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Abstract

Cellular signaling processes depend on specific spatiotemporal distributions of their molecular 

components. Multi-color high-resolution microscopy now permits detailed assessment of such 

distributions, providing the input for fine-grained computational models that explore the 

mechanisms governing dynamic assembly of multi-molecular complexes and their role in shaping 

cellular behavior. However, incorporating into such models both complex molecular reaction 

cascades and the spatial localization of signaling components within dynamic cellular 

morphologies presents substantial challenges. Here we introduce an approach that addresses these 

challenges by automatically generating computational representations of complex reaction 

networks based on simple bi-molecular interaction rules embedded into detailed, adaptive models 

of cellular morphology. Using examples of receptor-mediated cellular adhesion and signal-

induced localized MAPK activation in yeast, we illustrate the capacity of this simulation technique 

to provide insights into cell biological processes. The modeling algorithms, implemented in a 

version of the Simmune tool set, are accessible through intuitive graphical interfaces as well as 

programming libraries.

Introduction

The increasing spatial resolution of optical microscopy, in concert with novel technologies 

for labeling cell constituents, is continuously revealing new details about how cells actively 

tailor the chemical composition of membrane domains during signaling or generate 

intracellular concentration gradients in response to localized external signals 1–3. Reflecting 

these insights, modern simulation approaches no longer assume well-mixed biochemistry 
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but instead simulate signaling processes within computational representations of cellular 

geometries (see Supplementary Note 1 for a detailed discussion of available approaches). In 

parallel, experimentalists and theorists have begun to explore the physiological role of multi-

component molecular complexes. Systematic analyses of the spectrum of binding partners of 

receptor tyrosine kinases such as the EGF receptor 4 or of the assembly of ‘signalosomes’ 

around scaffold proteins 5 have revealed that signaling pathways are intricate factories, 

dynamically assembling and disassembling molecular complexes with specific functions.

Defining computational models for exploring the reaction dynamics of networks of these 

large multi-molecular complexes requires approaches that differ from the traditional strategy 

of explicitly formulating all mass-action equations for the complete set of reactants in a 

system. The reason is that reaction dynamics in systems with many molecular components, 

or with components that have many binding sites, may involve very large numbers of 

alternative interactions and complexes, a phenomenon sometimes referred to as 

‘combinatorial explosion’ 6. However, because all the reactions within such networks are 

based on interactions between pairs of molecular binding sites, much of the complexity can 

be reduced to defining the rules that describe these binary interactions. Taking advantage of 

this underlying reality, ‘rule-based’ approaches leave the task of actually assembling the 

complexes and reaction networks to the computer, once the investigator has defined the 

fundamental components and their pair-wise interactions 7–12. Rule-based simulation 

approaches have, however, so far been limited with regard to their ability to take into 

account the cellular morphologies in which the molecular networks operate and had to 

assume static geometries or well-stirred conditions.

Here, we introduce a computational approach that can be used to simulate complex signaling 

processes in the context of realistic and even dynamic cellular morphologies. This novel 

capacity is based on the ability to generate reaction networks automatically, taking into 

account the location-dependent molecular interaction possibilities determined by the 

dynamic membrane geometries and 3-dimensional shapes of the simulated cells (Fig. 1, 

Supplementary Note 2). The approach is a major extension and improvement of the 

modeling tool Simmune7. Most of its functionalities are available to users who prefer a 

graphical user interface (GUI) to writing model definition scripts. It also permits modelers to 

simulate aspects of biology that would be difficult to address with conventional methods, 

such as the local dynamics of multi-molecular signaling complexes in large networks. We 

use the approach to simulate two well-studied biological systems, the reaction-diffusion 

processes of adhesion receptors at dynamic cell-cell contacts, and the formation of MAPK 

activity gradients by intracellular multi-molecular signaling complexes in the yeast mating 

pheromone response.

Results

Molecular reaction networks in their spatial contexts

Modeling approaches that focus on phenomena of individual complexes (for instance, 

receptor clustering 13) and that simulate the motion and reactions performed by discrete 

particles incorporate spatial constraints naturally (Methods and Supplementary Fig. 1): 

complexes can only interact when they share a common location and the rates of their 
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interactions depend on their local abundances. However, the computational cost of particle-

based simulations increases at least linearly (and typically much faster than linearly) with 

the abundance of the complexes. This means that simulating a system with 1,000,000 

molecules (roughly corresponding to a micromolar concentration in a cell of 10 microns 

diameter) will take at least 1000 times longer than simulating a system with 1000 molecules. 

Since many cellular signaling phenomena involve large numbers of molecules and do not 

require approaches that track individual particles, they can be investigated far more 

efficiently by simulating the dynamics of local molecular concentrations instead of using 

particle-based simulators (Methods and Supplementary Fig. 1).

It should be noted that one of the most computationally expensive aspects of particle-based 

simulations, namely capturing the diffusional motion of particles in between molecular 

encounters and reactions, has recently been addressed with techniques that either avoid 

taking single Brownian diffusion steps (GFRD14) or that take large steps and correct for the 

introduced error (Smoldyn 15). Nevertheless, these simulations remain very time 

consuming 15 where particle numbers are large; their immediate value lies in applications 

with relatively low numbers of particles to be simulated.

Without taking into account spatial aspects, rule-based approaches to model cellular 

signaling networks can translate interaction rules directly into sets of complexes and the 

reactions between them and simulate them as sets of ordinary differential equations (ODEs). 

In contrast, for spatially-resolved simulations, the rates of these reactions and even the types 

of reactions that will actually occur depend on the morphology within which the 

biochemical components of the network operate. The new simulation algorithms in 

Simmune therefore apply the rules that specify how molecular interactions are translated 

into complexes and reaction networks for each volume or membrane element individually, 

based on its local biochemical composition. For membrane elements that are in contact with 

other membranes (for instance, as part of an intercellular contact) the network generation 

algorithm additionally determines whether the opposing membrane contains receptor 

complexes that can interact with the local molecular complexes. Each complex is then 

assigned a list of reaction processes (associations, dissociations or transformations). Finally, 

the diffusional exchange among neighboring volume or membrane elements is determined 

and added to the list of processes that now can be used to calculate how local concentrations 

of molecular complexes will change over time.

Rule-based network creation can be computationally expensive (Supplementary Note 3). For 

simulations with high spatial resolution, Simmune has to generate local networks for 

thousands of volume and membrane elements and therefore uses a multi-step strategy that 

first builds a non-spatial reaction network based on all possible interactions among the 

molecular species in the simulated biological system. This template network is then adapted 

to the specific local molecular environment of each volume or membrane element, which 

can be done much faster than creating networks de novo. Additionally, each newly generated 

local network is stored in a network repository that allows reuse when networks have to be 

built for locations with identical molecular composition. This strategy is efficient enough to 

permit the automatic creation of reaction networks even within the context of changing 

cellular shapes, for instance when simulating receptor interactions at dynamic cell-cell 
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contact interfaces. The results of the simulations we report here emphasize the potentially 

important differences between morphologically dynamic versus static modeling of reaction-

diffusion processes.

Static vs. dynamic simulations of intercellular E-cadherin

E-cadherin-mediated cell-cell adhesion is essential for the organization of multicellular 

organisms 16. Here we simulate cell-cell contact regulation involving just this one molecular 

species, under conditions in which both membranes express the same adhesion molecules 

and in which these molecules form homodimers or larger complexes based on these 

dimers 17, 18. Focusing just on this isolated set of interactions allowed us to explore a simple 

but important system with well-established phenomenology.

The purely biochemical network resulting from the fundamental interactions between E-

cadherin monomers (Fig. 2a) contains only seven biochemically distinct complexes when 

spatial issues are ignored (Fig. 2b). In contrast, adding into the analysis the localization of 

the molecular components in two adjacent cell membranes yields a considerably more 

complicated picture (Fig. 2c). This is due to the fact that structurally equivalent complexes 

now can differ with regard to which side of the membrane-membrane interface their E-

cadherin molecules belong. For example, the tetramer with an open cis-interface (labeled 

with a roman V in Fig. 2b) exists in two versions at the cell-cell interface (labeled (8) and (9) 

in Fig. 2c), facing either one or the other cell with its ‘open’ end. Even without including 

lateral diffusion within the membranes, a mathematical description of the possible reactions 

between the different types of complexes would require more than 100 reaction terms 

(Supplementary Note 2b). Incorporating spatial aspects thus transforms generation of the 

biochemically simple network of E-cadherin trans- and cis-dimerization into a nontrivial 

task, as is illustrated in Fig. 3 for one step of the local network generation process for two 

adjacent membrane elements.

We first investigated the accumulation of E-cadherin at the interfaces between models of 

morphologically static cells that were simulated as coming into close proximity prior to the 

formation of receptor contacts, mimicking cellular crowding that arises when cells enter into 

a pre-existing epithelial layer involved in rearrangements or repair. It is currently assumed 

that cis interactions are much weaker than trans interactions 19 and that their main function 

may be to stabilize trans interactions 20. Varying the lifespan of cis-bonds within trans 

complexes between 1 and 100 seconds, we observed an accumulation of E-cadherin at the 

periphery of the contact zones (Fig. 4a), reminiscent of the experimentally observed 

accumulation of E-cadherin at the edges of adhesive cell contacts (Fig. 4b,c) 21. This 

accumulation was markedly modulated by the cis bond lifespan and reached up to 1.5 fold 

the concentration of E-cadherin outside of the contact zones (Fig. 4d). These results are 

consistent with the findings of a previous computational model of a cell in contact with a 

small sphere acting as a completely absorbing surface for E-cadherin 22.

To study the evolution of local concentrations of intercellular E-cadherin complexes during 

the more physiological setting of gradual growth of receptor-mediated cellular adhesive 

contacts involving membranes of flexible topology, we performed simulations with receptor 

interaction networks embedded into the dynamic morphology of two interacting cells using 
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a three-dimensional version of the ‘cellular Potts model’ (CPM) method 23 This method has 

been applied successfully to the study of cellular movement in models of biological 3D 

environments 24. It simulates the dynamic geometries of biological cells as coherent 

structures consisting of two- or three-dimensional basic spatial elements (for example, 

squares, hexagons or, in 3D, cubes) through stochastic updates that calculate the 

probabilities for adding or removing volume elements based on their particular states or 

geometric neighborhoods. The coupling between biochemistry and morphological dynamics 

was implemented through Potts energy terms that describe the binding status of membrane 

receptors (Methods and Supplementary Note 3). In contrast to simulations with static 

morphologies, combining receptor interactions and morphological dynamics requires 

rebuilding the local molecular reaction networks every time the morphology changes to take 

into account new receptor interaction possibilities or to discard those that are no longer 

supported by the membrane geometry.

The overall simulation flow after the initialization of cellular biochemistry and morphology 

proceeded according to the following pattern: 1) local network (reaction-diffusion) 

generation/adjustment, 2) integration of the corresponding system of coupled differential 

equations for the local concentrations of all molecular complexes, 3) Potts model update 

step, repeat until user event or end time point is reached (Supplementary Fig. 2). We note 

that the local network generation method introduced here can be embedded into any 

algorithm generating morphological dynamics, not just Potts model simulations. The 

network generation could in principle be combined with more sophisticated approaches for 

shape and surface dynamics (than just cubic extension and retraction) such as finite element 

methods or level sets but the coupling between shape dynamics and biochemistry would be 

highly nontrivial.

Cells were simulated as initially coming into contact at small membrane regions. These 

small contacts and the shape of the membranes in which the molecules were embedded were 

then allowed to evolve, driven by the formation of intercellular E-cadherin contacts. The 

simulations incorporated Potts model parameters chosen to reproduce previous work 

reporting experimentally determined growth rates of cell-cell contacts, which began at 30 

microns/hour 21 and resulted over 1.5 hours in cells joined through a contact interface 

spanning almost the entire cellular diameter (Fig. 4e and Supplementary Movie 1). Even 

for receptor-interaction parameters that had led to pronounced peripheral cadherin 

accumulation along the edges of cellular contacts in the morphologically static case, these 

dynamic simulations instead showed an overall increase in cadherin density in the central 

contact zone modulated by the morphological features of the interface (such as regions of 

smooth or rugged, interrupted cell-cell contacts) (Fig. 4f). This qualitatively different 

behavior of the models is a consequence of the rapid (relative to the time scale governing the 

growth of cell-cell contacts) E-cadherin diffusion that allows fast recruitment of receptors 

that stabilize nascent contacts. The results of the simulations thus show that, due to the fast 

diffusion of E-cadherin, cells have to employ active transport mechanisms (as opposed to 

passive diffusion, as modeled here) to generate a high-concentration adhesive ring at the 

periphery of cellular contacts by removing receptors from the central contact zone in order 

to finally form mature adherens junctions 25. Indeed, performing morphologically dynamic 
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simulations with a diffusion coefficient typical for larger trans-membrane receptors (tenfold 

lower than has been reported for E-cadherin), or with contacts that grew five times faster 

than experimentally reported (thereby shifting the balance between diffusion and 

morphological dynamics), we obtained a peripheral accumulation of these receptors 

(Supplementary Fig. 3a, b). In contrast, just the accumulation of E-cadherin in intercellular 

contact zones did not require active transport, in accord with previous experimental 

findings 26.

Computational exploration of MAPK activation in yeast

We next illustrate the application of our modeling method to exploring spatial aspects of 

MAPK activation in yeast, which requires the generation of a signaling network with a high 

degree of combinatorial complexity within a characteristic cellular morphology. MAPK 

activation downstream of the yeast pheromone receptor is organized around the scaffold 

protein Ste5. The scaffold interacts with a variety of partners, among them the G protein 

subunit Gβγ, the phospholipid PIP2 (phosphatidylinositol-(4,5)-bisphosphate), the kinase 

Ste20 initiating activation of the MAPK cascade, its interaction partner Ste11 (MAPKKK), 

the MAPKK Ste7 and, finally, the MAP Kinase Fus327. Many of these binding partners may 

exist in several different states of activation. Taking into account all possible combinations 

of membrane-bound and cytosolic Ste5 molecules in complex with one, two, or three of its 

interaction partners in phosphorylated or unphosphorylated states, as well as interactions 

with other membrane-bound components, yields local reaction networks equivalent to more 

than 150 coupled differential equations (ODEs) in the membrane regions and 70 coupled 

ODEs in the cytoplasmic regions. Diffusional coupling between the membrane and volume 

elements of the discretized cellular morphology has to be handled additionally. Capturing 

the large numbers of distinct molecular complexes involved in Fus3 activation is therefore a 

very difficult task that has been undertaken only a few times 28, 29 using conventional 

modeling techniques that assemble the components of a mathematical model in a non-

automated manner.

Importantly, the shape of the yeast cells as they respond to pheromone stimulation has a 

significant effect on the signaling events: Saccharomyces cerevisiae responds to pheromone 

by assuming a polarized pear-like shape and accumulating signaling molecules in its narrow 

tip, the so-called ‘shmoo’ 27. Recently, a microscopy study elucidated the spatial distribution 

of the molecular components of the yeast pheromone response with enough quantitative 

detail to permit spatially-resolved simulations 30. Note that due to the necessity to account 

for both spatial biochemical inhomogeneity and the influence of intracellular diffusion, a 

non-spatial rule-based method would require a manual mapping of each one of the 

automatically generated sets of reactions – describing the biochemistry at one particular 

point in space – onto the volume elements of the simulated cellular geometry.

Phosphorylated Ste7 (pSte7) is thought to phosphorylate Fus3 in a Ste5-dependent scaffold-

guided process (Fig. 5a). Given the low affinity of Fus3 for Ste5 (Kd ~ 1 micromole 30, 31), 

the concentration of complexes involving pSte7 and Fus3 bound to Ste5 must be low, posing 

the question how the cells achieve a phosphorylation of 40% of their Fus3 pool within less 

than an hour after pheromone stimulation30. After initial simulations, we therefore replaced 
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the classical mechanism of intra-scaffold activation of Fus3 (Fig. 5a), by a mechanism 

according to which Ste5-bound, activated Ste7 directly binds to and activates Fus3 (Fig. 5b), 

taking advantage of the fact that the modeling GUI makes even such major structural 

changes quite painless. This mechanism was suggested in a recent structural study that 

revealed that binding to Ste5 significantly enhances Ste7 phosphorylation of Fus3 and that 

this does not require direct interaction of Fus3 with Ste5 31. This finding is in accord with 

the unexpected previous observation that suppressing the interaction of Fus3 with Ste5 

actually promotes Fus3 activation 32.

In addition, we included a tip-localized binding partner for pFus3 representing one of the 

targets of its kinase activity as suggested by the authors of the experimental study 30. This 

allowed the model to account for an experimentally reported imbalance between Fus3 and 

Ste5 at the tip and to satisfy an additional constraint provided by the experimental data (the 

shmoo tip contained 1.7 fold less Ste5 than Fus3) that would have been impossible to satisfy 

without these Fus3 binding partners (Supplementary Fig. 4). With this second modification, 

simulations reproduced both the experimentally observed Fus3 concentration and 

phosphorylation profile (Fig. 5c,d,e) and the phosphorylation of 40% of the total Fus3 pool. 

As in the original experiments30 the Fus3 concentration profiles were calculated using a 

spatial averaging over cells with different localizations of the cell nucleus (Supplementary 

Fig. 5).

Among the advantages of the automated generation of reaction networks is the possibility to 

identify molecular complexes with common properties. Summing over the concentrations of 

all complexes containing the ‘Ste5-pSte7-Fus3’ pattern we could very efficiently determine 

the spatial concentration profile of the complexes that generate pFus3. Even though the 

concentration of these complexes was much lower in the body than at the shmoo tip, the 

total number of cytoplasmic sources for pFus3 was greater than those at the tip, since the 

shmoo tip encompasses only a few percent of the cell’s volume (Fig. 5f). Thus, our spatial 

rule-based approach was required for the simulation of a complex signaling cascade 

embedded into its specific geometry and was also very useful for analyzing the 

consequences of the spatial distribution. In this case, the simulations suggested that the fact 

that much of the pFus3 was produced in the cell body imposes a limit on the steepness of the 

gradient that can be produced by the highly concentrated source of this active kinase at the 

shmoo tip (Supplementary Note 4). Finally, the ability to include spatial aspects into 

quantitative models of cellular behavior considerably increases the stringency of the 

constraints provided by experimental data; this should facilitating instructive simulations 

even in cases where the data are less complete than for the yeast MAPK pathway.

Discussion

In addition to solving long-standing technical modeling issues through its ability to 

automatically generate spatially resolved reaction-diffusion networks, the approach 

presented here also offers an opportunity for experimentalists with limited computational 

experience to utilize modeling and simulation in their studies. As demonstrated in the step-

by-step guide through the models, (re-) building, modifying and exploring the models and 

performing the simulations does not require a strong computational background or the 
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creation of elaborate computer scripts, but instead can be done with the help of an intuitive 

graphical interface. Theorists will furthermore find it useful that the localized generation of 

reaction networks performed by our approach permits access to more details of local 

dynamics than is typically provided by ‘black box’ partial differential equation (PDE) 

solvers. This makes it straightforward to analyze the different reactions contributing to the 

kinetics with which local complex concentrations change over time. Finally, computational 

modelers can use the programming interface provided for all algorithms to create single- or 

multi-cellular simulations combining biochemical (reaction-diffusion) and morphological 

dynamics, using the different components of our tool set as building blocks for customized 

projects.

Methods

All models and the tools described here for generating the reported modeling results can be 

downloaded from the NIH website at: www.niaid.nih.gov/LabsAndResources/labs/

aboutlabs/lsb/Pages/simmuneproject.aspx The tools run on Linux, MacIntosh®, and 

Windows® operating systems. The models are stored in SQL (Structured Query Language) 

databases to allow for flexible and efficient organization and for detailed queries about 

molecular properties and interactions. The database communicates with the simulation 

software through an API (Application Programming Interface) that can directly be accessed 

by computational modelers or programmers who want to implement their own simulation 

engines or supply programmatically generated models to the simulator. Model databases are 

stored as SQLite dbf files that can be easily exchanged between researchers.

Simulating cellular biochemistry in the context of intercellular receptor-mediated contacts

To illustrate the challenges associated with transitioning from a non-spatial to a spatial 

representation of a signaling network, we consider a simple model of receptor-mediated 

cellular communication with the following rules (Supplementary Fig. 1): R1 and R2 are two 

receptors, each with one extracellular and one intracellular binding site. They can bind to 

each other extracellularly and can bind to intracellular components, C1 and C2, respectively. 

C1 can interact with R1 regardless of the receptor’s extracellular binding state whereas C2 

can bind to R2 only after this receptor has been bound by R1 (outside-in signaling). R1 can 

bind to R2 only after C1 has attached itself to intracellular domain of R1 (inside-out 

signaling). The network thus incorporates outside-in and inside-out signaling mechanisms 

representing typical binding event-induced changes in the behavior of transmembrane 

proteins responsible for transmitting and reacting to cellular contact signals 33.

Whereas the biochemical reaction possibilities resulting from the rules in the model can be 

described easily as a network graph when the geometry of the system is ignored 

(Supplementary Fig. 1a), taking into account the spatial localization of the network’s 

molecular components relative to two cytoplasmic membranes of adjacent cells expressing 

either R1 and C1 or R2 and C2 creates an substantial additional layer of complexity.

To illustrate this we depict components that need to be treated as cytosolic as green for cell 1 

and as purple for cell 2. Extracellular membrane-bound components are depicted in blue 

(Supplementary Fig. 1b,c). C1 and C2 perform free 3D diffusion as unbound molecules. 
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After their association with the transmembrane receptors R1 and R2, they are confined to 2D 

membrane-guided diffusion. Another important difference between a non-spatial and a 

spatially-resolved simulation of the model is that in the latter case molecular complexes 

need to be accounted for in multiple locations simultaneously. As one example, the receptor-

receptor association (reaction (2)) creates a complex that is ‘visible’ in five distinct spatial 

regions: cytoplasm 1, membrane 1, intercellular space, membrane 2 and cytoplasm 2. In a 

simulation that tracks individual complexes, the interaction possibilities of these intercellular 

transmembrane complexes would follow naturally from their individual positions in space: 

complexes that are spatially very close to each other can react (Supplementary Fig. 1c). 

However, switching to what is usually a far more efficient approach by simulating the 

dynamics of molecular concentrations in two discretized, grid-like representations of the 

membranes and adjacent volumes of the two interacting cells means giving up the 

information about locations of individual molecule complexes (Supplementary Fig. 1d). The 

algorithms updating the concentrations over time of molecular complexes that are present in 

multiple adjacent membrane and volume elements thus need to be able to model these 

interdependencies on the ensemble level (local concentrations of complex species) even 

though, physically, they arise at the level of individual complexes. For example, the 

association of C1:R1 and R2 in two adjacent membrane grid elements depicted by the red 

squares in Fig. 1d increases the concentration of the product complex C1:R1:R2 in the two 

membrane grid elements and their associated volumes (sub-membrane and intercellular). It 

decreases the concentration of C1:R1 in the grid element on the left (cell 1) and of R2 in the 

grid element on the right (cell 2). Thus, while the rate of this reaction depends only on the 

concentrations of C1:R1 and R2 in the intercellular space hosting the interaction, the 

formation of the larger complex changes the concentrations of complexes in multiple 

additional locations.

To address these issues we developed algorithms that construct the computational 

representations of reaction networks for individual volume (or membrane) elements based 

on their local geometry and the locally available molecular components, as opposed to using 

interaction rules to generate a global reaction network and then mapping it onto discretized 

spatial structures. The latter approach would have difficulties simulating situations in which 

multimolecular complexes could exist in multiple versions that, while biochemically 

identical, nonetheless differ with regard to the roles they play within the modeled cellular 

geometry. The adhesion receptors ICAM-1 and LFA-1, both expressed on interacting T- and 

B-lymphocytes, are biological examples of this situation. Here, both cells express the 

equivalents of R1 and R2 (ICAM-1 and LFA-1). The complex ICAM-1:LFA-1 can thus 

mean two things: ICAM-1 is anchored on the T-cell and LFA-1 on the B-cell, or vice versa. 

The purely biochemical, theoretical interaction possibilities of the intercellular complex as 

part of a non-spatial signaling network are identical in both cases but the algorithm 

simulating the network’s reaction dynamics in space now needs two representations in each 

grid element with distinct local reaction rules. Using the biochemically simpler system of E-

cadherin receptor homodimerization, we discuss in Fig. 1 and Supplementary Note 2a how 

our approach builds local reaction networks capable of correctly handling such situations by 

encoding the spatial localization of the components of multi-molecular complexes to be able 

to dynamically assemble and disassemble complexes connecting multiple distinct spatial 
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regions. This approach solves the above-mentioned problem: components involved in the 

formation of trans-membrane complexes ‘know’ where they come from, thereby making it 

straightforward to assign target volume (or membrane) elements to the fragments of 

dissociating complexes. The information contained in the complexes (origins of their 

components, list of complex interactions that can generate them, list of decays that 

disintegrate them into fragments) is then translated into sets of equations encoding the 

concentration changes (and their kinetic rates) of the complexes in the system 

(Supplementary Note 3a).

All simulation methods described here are implemented in algorithms that are either 

accessible through graphical user interfaces or programmatically through application 

programming interface (API) files. Examples illustrating how to access the reported 

functionality in custom programs using the algorithms introduced here are provided in the 

documentation for the modeler/simulator API. The numerical parameters we used are given 

in Supplementary Note 5.

Generation of location-dependent reaction networks

Reactions between molecular complexes are based on binding possibilities between pairs of 

molecular binding sites. The rate constants of these reactions may be determined by the 

complexes to which the interacting molecules belong: Two molecules A and B may have 

different association (and dissociation) rates depending on whether they interact as mono-

molecular ‘complexes’ A and B or are part of larger complexes, for instance, as A bound to 

C in a complex A:C. These properties of the molecules and the complexes they may form 

define the purely biochemical network mentioned at the beginning of the Results section. 

The modeler interface provides the functionality to specify these properties using a graphical 

interface. Once the computational representations of the cellular morphologies have been 

generated (see next section), local networks in the volume elements of the spatial 

discretization are generated based on the molecular complexes that are initially placed into 

these volume elements (as initial conditions of a particular simulation of the model) and 

their potential interactions and the complexes they can form. The local networks in each 

volume element will generate only those complexes that can actually be formed based on the 

locally available initial biochemical make-up in that element. For instance, if A can bind to 

B and C but a local volume element contains only A and C, the algorithm will generate a 

representation of complex A:C but not A:B instead of generating both and just setting the 

concentration of A:B to zero. This distinction ensures a maximally efficient (sparse) 

representation of the reaction kinetics. In all membrane locations, the molecular complexes 

are given additional tags that encode their volume element identity. This allows the 

algorithm to generate intercellular membrane-membrane complexes and identify which 

components of a complex (each belonging to one of two distinct membrane elements) they 

decay to when the binding that mediates the membrane-membrane link (in the E-cadherin 

example the trans-trans interaction) is lost. With the information about which interactions 

are possible locally and the location tagging, the algorithm can finally determine all 

reactions for each single local molecular complex: associations, where two complexes form 

a larger complex; dissociations, where a complex decays into two smaller ones; and 

transformations, where a complex changes the state of its molecular components, for 
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instance switching from unphosphorylated to phosphorylated. In spite the overhead resulting 

from the additional information needed to generate localized spatial networks Simmune’s 

network generators compare favorably with other approaches for automated network 

generation (Supplementary Note 3b and Supplementary Figure 6).

Generation of computational representations of cellular morphologies: Finite volume 
method

Partial differential equations (PDEs) are the continuous mathematical representation of the 

reaction-diffusion system given by interacting and diffusing molecular complexes. PDEs 

that describe the spatio-temporal behavior of conserved quantities such as diffusing 

molecules are amenable to discretization by the finite volume method. The method's central 

idea is to cover the spatial region on which the PDE is defined with a set of volume elements 

and express the rate of change of the conserved quantity in those elements in terms of the 

flux through their surface [Finite Volume Methods Robert Eymard, Thierry Gallouet and 

Raphaele Herbin October 2006. This manuscript is an update of the preprint n0 97-19 du 

LATP, UMR 6632, Marseille, September 1997 that appeared in Handbook of Numerical 

Analysis, P.G. Ciarlet, J.L. Lions eds, vol 7, pp 713–1020]. In the case of diffusion the flux 

through the surfaces is determined by Fick's law. Cytosolic and extracellular diffusion can 

be discretized in a natural way by choosing a piecewise constant approximation of 

concentrations, and an approximation of the gradients through the distances between the 

centers of the volume elements (these are cubic in the implementation used here). However, 

the surface elements of the cubic grid elements that cover a simulated cell do not provide an 

adequate approximation of the cell's surface. The distances and interface lengths entering 

Fick's law have to be inferred from the cell's shape. This will be explained in the following 

section.

Generation of modified surface geometry for membrane diffusion

The surface elements of the cubic grid elements that cover a simulated cell provide an 

inadequate approximation to the cell's surface (cf. Supplementary Note 3d). To illustrate this 

issue consider a sphere of radius 1. The circumference of that sphere is 2π and its area 4π. In 

contrast, the circumference of the discretized sphere at the equator is 8, independent of the 

resolution of the discretization. (Distinct parts of the circumference can be viewed from four 

directions, perpendicular to the front, back, left and right faces of the cubic grid elements 

defining the sphere. The visible circumference from each of these four viewpoints is 2 for a 

total of 8.) The surface area of the discretized sphere converges to 6π for a grid constant 

approaching 0. By an argument similar to the previous one the area can be viewed from 6 

directions. In each direction a circle with area π is approximated by the surfaces of the grid 

elements, leading to a total area of 6π. Considering these discrepancies between the 

discretized and ideal sphere it is obvious that a naive approach using the surface of the cubic 

grid cells to solve the diffusion equation will not yield results converging to the true 

solution.

This can be remedied by locally adapting the area and shape as well as the distances 

between surface elements of the cubic grid elements (Supplementary Fig. 7). The approach 

taken here is based on a method 34 that was designed to provide accurate approximations to 
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idealized smooth surfaces that do not change over the course of a simulation. Our simulation 

scheme is designed to allow for frequent changes of the surface geometry. This requires 

rebuilding the surface approximation and redistributing membrane molecules 

(Supplementary Note 3c and Supplementary Fig. 8) after each change of the surface 

geometry. We therefore modified the original method to reduce the computational cost for 

creating the approximation. In numerical tests the error of the much faster modified method 

was still in the sub-percent range (cf. Supplementary Note 6). The Supplementary Movies 
1 and 2 use the surface normals generated by this method to display the curvature of the cell 

membranes.

Potts Model dynamics

We use a Cellular Potts model (CPM) 23 to simulate dynamic cell morphologies. During 

each morphology update, which occurs with a user-defined frequency, a subset of the 

volume elements that are adjacent to the cell's surface are randomly chosen. The energy cost 

for the extension of the element in a randomly chosen direction and the retraction of the 

element are evaluated. The change with the lower cost is chosen and will be accepted if the 

cost is smaller than zero or with a probability exp(-E) for a cost E. A volume element of one 

cell can extend into a volume element occupied by another cell; the total cost will be the 

sum of the costs for extending one volume element and retracting the other.

Note that this strategy as implemented here permits the development of models that couple 

membrane biochemical and morphological dynamics. However, this coupling is 

phenomenological in the sense that membrane dynamics are not simulated based on 

biomechanical calculations that describe surface deformations in terms of forces generated, 

for instance, by actin and myosin fibers that interact with the cell’s membrane. Accordingly, 

Potts model parameters have to be chosen heuristically to reproduce the experimentally 

observed dynamics of cellular morphology.

Our CPM utilizes four different energy terms. The relative strengths sx of the terms are 

tunable as part of a simulation definition. The total cost E is given by

where Ev and Ea are contribution controlling the cost of volume and surface changes, Eb 

determines the contribution of receptor binding between adjacent membranes and Ec 

represents a phenomenological term that penalizes small thin protrusions. These terms are 

defined in detail below. Their proportionality constants have been chosen to result in 

realistic behavior of the E-cadherin receptor mediated adhesion model for relative strengths 

close to one.

Additional user defined terms can be added through the programming interface (API), by 

deriving a new class from the PottsTerm-class and reimplementing its extendCost(Cube 

* c, DIRECTION d) and retractCost(Cube * c) methods as illustrated by the 

PottsTermExample class in the smun_PottsTerm.h header file. An implementation 

example is provided in the file “PottsExample.cpp”.
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The volume term models the effects of an impermeable cell membrane. The potential energy 

of a cell with volume V and equilibrium Volume V0 is proportional to the squared volume 

difference. The energy cost for osmotic swelling of the cell, given the new Vnew and old 

Vold cell volumes, is thus

where Ve is the volume of a single volume element, n the number of volume elements, and 

n0 the number of volume elements at which the cell is in equilibrium.

The Volume V0 is specified as a fraction of the initial cell volume. This is done through the 

“CellDesigner” user interface. In the case of the E-cadherin model the fraction equals one, 

thus the cell is in equilibrium at the start of the simulation, with a relative strength sv=1.

The area term models energy cost of changes to the cells surface area. The area change ΔA 

is approximated by change of the area of the surface of the subset of the cubic grid that is 

covered by the cell

with Δs=s-s0 being the change of the number of surface elements and Ae the area of a single 

surface element. In analogy to the Volume term we model the energy cost for extending the 

membrane out of it's relaxed state by a harmonic potential. The energy cost for changing the 

morphology is thus

The number of surface elements of the relaxed membrane is specified as a fraction of the 

initial cell surface analogous to the relaxed volume. Setting the relaxed fraction to a value 

different from one allows the user to model phenomena such as the opening of membrane 

reservoirs. The relaxed surface of the cells used in the E-cadherin model equals their initial 

surface, the area term has a relative strength sa=1/2.

The binding term models the energy cost of adhesion due to the breaking of intercellular 

bonds due to changes of the morphology. The contribution of each type of bond is 

proportional to the number of bonds that are broken by the morphology change

where the first sum is over all surface elements that are removed and the second sums over 

all intercellular bonds. The area of a surface element is given by ASurface and the surface 

concentration of a bond type by CBond. Only bonds that are marked as trans in the model 

specification can be used as bonds that enter the adhesion term, the relative strength of the 

adhesion term is specified together with the other potts term during the setup of a 
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simulation. Naming the binding sites in the components of the interacting molecules 

specifies bonds. The E-cadherin model has only one type of binding that can enter as a 

binding term; the trans interaction of the E-cadherin molecules, which is given a relative 

strength sb=2.

The bending resistance of the cell membrane is modeled by a phenomenological term that 

depends only on the number of direct neighbors of the changing volume element. The 

relative cost for extending a volume element is Erel={1, 0, −1, 10, −25} with one to five 

neighbors. This penalizes the formation of small, thin extensions while it favors closing of 

small invaginations. The cost terms for retracting a volume element have the opposite cost 

favoring the retraction of a small protrusion while penalizing the formation of invaginations. 

The asymmetric nature of the cost terms allow the cell to sample its surroundings while 

keeping the cell's surface from becoming very rough. The only parameter of this purely local 

term is its relative contribution to the total cost E. For the E-cadherin model we chose the 

relative contribution sc=1/2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Automated spatially-resolved generation of reaction networks to simulate cellular 
signaling in realistic morphologies
a) The schematic illustrates that non-spatial ‘rule-based’ modeling methods can generate 

signaling networks based on pairwise molecular interactions but cannot take into account the 

specific localizations of the molecules. Automatically-generated non-spatial networks would 

have to be translated manually (‘imported’) into reaction-diffusion networks and then 

inserted into the simulated space by assigning molecular species to specific locations. Non-

rule-based spatial simulation tools, on the other hand, allow users to define simulated 
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geometries and simulate pre-defined reaction-diffusion networks within them. Extending the 

latter simulations to dynamic morphologies or to spatial simulations of highly complex 

reaction networks is, however, not possible because the reaction-diffusion networks must be 

fully specified prior to performing the spatially-resolved simulation. b) Simmune’s spatially-

resolved automated network generator permits the definition of reaction networks based on 

molecular interaction rules and then generates and simulates reaction-diffusion networks 

while adapting them to potentially dynamic cellular morphologies such as shown here for 

the simulation of cell-cell contact formation.
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Figure 2. From non-spatial to spatial representations of E-cadherin interactions
a) E-cadherin receptors can interact in cis (within one membrane) and in trans (linking two 

adjacent membranes). b) The schematic shows the E-cadherin reaction network assuming 

one cis- and one trans- binding site per receptor, without taking into account the membrane 

localization of the receptors. The roman numerals V, VI, VII label complexes for the 

discussion in Supplementary Note 2. Reactions in cis are represented by blue arrows, 

interactions in trans by orange arrows. Associations between identical components are 

labeled ‘self’.c) The schematic shows the consequence of embedding the network of (b) into 
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the spatial context of two adjacent membranes. The solid lines indicate reaction possibilities 

(blue: cis, yellow: trans), the dotted arrows connect initial and resulting complexes for 

association reactions. For example, complex (1) can associate with (4) (as indicated by a 

solid yellow line between (1) and (4)) to form (6) (dotted arrow from (1) to (6)). The color 

gradients of the E-cadherin molecules (ranging from green to blue or from purple to blue) 

indicate that the complexes are treated as embedded in two adjacent membranes; blue 

indicates the intercellular domains. The number labels correspond to the numbering of the 

differential equations in Supplementary Note 2b.
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Figure 3. Automatic creation of an E-cadherin trimer for a membrane contact reaction network
The depicted flow diagram illustrates how the algorithms that are part of our approach 

automatically create spatially resolved reactions and complexes based on simple user-

provided rules specifying molecular interactions. The membrane of a volume element with 

index i in cell 2 (VE 2_i) contains a monomer that can bind through a cis-interaction to a 

trans-dimer. If no trans-dimer is present in VE 2_i the algorithm will look for the next 

potential interaction partner. If it is present in VE 2_i the algorithm will check whether the 

site capable of mediating the cis-interaction with the monomer is located in VE 2_i (it could 
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be that the trans-dimer has no available cis binding site). If the binding site is available the 

algorithm will determine whether such a trimer (with two molecules located in the 

membrane of VE 2_i and one in the adjacent membrane of VE 1_i) is already represented as 

a complex within the biochemistry of VE 2_i in which case this complex representation will 

be used as the result complex of the association. Otherwise, a result trimer complex will be 

built within the biochemistry of VE 2_i. Since the result trimer also is ‘visible’ in the 

membrane element of VE 1_i it has to be inserted or identified in that reaction network as 

well. Finally, the reaction information is completed by assembling a code for the association 

of the monomer with the trans-dimer resulting in the formation of the trimer as result 

complex and with the reaction rate as specified by the user-supplied association rate between 

the involved binding sites.
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Figure 4. E-cadherin accumulation at static or dynamic cell contacts
a) View of one of the two simulated cells interacting at a static interface with color-coded 

(from blue: low to red: high) local concentrations of E-cadherin. b, c) Experimental data 

showing that interacting cells accumulate fluorescently labeled E-cadherin at the periphery 

of their interfaces (© Rockefeller University Press, 1998. Originally published in J. Cell 

Biol. 142:1105–1119, reproduced with permission). Scale bar, 15 microns. Panel (c) shows 

the fluorescence line profile along the length of the cell-cell interface. d) The plot shows 

simulated E-cadherin density at the cell-cell interface (after 30 minutes of contact) with 
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varying lifespan (1–100 seconds) of the cis interaction within E-cadherin complexes. For a 

lifespan of 100 seconds, both a static and dynamic interface are shown. e, f) Cell-cell contact 

after 1.5 simulated hours based on cellular Potts model dynamics. Panel (f) shows the color-

coded E-cadherin concentration (red: high, blue: low) at the dynamic cellular interface. The 

red line was used to determine the concentration profile shown as the orange curve in part 

(d) of this figure. One voxel has a side length of 1.29 micrometers.
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Figure 5. Experimental and simulated patterns of Fus3 phosphorylation
a, b) The schematic shows the conventional ‘in-scaffold’ activation scheme (a) for Fus3 and 

an alternative activation scheme (b) according to which scaffold-bound Ste7 activates Fus3 

that is not bound to Ste5. Arrows indicate kinase activity. c) Experimentally reported 

concentration profile of Fus3 (© Nature Publishing Group, originally published in Nature 

Cell Biology 9(11):1319–26, 2007, reproduced with permission). d) Yeast cell with Fus3 

accumulation in the shmoo after stimulation with pheromone. Scale bar, 5 microns. (© 

Nature Publishing Group, originally published in Nature Cell Biology 9(11):1319–26, 2007, 
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reproduced with permission). e) Overlay of the simulated concentration profile of 

phosphorylated Fus3 as a function of the distance from the shmoo tip and color-coded 

concentration (from red: high to blue: low) within a central plane through the simulated 

yeast cell. Side length of one square is 0.28 micrometers. f) The schematic shows the 

relative concentrations of the pFus3 producing complexes at the shmoo tip and in the cell 

body (red squares), the relative volumes of the two spatial regions (green squares) and the 

resulting relative contributions to the total pFus3 production (blue squares).
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