive
jump to a more-fundamental understanding of biology [25].

Navin et al. [26] obtain robust high-resolution copy number
profiles by sequencing a single cell and infer about the
evolution and spread of cancer by examining multiple cells
from the same cancer with the Euclidean metric. Tradi-
tionally used Euclidean or correlation distances for tree
reconstruction from copy number profiles are ill-suited,
owing to the dependent and nonidentical distribution of
rearrangement events [5]. Fluorescence in situ hybridization
(FISH) is a technique that can be used to count the copy
number of DNA probes for specific genes or chromosomal
regions in potentially hundreds of individual cells of a tumor.
Pennington et al. [27] develop a new method combined with
expectation maximization to infer unknown parameters for
identifying common tumor progression pathways by taking
advantage of information on tumor heterogeneity lost to
prior microarray-based approaches on a set of fluorescent
in situ hybridization (FISH) data. Chowdhury et al. [28–
30] propose a software FISHtrees to build evolutionary trees
of single tumors with FISH data. FISHtrees models gain or
loss of genetic regions at the scale of single genes, whole
chromosomes, or the entire genome, including variable rates
for different gain and loss events in tumor evolution [30].
Later, Gertz et al. [31] present FISHtrees 3.0, which imple-
ments a ploidy-based tree building method based on mixed
integer linear programming. The ploidy-based modeling in
FISHtrees 3.0 includes a new formulation of the problem
of merging trees for changes of a single gene into trees
modeling changes in multiple genes and the ploidy [31].
Here, we propose an improved binary differential evolution
algorithm to infer phylogenetic trees (BDEP) using CNV
data of cervical cancer and breast cancer. The cervical cancer
dataset contains the copy number profiles of four genes, and
breast cancer dataset is up to eight genes. Liu et al. [32]
show that, on average, each cancer can be explained with
around six different marker sets. Tumor phylogenetic tree
inference can be treated as minimum Steiner tree problem
in directed graph, which is a NP-hard problem. BDEP uses
differential individual to search for the best approximate
solutions, with the help of individual’s difference information
and neighborhood optimal information to update. BDEP
overcomes the weakness that differential evolution algorithm
can only be used in continuous search space with advantages
of fast convergence and strong robustness.

2. Methods

2.1. Problem Definition. One copy number variation usually
affects the copy number of two or more closely related genes
[15]. The genes may change their copy number alone or
together with their neighbors located in one copy number
variation region, which results in computational difficulties
of evolution distance between gene copy number profiles
(Figure 1). Shamir et al. propose an algorithm that calculates
evolution events in linear time and linear space by back-
tracking the dynamic programming vector [33]. We adopt
the idea proposed by Shamir to calculate the minimum
variation events between two copy number profiles. Profiles
(𝑢, V) present the evolution distance from the source profile
𝑢 to the target profile V. As mentioned by Shamir et al. [33],
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Figure 1: The association between CNVs and genes.

if the source profile contains the gene with copy number 0
but the target profile with the gene copy number > 0, the
transformation from 𝑢 to V is unreachable. On the contrary,
if the gene has copy number > 0 in the source profile but
with the copy number 0 in the target profile, the profiles (𝑢, V)
can be inferred. The distance matrix between copy number
profiles is asymmetric, which corresponds to directed edges
between copy number profiles.

Cells are continuously growing, proliferating, and dying
during the tumor progress; the dying cells disappeared but
once played an important role in tumourigenesis. Construct
a tree to describe evolutionary relationship of observed cells
and dying cells can be regarded as Steiner tree problem; the
dying cells in Steiner tree are Steiner node. The Steiner tree
problem is a classical combinatorial optimization problem,
which has important applications in the fields of computer
network layout, circuit design, and biological network anal-
ysis. In the paper, the tumor phylogenetic tree is a Steiner
minimum tree problem in graph, which is proposed by
Hakimi [34] and Hwang et al. [35]. The problem can be
described as follows: Given a directed connected graph 𝐺 =
(𝑉, 𝐸) with observed nodes and all possible Steiner nodes, 𝑉,
and edges, 𝐸, each node presents a copy number profile and
each edge presents the evolution direction between nodes.
The weight of each edge presents the evolution distance

between copy number profiles. There is a subset 𝑃 ⊆ 𝑉;
each element presents the observed copy number profile
of cell. The Steiner tree problem is to find a subtree 𝑇 of
directed connected graph 𝐺, which contains all nodes in 𝑃
with minimal weight sum. The subtree 𝑇 is the Steiner tree
of subset 𝑃; the node that exists in 𝑇 but not in 𝑃 is the
Steiner node. When 𝑃 = 𝑉, the Steiner tree problem is
minimum arborescence problem, which can be worked out
in polynomial time [36]. Otherwise, the Steiner tree problem
has no polynomial time solution, which is aNP-hard problem
[37]. When the input scale becomes large, it is impossible to
find the exact optimal solution in polynomial time.Therefore,
a good approximation algorithm will provide a compromise
solution for the NP-hard problem.

2.2. The Improved Binary Differential Evolution Model. The
differential (DE) evolution algorithm does not depend on
the characteristics information of problem, with the help
of difference information among individuals to disturb the
formation of individual and then to search the entire popu-
lation space. Greedy competition mechanism is employed to
seek the optimal solution of the problem. DE algorithm is a
population-based stochastic direct search method, which is
based on real number coding [38]. The differential evolution
algorithm has the advantages of fast convergence, simple
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operation, easy programming, and strong robustness, which
have been widely used in various fields [39–42].TheDE algo-
rithm contains three basic operations: mutation, crossover,
and selection. The initial population is randomly generated
and covers the entire search space.

Initial Population. Suppose 𝑋𝑖,𝐺 = {𝑥1𝑖,𝐺, . . . , 𝑥𝑛𝑖,𝐺} is the 𝑖th
individual of generation𝐺th; 𝑛 is the dimension of individual;
𝑖 = 1, 2, . . . ,𝑀 is the population scale; 𝐺 = 1, 2, . . . , 𝐺max is
the maximum evolution generation.The initial population of
DE is generated by

𝑥𝑗𝑖,0 = rand𝑗 (0, 1) (𝑥𝑗𝑈 − 𝑥
𝑗

𝐿) + 𝑥
𝑗

𝐿, (1)

where 𝑥𝑗𝑈 and 𝑥
𝑗

𝐿 represent the upper and lower bounds of
the 𝑗th dimension, respectively, and rand𝑗(0, 1) represents a
random number within the range [0, 1].

Mutation Operation. Randomly select two different indi-
viduals 𝑋𝑝

1
,𝐺, 𝑋𝑝

2
,𝐺 to produce the mutant individual 𝑉𝑖,𝐺

corresponding to individual𝑋𝑖,𝐺 as

V𝑗𝑖,𝐺 = 𝑥
𝑗

𝑖,𝐺 + 𝜆 (𝑥
𝑗

𝑝
1
,𝐺 − 𝑥

𝑗

𝑝
2
,𝐺) , (2)

where 𝑥𝑗𝑝
1
,𝐺 − 𝑥
𝑗

𝑝
2
,𝐺 is difference vector and scaling factor 𝜆 is

a positive control parameter of difference vector.

Crossover Operation. Crossover operation aims at increas-
ing population diversity. The crossover strategy exchanges
mutant and old individual’s information to generate trial
individual 𝑈𝑖,𝐺. The crossover operation is defined as

𝑢𝑗𝑖,𝐺 =
{
{
{

V𝑗𝑖,𝐺 rand𝑗 [0, 1) ≤ CR or 𝑗 = rand (𝑖)
𝑥𝑗𝑖,𝐺 otherwise.

(3)

The crossover strategy ensures that 𝑈𝑖,𝐺 has at least one
element from 𝑉𝑖,𝐺. The crossover rate CR can be adjusted by
user within the range [0, 1].

Selection Operation. Trial individual𝑈𝑖,𝐺 will become amem-
ber of the next-generation population, if the fitness function
values of 𝑈𝑖,𝐺 are superior to 𝑋𝑖,𝐺. Otherwise, the individual
𝑋𝑖,𝐺 will remain in the next-generation population. The
selection operation is defined as

𝑋𝑖,𝐺+1 =
{
{
{

𝑈𝑖,𝐺, fitness (𝑈𝑖,𝐺) ≤ fitness (𝑋𝑖,𝐺)
𝑋𝑖,𝐺, otherwise.

(4)

Perform the above three operations repeatedly until the
stopping criterion is satisfied.

2.2.1. Binary Differential Evolution Algorithm. Conventional
DE algorithm focuses on the problem of continuous search
space, which cannot solve the discrete problem. Also the
DE algorithm does not take into account the global or
neighborhood optimal individual information. In this paper,
we propose a novel binary differential evolution algorithm

(BDEP) to solve the Steiner tree problem and further con-
struct tumor phylogenetic tree. In BDEP, trial individual
absorbs neighborhood optimal individual information to
update at crossover phase. BDEP is different from conven-
tional DE algorithm at initial population operation, mutation
operation, and crossover operation.The algorithm flow chart
of BDEP is in Algorithm 1.

Candidate Steiner Node Generation. The Steiner tree problem
in graph is to find a minimum arborescence which at least
contains all nodes in subset 𝑃. The set of nodes 𝑉 in graph
𝐺 includes the nodes in 𝑃 and all possible Steiner nodes.
Before applying Chu-Liu’s algorithm to find the minimum
arborescence, it is prerequisite to compute all possible Steiner
points. The candidate Steiner node is generated according to
the gene copy number profile in subset 𝑃. Under maximum
parsimony criterion, the evolutionary distance from gene
copy number profile to the candidate Steiner node is 1. As a
result, the set of nodes 𝑉 consists of candidate Steiner nodes
and subset𝑃, which corresponds to a complete directed graph
𝐺.

Individual Encoding. The individual 𝑖 of binary differential
evolution is encoded as a binary string 𝑋𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , . . . , 𝑥𝑛𝑖 ),
where 𝑥𝑗𝑖 is a binary variable corresponding to the 𝑗th
candidate Steiner node and 𝑛 is the number of candidate
Steiner nodes. When 𝑥𝑗𝑖 = 1, the 𝑖th individual has the 𝑗th
candidate Steiner node. With the gene copy number profile
in set 𝑃, each individual represents a phylogenetic tree; the
fitness function is the distance sum of the phylogenetic tree.
The objective of BDEP is to find a minimum arborescence
representing tumor phylogenetic tree.

Initial Population. The population initialization of BDEP is as
follows:

𝑥𝑗𝑖,0 =
{
{
{

1 rand𝑗 (0, 1) < 0.05
0 otherwise.

(5)

The meaning of 𝑖, 𝑗, and rand𝑗(0, 1) is the same as that of
conventional DE algorithm.

Mutation Operation. For each individual 𝑋𝑖,𝐺, randomly
select two different individuals 𝑋𝑝

1
,𝐺, 𝑋𝑝

2
,𝐺 to produce the

mutant individual 𝑉𝑖,𝐺 as follows:

V𝑗𝑖,𝐺 =
{
{
{

𝑥𝑗𝑝
1
,𝐺 | 𝑥
𝑗

𝑝
2
,𝐺 𝑥𝑗𝑝

1
,𝐺 = 𝑥

𝑗

𝑝
2
,𝐺

𝑥𝑗𝑖,𝐺 otherwise.
(6)

For the 𝑗th candidate Steiner node, if individuals𝑋𝑝
1
,𝐺,𝑋𝑝

2
,𝐺

have the same choice, the mutant individual yields 𝑥𝑗𝑝
1
,𝐺 or

𝑥𝑗𝑝
2
,𝐺; otherwise it directly derives from𝑋𝑖,𝐺.

Crossover Operation. Social learning is an important way
to improve population diversity and self-adaptability. The
individual would influence its neighbors: BDEP uses local
neighborhood as social learning areas. BDEP adopts the ring
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Require: The copy number profiles (object nodes set 𝑃).
The max generation 𝐺max.
The number of individuals (population scale)𝑀.

Ensure: The tumor Steiner tree with the shortest length.
(1) Generate candidate Steiner node according to the copy number profiles, construct a complete directed graph 𝐺𝑟𝑎𝑝ℎ.
(2) Set the generation number 𝐺 ← 0, initialize a population of𝑀 individuals 𝑃𝐺 = {𝑋1,𝐺, . . . , 𝑋𝑀,𝐺} with𝑋𝑖,𝐺 = {𝑥1𝑖,𝐺, . . . , 𝑥𝑛𝑖,𝐺}

where 𝑥𝑛𝑖,𝐺 ∈ {0, 1} is a binary variable.
(3) while stopping criterion is not satisfied do
(4) Mutation step
(5) for 𝑖 ← 1 to𝑀 do
(6) Generate a mutant individual 𝑉𝑖,𝐺 = {V1𝑖,𝐺, . . . , V𝑛𝑖,𝐺} from the target individual𝑋𝑖,𝐺 and two different individuals

𝑋𝑝1,𝐺,𝑋𝑝2,𝐺.
(7) for 𝑗 ← 1 to 𝑛 do

(8) V𝑗𝑖,𝐺 =
{
{
{

𝑥𝑗𝑝1,𝐺 or 𝑥
𝑗

𝑝2,𝐺 𝑥𝑗𝑝1,𝐺 = 𝑥
𝑗

𝑝2,𝐺

𝑥𝑗𝑖,𝐺 otherwise
(9) end for
(10) end for
(11) Crossover step
(12) for 𝑖 ← 1 to𝑀 do
(13) Search the 𝑟-neighborhood of individual 𝑉𝑖,𝐺, the best neighbor of 𝑉𝑖,𝐺 is 𝑉𝑛best,𝐺 = min𝑟-neighborhoodfitness
(14) Update trial individual 𝑉𝑖,𝐺 to 𝑈𝑖,𝐺
(15) rand(𝑖) = ⌊rand[0, 1) ∗ 𝑛⌋
(16) for 𝑗 ← 1 to 𝑛 do

(17) 𝑢𝑗𝑖,𝐺 =
{
{
{

V𝑗
𝑛best,𝐺 rand[0.1) ≤ CR or 𝑗 = rand(𝑖)
V𝑗𝑖,𝐺 otherwise

(18) end for
(19) end for
(20) Selection step
(21) for 𝑖 ← 1 to𝑀 do
(22) Evaluate the trial individual 𝑈𝑖,𝐺
(23) if fitness(𝑈𝑖,𝐺) ≤ fitness(𝑋𝑖,𝐺) then
(24) 𝑋𝑖,𝐺+1 = 𝑈𝑖,𝐺, fitness(𝑋𝑖,𝐺+1) = fitness(𝑈𝑖,𝐺)
(25) end if
(26) end for
(27) Update the generation count 𝐺 ← 𝐺 + 1
(28) end while
(29) return optimal tumor Steiner tree 𝑇

Algorithm 1: An improved binary differential evolution algorithm to infer tumor phylogenetic trees (BDEP).

topology of population with radius 𝑟 to define local neigh-
borhoods. The 𝑟-neighborhood of individual 𝑖 is represented
as {𝑅𝑗 | |𝑖 − 𝑗| ≤ 𝑟, 𝑗 = 0, 1, 2, . . . ,𝑀 − 1}. The individual
𝑉𝑛best,𝐺 represents the best neighbors with minimum fitness
value in the 𝑟-neighborhood of mutant individual 𝑉𝑖,𝐺. The
cross operation is according to

𝑢𝑗𝑖,𝐺 =
{
{
{

V𝑗
𝑛best,𝐺 rand𝑗 [0, 1) ≤ CR or 𝑗 = rand (𝑖)
V𝑗𝑖,𝐺 otherwise.

(7)

The crossover strategy exchanges mutant individual and its
best neighbor’s information to generate trial individual. The
crossover rate CR can be adjusted by user within the range
[0, 1]. The crossover strategy ensures that𝑈𝑖,𝐺 has at least one
element from the best neighbor. The neighborhood radius 𝑟
depends on population scale and the complexity of problem.

Selection Operation. The selection strategy is similar to
conventional DE algorithm; whether the trial individual 𝑈𝑖,𝐺
could become a member of the next-generation population
depends on fitness function values. If the new individual
𝑈𝑖,𝐺 is superior to old one 𝑋𝑖,𝐺, 𝑈𝑖,𝐺 would replace 𝑋𝑖,𝐺.
Otherwise, the individual 𝑋𝑖,𝐺 will remain in the next-
generation population.

Repeatedly perform the above three operations until one
of the two criteria is satisfied: (i) evolutional iterations reach
the maximal generation; (ii) the optimal fitness value is less
than the distance sum of minimum arborescence of subset 𝑃
and stays unchanged in ten consecutive iterations.

3. Results and Discussion

In this section, we apply BDEP to the gene copy number
profiles of real tumor and infer the tumor phylogeny of
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Table 1: The 𝑃 value of 𝜒 tests between DCIS and IDC.

Sample ID 𝑃 value of branches 𝑃 value of levels 𝑃 value of edges
Patient 1 4.89𝐸 − 56 8.40𝐸 − 03 5.85𝐸 − 01
Patient 2 4.49𝐸 − 34 5.61𝐸 − 20 9.25𝐸 − 01
Patient 3 1.82𝐸 − 03 1.38𝐸 − 02 8.91𝐸 − 01
Patient 4 5.53𝐸 − 41 1.86𝐸 − 06 2.24𝐸 − 02
Patient 5 2.24𝐸 − 18 4.28𝐸 − 03 5.81𝐸 − 01
Patient 6 4.87𝐸 − 20 5.22𝐸 − 02 3.14𝐸 − 03
Patient 7 6.11𝐸 − 02 1.06𝐸 − 05 1.40𝐸 − 01
Patient 8 2.79𝐸 − 61 1.45𝐸 − 20 2.88𝐸 − 01
Patient 9 1.09𝐸 − 36 1.50𝐸 − 18 7.94𝐸 − 01
Patient 10 6.05𝐸 − 58 1.38𝐸 − 11 9.61𝐸 − 01
Patient 11 1.30𝐸 − 04 5.96𝐸 − 16 8.29𝐸 − 02
Patient 12 7.85𝐸 − 02 7.40𝐸 − 06 4.59𝐸 − 01
Patient 13 2.43𝐸 − 14 4.01𝐸 − 05 9.32𝐸 − 01

all samples. We study the differences between tumors by
statistically analyzing topological features of phylogenetic
tree in the following three aspects: branch, level, and edge.
And classification experiments are performed to evaluate the
merits of these features. The algorithm parameters are set as
follows: themax generation𝐺max is 100; crossover rate (CR) is
0.7 by default; and population size depends on the complexity
of the problem ranging from 300 to 500.

3.1. Datasets. Two FISH datasets, cervical cancer and breast
cancer, respectively, fromWangsa et al. [43] and Heselmeyer-
Haddad et al. [44], are published to visualize copy number
changes in tumors based on single-cell analyses. The cervical
cancer dataset comprises four probes targeting the genes
LAMP3, PROX1, PRKAA1, and CCND1, in pretreatment
cervical biopsies from 16 lymph node positive samples and
15 lymph node negative controls from women with stage
IB and IIA cervical cancer [43]. The lymph node positive
samples contain primary tumors and associated lymph node
metastases. The four target genes come from different chro-
mosomes: LAMP3 is a gene located on chromosome 3q26,
PROX1 is located on chromosome 1q41, PRKAA1 is located
on chromosome 5p19, andCCND1 is located on chromosome
11q13; and altered expression of this gene has been observed in
many cancers [43].The cell number of cervical cancer among
47 cases ranges from 212 to 250 (average cell number is 243),
which is not significantly different among primary cancer
with positive lymph node, lymph node metastases cases, and
lymph node negative controls. But the number of cell gene
profiles among them is strikingly different; each gene copy
number profile is a tree node in phylogeneticmodel.The gene
profile number of primary cases with positive lymph node
ranges from 63 to 187, average being 111. The profile number
of lymph nodemetastases cases ranges from 34 to 115, average
being 70.The profile number of lymph node negative controls
ranges from 58 to 157, average being 97.

The breast cancer dataset comprises 13 cases of syn-
chronous ductal carcinoma in situ (DCIS) and invasive ductal
carcinoma (IDC), which contains eight probes targeting
five oncogenes, COX2, MYC, HER2, CCND1, and ZNF217,

and three tumor suppressor genes, DBC2, CDH1, and TP53
[44]. The DCIS is considered a precursor lesion for invasive
breast cancer, which has a lower degree of chromosomal
instability than the IDC [44]. COX2 is located on 1q31.1
and is upregulated in human breast cancer; DBC2 and MYC
both are located on chromosome 8; MYC is also upregulated
gene in many types of cancers; CDH1 is located on 16q22.1,
HER2 and TP53 both are located on chromosome 17, and
ZNF217 is located on 20q13.2, which is a strong candidate
oncogene for breast and other cancers [44]. The cell number
of breast cancer among 26 cases ranges from 76 to 220,
average cell number being 142. The cell number and profile
number between DCIS and IDC cases are not significantly
different.The profile number of DCIS cases ranges from 28 to
143, average being 73.The profile number of IDC cases ranges
from 44 to 119, average being 85.

In FISH datasets, gene copy number profiles of each cell
are expressed in matrix form, where each row represents
a cell case and each column represents a gene probe. The
corresponding gene copy number of each cell is a nonnegative
integer. The profile with gene copy number of 2 is considered
as the root node of tumor evolutionary tree. The datasets can
be downloaded at ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees/.

3.2. Results on Breast Cancer Datasets. We apply BDEP
algorithms to the gene copy number profiles of breast cancer
and comparatively analyze the tree topology between paired
DCIS and IDC samples. We first analyze the branch features
of phylogenetic tree at different stages. The branch is defined
as subtree derived from the 𝑖th child of the root node. The
DBC2 and MYC gene are on chromosome 8, and TP53
and HER2 gene are on chromosome 17. The copy number
of genes lying on the same chromosome is easily affected
by CNV simultaneously, phylogenetic trees have at most
twenty branches, and we use Chi-square test to compare the
distribution characteristics of cell numbers of each branch.
The 𝑃 values of Chi-square test from 13 paired samples are
listed in Table 1. The 𝑃 value of Chi-square test less than 0.01
is considered significant. For patients 7 and 12, the branch
structures of phylogenetic tree are similar. But the branch

ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees/
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Figure 2: The comparison of BC phylogenetic trees.

structures of the remaining 11 paired samples are significantly
different, which means that, under different selection pres-
sures, the pathways of tumor subcellular amplification also
change. As shown in Figure 2, which is an example of tumor
phylogenetic tree from patient 5, Figures 2(a) and 2(b) are,
respectively, from DCIS and IDC samples. The node in red
is Steiner node and the weight is evolution distance between
two nodes. The DCIS phylogenetic tree is more balanced,
with more cells concentrated in the first four levels.

The cells number of phylogenetic tree across levels
between DCIS and IDC tumor shows a noticeable difference.
The 𝑃 value of Chi-square test across the first twenty-two
levels is listed in Table 1; the root node is on level zero. For
the 13 paired samples, there are 11 cases with statistical signif-
icance. The hierarchical topology of primary and metastasis
trees is similar in patients 3 and 6. We also analyze the depth
characteristics of trees and corresponding fraction of cell
number at each level. From Figure 3(a), the depth of DCIS
tree is not distinctly different from IDC. The cell number
distribution across different levels is illustrated in Figure 3(b).
For the first six levels, the cell distribution of DCIS is more

concentrated with a greater proportion compared with IDC.
The cells gather in the first six levels up to 66% in DCIS and
55% in IDC.Thenumber of cells decreaseswith the increment
of tree levels, especially for DCIS. We also compare the edge
features of phylogenetic trees; each edge is the corresponding
gene gain or loss in the tree topological structure.The 𝑃 value
of edge statistics is not significantly different between DCIS
and IDC except for patient 6, which is listed in Table 1.

3.3. Results on Cervical Cancer Datasets

3.3.1. Statistical Analysis of Tree Feature. BDEP is applied
to comparatively analyze the tree topology between paired
primary tumor and metastasis samples. The four genes of
cervical cancer are on different chromosomes, phylogenetic
trees have at most eight branches, and we use Chi-square test
to compare the distribution characteristics of cell numbers of
each branch.The Chi-square test of branch structure from 16
paired samples shows significant differences, which is listed in
Table 2.The tree topology structure of primary andmetastasis
tumor is quite different. As shown in Figure 4, which is an
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Figure 3: The level characteristics of BC phylogenetic tree.

example of tumor phylogenetic tree from patient 3, Figures
4(a) and 4(b) are, respectively, from primary and metastasis
samples. The node in red is Steiner node and the weight is
evolution distance between two nodes.Themetastasis sample
has less copy number profiles, and the corresponding tree has
fewer levels but with more balanced and broader topological
structure compared with primary one.

In order to find the most decisive gene to distinguish
primary and metastasis samples, we analyze the significance
of individual gene. For each gene, we compare the cell
numbers of branches with gene loss and gain. From Table 2,
it is obvious that gene LAMP3 is the most informative gene;
there are seven cases showing significant difference (patients
5, 6, 7, 12, 13, 14, and 16), which is consistent with the findings
of Kanao et al. [45] andMine et al. [46].The overexpression of
LAMP3 is associated with an enhanced metastatic potential
and may be a prognostic factor for cervical cancer [45]. The
gene PRKAA1 is the least with only two significant cases
(patients 3 and 11).

For the hierarchical structure of trees, the 𝑃 value of
Chi-square test across the first twelve levels is listed in
Table 3. Among the 16 paired samples, there are 14 cases with
statistical significance. The hierarchical topology of primary
and metastasis trees is distinguishable except for patients 1
and 9. The depth characteristics of trees and corresponding
fraction of cell number at each level are illustrated in Figure 5.
Whether or not lymph node later metastasized, the level
structure of primary tumor is not distinctly different, but
much deeper than the metastasized one.The cell distribution
of metastasis sample is more concentrated and most of them
gather in the first six levels compared with primary stage
tumor. The number of cells decreases with the increment of
tree levels, especially for metastasis tumor. The cells gather
in the first six levels up to 85% in metastasis tumor and
70% in primary tumor. The cells in primary tumor are more
evenly distributed and extending to more levels. For the edge

feature of phylogenetic tree, all the 16 paired samples show
no significant difference, which is similar to breast cancer
samples.

For the edge feature of phylogenetic tree, all the 16 paired
samples show no significant difference, which is similar to
breast cancer samples.

3.3.2. The Classification Evaluation on Tree Features. The
performance to predict the state of the tumor according
to topological features of trees is crucial, which provides
diagnostic guidance for accurate medical treatment. We
evaluate the tree features through classification experiments
and compare them with the features directly from data. We
use the support vector machines (SVM) as classifier, which
is implemented in an open source machine learning Scikit-
learnmodule for Python [47].Weperform three classification
experiments on CC dataset and the average accuracy of
100 tests is considered as experimental result. The three
classification experiments are as follows:

(1) Distinguishing primary from its corresponding
metastatic samples, which is a 16 versus 16 samples’
classification

(2) Distinguishing nonmetastasis primary from primary
samples, which is a 15 versus 16 samples’ classification

(3) Distinguishing primary and nonmetastasis primary
samples frommetastatic samples, which is a 16 versus
15 versus 16 samples’ classification.

The dataset is divided into four parts: three of them are
training sets and the remaining one is test set. The extracted
features from tree topology are branch, level, and edge.
There are two features derived from data: (i) maximum copy
number of each gene; (ii) average copy number of each
gene. BDEP also compares with the published FISHtrees
algorithm [30], which is a state-of-the-art algorithm for
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Table 2: The 𝑃 value of branches 𝜒 tests between primary and metastasis samples of cervical cancer.

Sample ID 𝑃 value 𝑃 value of LAMP3 𝑃 value of PROX1 𝑃 value of PRKAA1 𝑃 value of CCND1
Patient 1 2.56𝐸 − 15 7.86𝐸 − 01 3.01𝐸 − 06 2.16𝐸 − 01 4.97𝐸 − 01
Patient 2 6.87𝐸 − 18 4.05𝐸 − 02 7.49𝐸 − 03 9.56𝐸 − 01 6.32𝐸 − 01
Patient 3 1.23𝐸 − 48 8.71𝐸 − 01 2.90𝐸 − 01 2.22𝐸 − 03 3.80𝐸 − 48
Patient 4 1.00𝐸 − 48 3.74𝐸 − 01 1.55𝐸 − 10 5.24𝐸 − 02 1.41𝐸 − 01
Patient 5 1.39𝐸 − 17 4.65𝐸 − 05 6.50𝐸 − 02 5.00𝐸 − 01 8.74𝐸 − 01
Patient 6 1.20𝐸 − 18 3.20𝐸 − 09 6.01𝐸 − 02 3.51𝐸 − 02 4.48𝐸 − 03
Patient 7 3.64𝐸 − 28 1.96𝐸 − 06 5.76𝐸 − 01 9.55𝐸 − 01 5.09𝐸 − 02
Patient 8 8.17𝐸 − 72 5.47𝐸 − 01 1.99𝐸 − 20 1.11𝐸 − 01 3.45𝐸 − 03
Patient 9 1.52𝐸 − 30 6.03𝐸 − 02 7.52𝐸 − 02 8.10𝐸 − 01 9.01𝐸 − 01
Patient 10 8.15𝐸 − 10 4.22𝐸 − 02 6.22𝐸 − 01 1.44𝐸 − 01 9.26𝐸 − 06
Patient 11 1.21𝐸 − 31 5.65𝐸 − 01 6.07𝐸 − 01 1.84𝐸 − 12 5.63𝐸 − 05
Patient 12 6.98𝐸 − 55 1.15𝐸 − 26 1.41𝐸 − 06 5.67𝐸 − 01 7.89𝐸 − 01
Patient 13 4.71𝐸 − 73 6.11𝐸 − 35 9.56𝐸 − 01 1.89𝐸 − 02 1.39𝐸 − 03
Patient 14 2.70𝐸 − 18 2.29𝐸 − 06 1.48𝐸 − 02 5.17𝐸 − 02 1.20𝐸 − 02
Patient 15 7.77𝐸 − 22 6.39𝐸 − 01 1.72𝐸 − 03 2.36𝐸 − 02 3.81𝐸 − 01
Patient 16 1.19𝐸 − 27 3.06𝐸 − 03 8.23𝐸 − 01 7.50𝐸 − 01 3.53𝐸 − 01

Table 3: The 𝑃 value of levels and edges 𝜒 tests between primary and metastasis samples of cervical cancer.

Sample ID 𝑃 value of levels 𝑃 value of edges
Patient 1 2.16𝐸 − 02 9.35𝐸 − 01
Patient 2 9.81𝐸 − 09 6.48𝐸 − 01
Patient 3 3.66𝐸 − 17 8.04𝐸 − 01
Patient 4 1.43𝐸 − 05 9.06𝐸 − 01
Patient 5 2.79𝐸 − 07 3.34𝐸 − 01
Patient 6 6.19𝐸 − 09 6.82𝐸 − 01
Patient 7 3.46𝐸 − 04 9.64𝐸 − 01
Patient 8 1.22𝐸 − 07 7.97𝐸 − 01
Patient 9 1.30𝐸 − 02 9.25𝐸 − 01
Patient 10 2.17𝐸 − 09 8.28𝐸 − 01
Patient 11 3.84𝐸 − 10 4.98𝐸 − 01
Patient 12 1.92𝐸 − 15 2.49𝐸 − 01
Patient 13 6.76𝐸 − 17 2.87𝐸 − 01
Patient 14 2.34𝐸 − 06 6.75𝐸 − 01
Patient 15 7.85𝐸 − 03 6.48𝐸 − 01
Patient 16 1.02𝐸 − 16 9.90𝐸 − 01

phylogenetic tree based on FISH platform; the result is
shown in Figure 6. The experiment distinguishing primary
from its corresponding metastatic samples works best, fol-
lowed by the classification between primary samples. The
effect of distinguishing primary, nonmetastasis primary, and
metastatic samples is poor for all features. Among all the
features, the level feature achieves the highest accuracy, which
shows that the degree of cell differentiation varies widely
for tumors of different states. The data-based average feature
shows in general the worst performance. Also interestingly,
the Chi-square tests of branch structure are significant for
all 16 paired samples, but classification effect is not as
good as expected, even worse than edge feature. FISHtrees
works better than BDEP for branch structure feature, but
not for edge and level features. Overall, the classification

accuracy of tree-based feature is better than data-based
feature.

4. Conclusion

In this paper, we propose a binary differential evolution algo-
rithm (BDEP) to construct tumor phylogenetic tree via CNV
data on FISH platform. Tumor phylogenetic tree inference
can be treated as minimum Steiner tree problem in directed
graph, which cannot be solved in polynomial time unless
no Steiner node exists. The binary differential evolution is
a heuristic algorithm with advantages of fast convergence
and strong robustness, which provides good approximate
solutionswith reduced running time. Experimental results on
real datasets show that the branch and hierarchical structures
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(a) The phylogenetic tree of primary cervical cancer
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Figure 4: The comparison of CC phylogenetic trees.
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have significant differences for tumors of different states.
And the gene under different selection pressures would lead
to the different pathways of tumor subcellular expansion.
The results on classification experiments show that our tree-
based features are in general better than data-based fea-
tures in distinguishing tumor, which provides more accurate
and more comprehensive pathological guidance for clinical
diagnosis and treatment. The association between genes is
the key point to build and understand tumor progression;
combining CNV data with other omics data (RNA and

DNA methylation) would be a better strategy for tumor
phylogenetic tree inference.
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