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Abstract The nicotinic acetylcholine receptor (nAChR) is a major target of autoantibodies in

myasthenia gravis (MG), an autoimmune disease that causes neuromuscular transmission

dysfunction. Despite decades of research, the molecular mechanisms underlying MG have not been

fully elucidated. Here, we present the crystal structure of the nAChR a1 subunit bound by the Fab

fragment of mAb35, a reference monoclonal antibody that causes experimental MG and competes

with ~65% of antibodies from MG patients. Our structures reveal for the first time the detailed

molecular interactions between MG antibodies and a core region on nAChR a1. These structures

suggest a major nAChR-binding mechanism shared by a large number of MG antibodies and the

possibility to treat MG by blocking this binding mechanism. Structure-based modeling also

provides insights into antibody-mediated nAChR cross-linking known to cause receptor

degradation. Our studies establish a structural basis for further mechanistic studies and therapeutic

development of MG.

DOI: 10.7554/eLife.23043.001

Introduction
The nicotinic acetylcholine receptor (nAChR) at the neuromuscular junction (NMJ) is a ligand-gated

ion channel that mediates rapid signal communication between spinal motor neurons and the muscle

cells. This receptor is also a major target of autoimmune antibodies in patients with myasthenia

gravis (MG), an autoimmune disease that afflicts more than 20 in 100,000 people (Lindstrom, 2000;

Vincent et al., 2001). MG is the first and, so far, only autoimmune disease with well-defined autoan-

tigen target; the binding of nAChR by MG antibodies leads to complement-mediated lysis of the

postsynaptic structure and internalization of the receptor, thereby disrupting neuromuscular trans-

mission (Engel and Arahata, 1987; Drachman et al., 1978; Gomez et al., 2010). The majority of

MG cases can be diagnosed by the detection of autoantibodies to human muscle nAChR, and cur-

rent treatment options include the use of acetylcholine esterase inhibitors, non-specific immunosup-

pressive drugs, plasmapheresis and thymectomy. Most of these treatments are for symptomatic

control except for thymectomy that may lead to disease remission. Other therapeutic approaches to

treating MG, such as nAChR-specific immunosuppressive therapy (Luo and Lindstrom, 2015), need

to be explored.

The autoimmune nature of MG was first suggested by the discovery of experimental autoimmune

myasthenia gravis (EAMG) induced in rabbits immunized with nAChR purified from Electrophorus
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electricus (Patrick and Lindstrom, 1973). Subsequent studies with passive transfer of MG patient

serum or purified nAChR antibodies to induce EAMG further established nAChR antibodies as the

major pathological agents of MG (Toyka et al., 1975; Lindstrom et al., 1976). In fact, more than

85% of MG patients carry nAChR antibodies (Lindstrom, 2000; Vincent et al., 2001;

Meriggioli and Sanders, 2009). However, the total amount of nAChR antibodies in the serum of

MG patients does not seem to correlate with disease severity, suggesting that various nAChR anti-

bodies that bind different regions on nAChR may contribute differently to this disease (Som-

nier, 1993; Berrih-Aknin, 1995; Mossman et al., 1988; Tzartos et al., 1998).

Mammalian muscle nAChR has a pentameric structure composed of two a1, one b1, one d, and

one e (adult form) or g (fetal form) subunit(s) (Unwin, 2005). Extensive studies suggest that antibod-

ies to a1 play a major role in MG pathology (Sideris et al., 2007; Tzartos et al., 2008,

1987; Kordas et al., 2014). Furthermore, more than half of all autoantibodies in MG and EAMG

bind an overlapping region on the nAChR a1 subunit, known as the main immunogenic region (MIR)

(Tzartos et al., 1998). The MIR is defined by the ability of a single rat monoclonal antibody (mAb),

mAb35, to inhibit the binding of about 65% autoantibodies from MG patients or rats with EAMG

(Tzartos and Lindstrom, 1980; Tzartos et al., 1982, 1983). Subsequent studies have mapped MIR

to a peptide region that spans residues 67–76 on nAChR a1 (Barkas et al., 1988; Tzartos et al.,

1988). Monoclonal antibodies directed to the MIR can passively transfer EAMG and possess all the

key pathological functions of serum autoantibodies from MG patients (Tzartos et al., 1987). More-

over, a recent study showed that titer levels of MIR-specific antibody from MG patients, rather than

the total amount of nAChR antibodies, correlate with disease severity (Masuda et al., 2012). These

observations suggest that antibodies binding to the MIR on nAChR a1 play a major role in the path-

ogenesis of MG (Tzartos et al., 1998).

The myasthenogenic role of nAChR was established more than four decades ago. Since then,

extensive efforts have been put into characterizing the interactions between MG antibodies and

nAChR using biochemical (Barkas et al., 1988; Tzartos et al., 1988; Das and Lindstrom, 1989;

Saedi et al., 1990; Papadouli et al., 1990, 1993; Luo et al., 2009; Morell et al., 2014), structural

(Dellisanti et al., 2007a; Beroukhim and Unwin, 1995; Kontou et al., 2000; Poulas et al., 2001),

and modeling approaches (Kleinjung et al., 2000). These studies aimed to understand the basic

mechanisms of MG and also the structure/function of nAChR in order to develop effective diagnosis

and treatment for MG. However, exactly how antibodies bind and functionally affect nAChR has not

eLife digest Myasthenia gravis is a disease that causes chronic weakness in muscles. It affects

more than 20 in every 100,000 people and diagnosis is becoming more common due to increased

awareness of the disease. However, most current treatments only temporarily relieve symptoms so

there is a need to develop more effective therapies.

The disease occurs when the immune system produces molecules called antibodies that bind to

and destroy a receptor protein called nAChR. This receptor is normally found at the junctions

between nerve cells and muscle cells, and its destruction disrupts communication between the

nervous system and the muscle. However, it is not known exactly how these antibodies bind to

nAChR, partly due to the lack of a detailed three-dimensional structure of the antibodies and nAChR

together.

The human nAChR protein is made up of several subunits, including one called alpha1 that is the

primary target of Myasthenia gravis antibodies. Noridomi et al. used a technique known as X-ray

crystallography to generate a highly detailed three-dimensional model of the structure of the alpha1

subunit with an antibody from rats that acts as in a similar way to human Myasthenia gravis

antibodies. The structure reveals the points of contact between the antibodies and a core region of

the nAChR alpha1 subunit and suggests that many different Myasthenia gravis antibodies may bind

to nAChR in the same way.

These findings may aid the development of drugs that bind to and disable Myasthenia gravis

antibodies to relieve the symptoms of the disease.

DOI: 10.7554/eLife.23043.002
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been fully elucidated since no high-resolution structure of the complex between MG antibodies and

nAChR was available. Here we describe the first crystal structure of muscle nAChR a1 subunit bound

by an EAMG antibody at 2.61 Å resolution and present detailed analyses of the molecular interac-

tions in myasthenia gravis. These structural analyses, in the context of the large amount of biochemi-

cal and functional data from previous MG research, provide unprecedented insights into the

molecular mechanisms of MG and a basis for developing more effective diagnosis and treatment for

this debilitating disease.

Results

Crystal structures of the antibody/receptor complexes
mAb35 was chosen for structural analysis because it shares many functional characteristics with

serum antibodies from MG patients and has been used as a reference MG antibody in extensive bio-

chemical and functional studies (Tzartos et al., 1998, 1981). Although mAb35 is derived from rat

immunized with Electrophorus AChR, it competes with more than two thirds of serum antibodies

from MG patients (Tzartos et al., 1982). At the functional level, mAb35 binds complement causing

focal lysis of the postsynaptic membrane, cross-links AChRs thereby increasing their internalization,

and can passively transfer EAMG (Tzartos et al., 1987). To facilitate crystallization, we used the Fab

fragment of mAb35 (Fab35) and also included a-bungarotoxin (a-Btx) to stabilize flexible regions of

nAChR a1 ECD that may hinder crystallization. We used a mutant of nAChR a1 ECD that contains

three stabilization mutations, referred to as a211 as described previously (Dellisanti et al., 2007a).

Although mAb35 does not bind well to the denatured receptor, it has been shown to bind natively

folded nAChR a1 with high affinity (Kd =~2 nM) (Luo et al., 2009). Our native PAGE analysis showed

that nAChR a1 ECD, a-Btx and Fab35 can form a well-defined ternary complex (Figure 1a), and the

ternary complex of Fab35/nAChR a1 ECD/a-Btx was stable during purification by gel filtration. We

obtained ternary complex crystals with both human and mouse nAChR a1 ECD and solved the struc-

tures (2.61 Å and 2.70 Å resolution, respectively) by molecular replacement (Supplementary file 1).

A detailed comparison between the two complex structures is presented in Figure 1—figure sup-

plements 1 and 2. Here, we focus our structural description and analysis on the antibody/receptor

interface, which appears identical between the human and mouse complexes.

The Fab35 binds to nAChR a1 in an upright orientation, away from the a-Btx (Figure 1b and c).

The Fab35 binding sites on nAChR a1 include the MIR and the N-terminal helix; the buried solvent

accessible area of the complex is 899 Å2. Fab35 has the canonical IgG antibody structure where the

complementarity determining regions (CDRs) from the heavy chain, CDR-H2 and CDR-H3, and the

light chain, CDR-L3, form the binding site of nAChR a1 (Figure 1d). The interface of their interaction

is characterized by mutual insertion of loops into pockets of binding partners. On the receptor side

(Figure 2a), the MIR loop inserts deeply into a surface pocket between the variable domains of the

heavy and light chains (VH and VL), whereas the N-terminal helix sits into a groove on the surface of

the heavy chain. On the Fab35 side (Figure 2b), the CDR-H3 inserts into a surface pocket formed by

the N-terminal helix, the loop following the N-terminal helix, the MIR and the loop preceding the

MIR.

Superposition of the structures of mouse nAChR a1 ECD in the ternary Fab35/nAChR a1 ECD/a-

Btx complex with that in the binary nAChR a1 ECD/a-Btx complex (PDB ID, 2QC1) (Dellisanti et al.,

2007a) shows that the nAChR a1 structure remains the same in the two complex states (Figure 1—

figure supplement 3a). Moreover, the orientation of the side chain of most nAChR a1 residues

involved in Fab35 binding (see below) is similar between the two complexes (Figure 1—figure sup-

plement 3b). This structural comparison suggests that Fab35 recognizes and binds a well-defined

and preformed conformation of the nAChR a1 ECD.

Detailed interactions at the binding interface
Residues from Fab35 and nAChR a1 that are within 4.5 Å from each other at the binding interface

were mapped as contacting residues. As shown in Supplementary file 2, Fab35-binding residues on

nAChR a1 are mostly located on the MIR loop (highlighted in light green in the table) and the N-ter-

minal helix (highlighted in yellow in the table). While the MIR loop extensively interacts with residues

from both the heavy and light chains of Fab35, the N-terminal helix interacts exclusively with
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Figure 1. The ternary complex of nAChR a1 ECD bound by Fab35 and a-Btx. (a) Gel shift assay. Native PAGE

showed the formation of the ternary complex of nAChR a1 ECD, a-Btx and Fab35. Lane 1: nAChR a1 ECD alone

(labeled as a1 ECD), Lane 2: a-Btx alone, Lane 3: Fab35 alone, Lane 4: nAChR a1 ECD plus a-Btx, Lane 5: nAChR

a1 ECD plus Fab35, and Lane 6: nAChR a1 ECD plus a-Btx plus Fab35. Note that a-Btx in Lane 2 and Fab35 in

Lane 3 were not visible because both proteins migrated upward due to their net positive charges under the

experimental condition. (b) Ribbon representation of nAChR a1 ECD (a1: cyan) bound by a-Btx (green) and Fab35

(heavy chain, H: yellow and light chain, L: magenta). The variable domains (VH and VL) and the constant domains

(CH and CL) of Fab35 are indicated accordingly. This color scheme is kept the same throughout illustration unless

noted otherwise. (c) Surface representation of the ternary complex. (d) Zoomed-in view of the binding interface.

The complementarity determining regions (CDRs) of the heavy chain (CDR-H1, CDR-H2, and CDR-H3) are

Figure 1 continued on next page
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residues from the heavy chain. The contacting analysis also revealed several residues on nAChR a1

that make numerous contacts to Fab35. Four such ‘hotspots’ of binding were identified: Asn68 and

Asp71 from the MIR loop and Arg6 and Lys10 from the N-terminal helix. As described below, each

of these four ‘hotspots’ anchors an extensive network of interactions that display remarkable chemi-

cal complementarities (Figure 3). The interface interactions are well defined by electron densities

(Figure 3—figure supplement 1a–e).

Asp71 forms a salt bridge with Arg50 of VH and a hydrogen bond with Tyr95 of VL (Figure 3a).

Asp71 also forms hydrogen bonds with two interfacial water molecules, H2O 4 and H2O 5. H2O 4 in

turn forms hydrogen bonds to the main chain amide of Asn68 of the a1 and the main chain carbonyl

group of Ala103 of VH. H2O 5 in turn forms hydrogen bonds to the main chain carbonyl group of

Tyr91 of VL and the main chain amide of Asn105 of VH. The adjacent Tyr72 can be considered as

part of the Asp71 ‘hotspot’: Tyr72 not only mediates the packing interactions between the MIR loop

and the N-terminal helix but also makes extensive contacts to the antibody, including hydrogen

Figure 1 continued

indicated as H1, H2, and H3, respectively. Those of the light chain (CDR-L1, CDR-L2 and CDR-L3) are indicated as,

L1, L2, and L3, respectively.

DOI: 10.7554/eLife.23043.003

The following figure supplements are available for figure 1:

Figure supplement 1. Key structural features of the human nAChR a1 ECD.

DOI: 10.7554/eLife.23043.004

Figure supplement 2. Structural differences between the human and mouse nAChR a1 ECDs.

DOI: 10.7554/eLife.23043.005

Figure supplement 3. Structural comparison of mouse nAChR a1 ECDs in the ternary complex of Fab35/nAChR

a1 ECD/a-Btx and the binary complex of nAChR a1 ECD/a-Btx.

DOI: 10.7554/eLife.23043.006

Figure 2. Mutual insertion of loops into pockets of binding partners. (a) The MIR loop of nAChR a1 inserts into a surface pocket between the variable

domains of the heavy and light chains (VH and VL) of Fab35 (orange) while the N-terminal helix sits into a groove on the surface of the heavy chain. (b)

The CDR-H3 (H3) from the heavy chain of Fab35 inserts into a surface pocket between the MIR loop and the N-terminal helix on the nAChR a1 ECD.

DOI: 10.7554/eLife.23043.007
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Figure 3. Detailed interactions at the interface between Fab35 and nAChR a1 ECD. (a) Binding interactions at the Asp71 site of a1 (located at the MIR).

(b) Binding interactions at the Asn68 site of a1 (located at the MIR). (c) Binding interactions surrounding Arg6 and Lys10 of a1 (located at the

N-terminus of a1). (d) Binding interactions mediated by His3 of a1 (located at the N-terminus of a1). (e) Binding interactions at the CDR-H3 loop of

Fab35. Interacting residues are represented by stick model and are colored according to their protein subunits. Water molecules are represented by

red spheres.

DOI: 10.7554/eLife.23043.008

The following figure supplement is available for figure 3:

Figure supplement 1. Fo-Fc omit maps of the interface between Fab35 and nAChR a1 ECD.

DOI: 10.7554/eLife.23043.009
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bonding to Ala103 and van der Waals contacts to Trp52, Val58, and Asn105 of VH. At Asn68,

another hotspot site (Figure 3b), the amide group of Asn68 side chain forms three hydrogen bonds

with VL (the carbonyl of Tyr91 main chain and the amide and carbonyl of Gly94 main chain). The side

chain of Asn68 also makes van der Waals contact to Ile92 and Asn93 of VL. Both Asn68 and Asp71

together, extending from the tip of the MIR loop, insert deeply into the antigen-binding site of

Fab35 and make extensive contacts with Fab35 residues.

The N-terminal helix of nAChR a1 engages in extensive interactions with VH of Fab35. These

interactions are centered at Arg6 and Lys10 residues (Figure 3c). The guanidinium head group of

Arg6 forms bidendate hydrogen bonds with Asp54 and cation-p stacking with Trp52 of VH. The ali-

phatic side chain of Arg6 also makes van der Waals contacts to the aromatic ring of Trp52. This

interaction network is extended by the nearby nAChR a1 residues, Lys10 and His3 (Figure 3c and d,

respectively). Lys10 forms salt bridges with Asp53 of VH (Figure 3c); its side chain also makes van

der Waals contacts to numerous VH residues (not shown). His3 makes a water-mediated (H2O 1)

hydrogen bond with Trp52 and van der Waals contact to Val58 of VH (Figure 3d).

An interesting structural feature of the antibody/receptor interface is the insertion of the CDR-H3

loop into a surface pocket on nAChR a1 (Figure 3e). The tip of the CDR-H3 loop, including Arg102

and Ala103, makes extensive van der Waals contacts to the surrounding receptor residues. The gua-

nidinium group of Arg102 is sandwiched by the carboxylic amide of Asn64 side chain and the car-

bonyl of Asp14 main chain of nAChR a1 in a parallel orientation that may favor p-stacking. Arg102

also forms water-mediated (H2O 82) hydrogen bonds with the main chain carbonyl groups of Leu11

and Asn64 of nAChR a1. Adjacent to the CDR-H3 interaction site, Tyr63 of nAChR a1 forms a hydro-

gen bond with Lys50 of the CDR-L2, which is stabilized by a cation-p interaction with Tyr32 of the

CDR-L1. Lys50 of the CDR-L2 also engages in electrostatic interaction with Glu23 of nAChR a1.

These interactions expand the binding interface from the MIR and the N-terminal helix to the loop

region between the N-terminal helix and the b-strand b1 (residues 15–23).

Structural comparisons with other MG mAbs
Whether different MG mAbs bind nAChR through conserved or divergent mechanisms is an impor-

tant question relevant to understanding the disease mechanism and developing therapeutics. To

address this question, we compared the structure of Fab35 with that of two other MG mAbs

(Fab198: PDB ID, 1FN4 and Fab192: PDB ID, 1C5D) (Kontou et al., 2000; Poulas et al., 2001).

Interestingly, superposition of the structure of Fab198 onto that of Fab35 in the ternary complex

shows that these two Fabs share not only a conserved immunoglobulin fold but also a similar anti-

gen-binding site (Figure 4a). As such, the MIR loop fits well into the pocket surrounded by the CDR-

H2, CDR-H3 and CDR-L3 loops of Fab198, as predicated by previous modeling studies

(Kleinjung et al., 2000). The CDR-H2 loop of Fab198 is also in position to interact with the N-termi-

nal helix adjacent to the MIR (Figure 4b). Even more remarkably, many key a1-binding residues in

Fab35 are also conserved in Fab198 and they appear to make similar contacts to nAChR a1 in the

modeled Fab198/nAChR a1 binding interface (Figure 4a and c). These residues include Trp47

(CDR-H2), Arg50 (CDR-H2), and Tyr95 (CDR-L3) at the center of the MIR-binding pocket, and Trp52

and Asp54 (both CDR-H2) which interact with the N-terminal helix. However, in contrast to the

above structural similarities, the CDR-H3 loops between Fab198 and Fab35 differ significantly in

length and sequence (Figure 4b and c). As a result, the CDR-H3 loop of Fab198 is too short to inter-

act with the surface pocket of nAChR a1, which is, in the case of Fab35, occupied by the corre-

sponding CDR-H3 loop (Figure 4—figure supplement 1a). These structural analyses suggest that

mAb35 and mAb198 share a high similarity in binding mechanism to the core MIR/N-terminal helix

region, but differ in the periphery of the binding interface.

On the other hand, superposition of the structure of Fab192 onto that of Fab35 in the ternary

complex reveals substantial differences between them (Figure 4—figure supplement 1b). Although

the constant domains (CH and CL) of these two Fabs align very well structurally, the variable domains

(VH and VL) show a significant rotational twist, such that the MIR loop does not fit into the antigen-

binding site of Fab192 (Figure 4—figure supplement 1b). Moreover, the key a1-binding residues of

Fab35, such as Arg50 and Trp52 of CDR-H2, are not conserved in Fab192 (Figure 4c). This structural

comparison suggests that Fab192 differs significantly from Fab35 in terms of their binding mecha-

nisms to nAChR a1, confirming and extending the differences that were previously recognized

between mAb35 and mAb192 (Luo et al., 2009).
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Antibody-receptor binding specificity
Another important question of clinical and mechanistic relevance is the binding specificity of MG

mAbs to different nAChR subunits and to nAChR a1 from different species. To address the first part

of this question, Fab35-contacting residues were mapped onto aligned sequences of human nAChR

subunits (Figure 5a). A subset of nAChR family members, including a2, a3, a5 and b3, has either

Figure 4. Structural comparisons among MG mAbs. (a) Superposition of Fab198 (Poulas et al., 2001) (heavy chain: purple and light chain: dark green)

onto Fab35 in the Fab35/nAChR a1/a-Btx ternary complex using the Ca backbone. (b) Detailed comparison of the binding interface. The residues are

colored according to their protein subunits. Note that key a1-binding residues in Fab35, including Trp47, Arg50, Trp52 and Asp54 of VH and Tyr95 of VL
are conserved in Fab198, and seem to be able to make similar contacts to nAChR a1 in the modeled interface. The CDR-H3 loop of Fab198 (purple) is

substantially shorter than that of Fab35 (yellow), as indicated by arrows. (c) Structure-based sequence alignment of the nAChR a1-binding loops (CDR-

H2, CDR-H3 and CDR-L3) between Fab35, Fab198 and Fab192 (Kontou et al., 2000). Residues shaded in light green are involved in nAChR a1 binding

in Fab35, some of these (in bold font and colored in red) are conserved in Fab198 or Fab192. Note that Fab35 and Fab198 share a high similarity in

their nAChR a1-binding CDR-H2 and CDR-L3 loops, but differ significantly in CDR-H3. On the other hand, Fab192 differs significantly from Fab35 and

Fab198, especially in the CDR-H2 and CDR-H3 loops (See also Figure 4—figure supplement 1).

DOI: 10.7554/eLife.23043.010

The following figure supplement is available for figure 4:

Figure supplement 1. Structural comparison between Fab35 and Fab198/Fab192.

DOI: 10.7554/eLife.23043.011
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identical or homologous residues at the key Fab35-binding positions. These analyses suggest that

Fab35 and other MIR-directed mAbs may be able to bind these nAChR subunits. On the other hand,

the other nAChR members have divergent sequences at the Fab35-binding sites. For example, the

key Fab35-binding residues in the MIR of nAChR a1, Asn68 and Asp71, are replaced by Asp and

Gln in nAChR a9, respectively. On the N-terminal helix of nAChR a1, the key Fab35-binding resi-

dues, Arg6 and Lys10, are also replaced by Lys and Asp in nAChR a9, respectively. Superposition of

the recently solved structure of the nAChR a9 ECD (PDB ID, 4UY2) (Zouridakis et al., 2014) with

Figure 5. Specificity of antibody-receptor binding. (a) Multiple sequence alignment of the N-terminal a helix (left) and the MIR (right) of human nAChR

family members. The sequence of human nAChR a1 (ha1) in the crystal structure is underlined. Abbreviation follows as t (torpedo) and h (human). The

Fab35-contacting profile for human nAChR a1, indicating how many Fab35 residues are directly contacting with each particular residue of human

nAChR a1, is shown above the sequence. The aligned sequences are colored based on the contacting profile, with red color indicating highly

contacting residues (‘hotspots’). (b) Superposition of nAChR a9 (orange) (Zouridakis et al., 2014) onto the nAChR a1 in the Fab35/nAChR a1/a-Btx

ternary complex showing the disrupted binding interface. (c) Native PAGE showing the binding specificity of Fab35. Lane 1: a211 (labeled as a1), Lane

2: a9, Lane 3: a-Btx, Lane 4: a211 plus a-Btx, Lane 5: a9 plus a-Btx, Lane 6: Fab35, Lane 7: a211 plus Fab35, and Lane 8: a9 plus Fab35. Note that a-

Btx in Lane 3 and Fab35 in Lane 6 were not visible because both proteins are positively charged and migrated upward under the native gel

electrophoresis condition. Lanes with a-Btx were included as positive controls (Lanes 3–5). Lanes 4 and 5 show that both nAChR a1 and a9 bind a-Btx.

Note that the a9/a-Btx complex has a smaller shift than the a1/a-Btx complex. Lanes 7 and 8 show that Fab35 binds a1 but not a9. (d) Multiple

sequence alignment of the N-terminal a helix (left) and the MIR (right) of nAChR a1 from several species along with the Fab35-contacting profile as in

(a). Abbreviation follows as b (bovine), r (rat), m (mouse), c (chicken), t (torpedo) and x (Xenopus).

DOI: 10.7554/eLife.23043.012
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that of the a1 in the Fab35-bound complex showed that the sequence divergence could disrupt

both the shape and chemical complementarity of the binding interface (Figure 5b). Consistent with

the above structural analyses, we have shown by native PAGE that Fab35 indeed binds specifically

to nAChR a1 but not a9 (Figure 5c).

For the second part of the question, a similar structure-based sequence comparison shows that

Fab35-binding residues are conserved in nAChR a1 across a wide range of species (Figure 5d),

which is consistent with the high cross-reactivity of autoantibodies in MG and EAMG between differ-

ent species (Tzartos et al., 1998, 1982; Luo et al., 2009; Gomez et al., 1981). However, in Xeno-

pus nAChR a1-b, Asn68 and Asp71 are substituted by Asp and Lys, respectively. Based on our

ternary structure, such N68D substitution would disrupt the hydrogen bonds between the side chain

amide group of Asn68 and both the main chain carbonyl of Tyr91 and Gly94 in the CDR-L3

(Figure 3b). In addition, the D71K substitution would introduce positive charge repulsion with Arg50

in the CDR-H2 and numerous steric clashes (Figure 3a). Consistent with these structural observa-

tions, previous studies have shown that Xenopus nAChR a1 indeed does not bind Fab35

(Saedi et al., 1990).

Models of higher-order antibody-receptor structure
The nAChR receptors are pentamers of identical or homologous subunits. To see how neighboring

subunits to the a1 may affect the antibody-receptor interactions, we analyzed the binding of Fab35

to a nAChR pentamer by structure-based modeling using our previously solved structure of the a7/

AChBP chimera (PDB ID, 3SQ9, 3.1 Å resolution) (Li et al., 2011) as the nAChR ECD pentamer

(Figure 6a and b). This model suggests that Fab35, by binding to the extruding tip of an a1 subunit,

makes no direct contact to the neighboring subunits. Moreover, Fab35 binds nAChR a1 at a site

that is far away from the ligand-binding site, consistent with the observation that MIR-directed anti-

bodies generally do not affect the channel function (Tzartos et al., 1981; Gomez et al., 1981;

Tamamizu et al., 1996).

We also modeled the binding of a complete mAb35 (Fab+Fc) to the full-length nAChR pentamer

using the structure of an intact IgG1 (PDB ID, 1IGY) (Harris et al., 1998), which is the same IgG1

subtype as mAb35, and the Torpedo AChR pentamer (PDB ID, 2BG9, 4 Å resolution) (Unwin, 2005)

or the human a4b2 nicotinic receptor (PDB ID, 5KXI, 3.94 Å resolution) (Morales-Perez et al., 2016)

as templates. The model built on the Torpedo AChR (Figure 6—figure supplement 1a) is very simi-

lar to that built on the a4b2 nAChR (Figure 6c). The primary differece between the models is that

the N-terminal helix of the a1 subunit in the Torpedo AChR appears to adopt a different orientation

from the conserved conformation adopted by the corresponding helix in a number of nAChR struc-

tures (Unwin, 2005; Dellisanti et al., 2007a; Morales-Perez et al., 2016). The source of this struc-

tural difference is currently unknown but our analysis shows that it has little effect on the overall

structure of the modeled full antibody-receptor complex. The modeled complex structure shows

that the antibody is projected away from the central pore of the receptor, consistent with previous

EM analyses (Beroukhim and Unwin, 1995). After putting all of the molecular components on

proper scale and orientation, our model of the full-length antibody/receptor complex suggests that,

as a result of steric and geometric constraints, the two Fabs from a single mAb35 antibody are

unable to bind to the two a1 subunits within the same nAChR pentamer (Figure 6c). Consequently,

MG antibodies will bind two a1 subunits from different pentamers, thereby cross-linking the

nAChRs. Our modeling analyses are consistent with previous sucrose density gradient studies show-

ing that mAb35 and similar mAbs cannot bind the two a1 subunits within the same pentamer but

can cross-link adjacent nAChR pentamers (Conti-Tronconi et al., 1981). Considering that each mus-

cle nAChR pentamer contains two a1 subunits and the relatively high density of nAChRs at the post-

synaptic membrane, such inter-pentamer cross-linking mediated by MG antibodies could lead to a

super high-order of antibody/receptor complex at the neuromuscular junction. Previous studies have

shown that the binding of nAChR by the divalent MG antibodies rather than the monovalent Fab

fragment leads to accelerated degradation of the receptor proteins (Drachman et al., 1978). This

observation suggests that cross-linking of the nAChRs is a critical step in receptor degradation. Our

analyses suggest that receptor cross-linking is an intrinsic property of mAb35 and mAb35-like MG

antibodies. This cross-linkig could lead to the formation of large antibody-receptor complexes that

disrupt the structure and function of the neuromuscular junction and induce the degradation of the

nicotinic receptor proteins.
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Discussion
Our crystal structure of Fab35 bound to the nAChR a1 ECD provides the first atomic view of the

detailed interactions between an EAMG antibody and the nAChR. Our structure reveals that the

MIR loop inserts deeply into the antigen-binding pocket of Fab35 and that the adjacent N-terminal

helix makes extensive contacts with the CDR-H2 loop of the heavy chain. The binding interface struc-

ture and detailed interactions observed in the crystal can be cross-validated with existing biochemi-

cal data. Earlier studies mapped the core region of MIR to residues 67–76 (Barkas et al., 1988;

Tzartos et al., 1988; Das and Lindstrom, 1989). More recent studies using natively folded nAChR

a1/a7 chimera proteins (Luo et al., 2009) or GFP-fused protein fragments (Morell et al., 2014)

showed that the N-terminal helix (residues 1–14) is also important for high-affinity MG antibody

binding. These studies further indicated that other regions of nAChR, including the loop following

helix 1 (residues 15–32) (Luo et al., 2009) and the b5-b6-loop packing against the MIR (residues

Figure 6. Modeling the binding of Fab35 to a nAChR pentamer. (a) Superposition of the Fab35/nAChR a1 ECD/a-Btx ternary complex on one subunit

of the a7/AChBP chimera pentamer (blue) (PDB ID, 3SQ9) (Li et al., 2011) using the Ca backbone of ECDs as the reference. (b) Zoomed-in view of the

contact between Fab35 and a7/AChBP Chimera. Fab35 makes no direct contact to the neighboring subunits in the pentamer. (c) Binding of a complete

antibody (Fab+Fc) to a nAChR pentamer. The ternary Fab35/nAChR a1 ECD/a-Btx complex structure was used to guide the docking of an intact IgG1

antibody (PDB ID, 1IGY) (in surface model) (Harris et al., 1998) onto the human a4b2 nicotinic receptor (PDB ID, 5KXI, 3.94 Å resolution) (Morales-

Perez et al., 2016). The two Fab domains (Fab-I and Fab-II) and the Fc region of IgG1 are indicated as shown. Each heavy chain is colored as blue and

cyan. Each light chain is colored as yellow and orange. ECD of nAChR a1 is shown in magenta.

DOI: 10.7554/eLife.23043.013

The following figure supplement is available for figure 6:

Figure supplement 1. Modeling the binding of a complete MG mAb to full-length nAChR(s).

DOI: 10.7554/eLife.23043.014
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110–115) (Morell et al., 2014), also contribute to the binding of some MG antibodies. Our struc-

tures reveal that the antibody-receptor binding interface indeed centers on the MIR and the N-termi-

nal helix and also includes peripheral regions such as residues 15–23. Although the b5-b6-loop

(residues 110–115) does not contact Fab35 in our structure, it may contribute to antibody binding

indirectly by maintaining the natively folded structure of MIR (Morell et al., 2014).

Specific residues on MIR (Papadouli et al., 1990, 1993; Bellone et al., 1989) and the N-terminal

helix (Morell et al., 2014) have also been analyzed using peptide/protein fragments containing

mutations at specific positions for their roles on MG antibody binding. These studies showed that

Asn68 and Asp71 of MIR are essential for MG antibody binding while the surrounding residues

including Pro69 and Tyr72 showed partial effect when mutated. The essential role of Asn68 and

Asp71 was further confirmed by site-directed mutagenesis of N68D and D71K in the intact receptor

(Saedi et al., 1990). On the N-terminal helix of Torpedo nAChR a1, two exposed residues, Arg6

and Asn10, which correspond to Arg6 and Lys10 in human nAChR a1, respectively, are found to be

critical to MG antibody binding by mutational analyses (Morell et al., 2014). Most of the nAChR res-

idues found to be essential for antibody binding by mutagenesis studies, including Asn68 and Asp71

from the MIR and Arg6 and Lys10 from the N-terminal helix, indeed correspond to interaction ‘hot-

spots’ at the Fab35/nAChR a1 interface. These ‘hotspot’ residues anchor multiple interaction net-

works at the interface and make extensive contacts to the antibody. Although biochemical mapping

of antibody-binding residues on nAChR a1 were performed with different antibodies (e.g. mAb210

and mAb132A) (Barkas et al., 1988; Tzartos et al., 1988; Das and Lindstrom, 1989; Saedi et al.,

1990; Papadouli et al., 1990, 1993; Luo et al., 2009; Morell et al., 2014), it is remarkable that

these biochemical data agree so well with our crystal structure, suggesting that many MIR-directed

antibodies may share high similarities in their binding sites on the nAChR. It has been suggested

that EAMG and MG antibodies may bind epitopes different from MIR and that these MG antibodies

may be competed off by mAb35 through steric effect rather than direct epitope competition

(Luo et al., 2009). Our structures (Figure 1 and Figure 6c) indeed support this possibility, which is

represented by mAb192 (also see below). However, our structural analyses also reveal that many

MIR residues at the center of the antibody-receptor are important for the high affinity binding of a

variety of MG antibodies (e.g., mAb35, mAb210, and mAb132A). This is a rather surprising finding

given the potential heterogeneity of nAChR antibodies mentioned above. An important implication

of this finding is that molecular mimicries of the MIR and its immediate surrounding regions could be

developed to bind a significant fraction of MIR-directed MG autoantibodies. Such molecules could

be useful leads for developing diagnostics and therapeutics for MG (Tzartos et al., 1998;

Masuda et al., 2012; Sophianos and Tzartos, 1989).

MIR-directed antibodies display a wide range of binding properties. Some such antiboies (e.g.

mAb35) exclusively bind natively folded receptor and others (e.g. mAb210) are also capable of bind-

ing denatured receptor or isolated MIR peptides (Luo et al., 2009; Morell et al., 2014). The binding

mechanisms between different MG antibodies may have subtle or significant differences. Our com-

parative structural analyses indicate that Fab35 and Fab198 share highly similar binding mechanisms

to nAChR a1, especially in the MIR/N-terminal helix core region. On the other hand, Fab192 seems

to have very different nAChR-binding mechanisms from Fab35 and Fab198 even though Fab192 can

be competed off by mAb35 through steric effect. Most MIR-directed mAbs, such as mAb35, bind

preferably to folded receptors. Our structure shows that the complete epitope consists of two sepa-

rated peptide regions (the MIR loop and the N-terminal helix) that are required to fold together

properly for optimal binding. These structural observations are consistent with previous studies of

chimeras and mutants showing that the native conformation of the MIR that permits binding of

mAbs 35 and 198 depends on the interaction of the N-terminal helix with the MIR loop (Luo et al.,

2009; Dellisanti et al., 2007a). Moreover, for mAb35, a significant amount of binding energy may

derive from the insertion of its CDR-H3 loop to the surface pocket on nAChR a1, whose structure

can only form in the natively folded receptor. This unique feature of mAb35 is consistent with the

observation that mAb35 is particularly conformation sensitive in binding to nAChR a1 (Luo et al.,

2009).

Our modeling analyses indicate that neighboring subunits in the nAChR pentamer do not make

direct contact to Fab35, suggesting that the binding interactions observed in our crystal structures

represent most, if not all, of those in the native complexes between mAb35 and the full-length

nAChR pentamer. However, it is known that antibodies in MG serum and mAbs bind mature and
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pentameric nAChR more tightly than the unassembled nAChR a1 monomer (Luo et al., 2009;

Merlie and Lindstrom, 1983; Conroy et al., 1990), and there is evidence that MIR plays an impor-

tant role in initiating conformational maturation of subunits prior to their assembly into pentameric

AChR receptors (Luo et al., 2009). Structural differences between monomeric a1 and a1 in a muscle

nAChR heteropentamer could account for the different binding affinities. Although the N-terminal

helix of the a1 subunit in the full length Torpedo nAChR has a significantly different orientation from

that in the monomeric mouse/human a1 crystal structures (Unwin, 2005; Dellisanti et al., 2007a), it

is not clear if this structural difference, which may be due to the limited resolution (4 Å) of the full

length Torpedo nAChR, is realistic and hence responsible for the different binding affinities. How-

ever, we cannot rule out the possibility that subtle structural differences between the monomeric

and pentameric forms of mammalian nAChR a1 could affect the binding affinity, especially for MG

autoantibodies, like mAb35, that are particularly conformation sensitive. Furthermore, the mono-

meric a1 may be more dynamic than its counterpart in the fully assembled pentamer, and the con-

formational flexibility could reduce the binding affinity through entropic effects.

Our studies reveal two structural insights into the antibody-nAChR interaction that may have

important mechanistic and clinical implications. The first is the conservation of the key Fab35-binding

residues in a number of nAChR family members, including a2, a3, a5 and b3. This observation sug-

gests potential cross-reactivity of a1-derived MG antibodies to these nAChR family members. As dis-

cussed above, because many MIR-directed mAbs share the same binding residues on nAChR a1,

this cross-reactivity may not be limited to mAb35, but can also occur among other MG autoantibod-

ies. Consistent with this notion, it has been shown that some MG mAbs bind neuronal nAChR subu-

nits. mAb35 was shown to bind chicken nAChR a3 and also suggested to bind human a2, a3, a5

and b3 (Conroy and Berg, 1995). Another MIR-directed antibody, mAb210, has been used to bind

human a5 and b3 (Kuryatov et al., 2008; Wang et al., 1996). The wide expression and diverse

physiological functions of nAChR members within and outside the neuronal system are being

increasingly recognized, raising an intriguing question whether the cross-reactivity of nAChR with

autoantibodies has broader pathological effects than currently recognized.

The second is the structural basis of antibody-mediated receptor cross-linking. Our crystal struc-

tures reveal a well-defined orientation of the bound antibody with respect to the receptor due to

the relatively rigid binding interface. Based on this structural feature, we modeled the complex of

full-length nAChR pentamer bound by the intact MG antibody, which suggests that MG antibodies

are unlikely to bind the two a1 subunits within the same muscle nAChR pentamer, but rather two a1

subunits from different pentamers, thereby cross-linking the nAChR receptors (Tzartos et al., 1981;

Conti-Tronconi et al., 1981). These modeling analyses provide a structural support for previous

functional observations that MG antibody-mediated nAChR cross-linking accelerates the degrada-

tion of the receptor proteins (Drachman et al., 1978). We further noticed that MG antibodies are

unlikely to bind two nAChR pentamers oriented vertically on a flat membrane surface even when

considering the hinge flexibility of the antibody (Figure 6—figure supplement 1b). Assuming that

the nAChR pentamers in the membrane cannot be tilted freely, a potential effect of antibody-medi-

ated receptor cross-linking is membrane curvature. This raises an intriguing question if such distor-

tion of the membrane structure could play a role in the internalization and degradation of nAChRs at

the neuromuscular junction (Figure 6—figure supplement 1c). While the detailed mechanisms by

which antibody-mediated receptor cross-linking induces the receptor degradation remain to be elu-

cidated, molecular mimicries of the MIR should prevent such cross-linking and degradation of nAChR

by competitive binding to MG antibodies (Sophianos and Tzartos, 1989). Our studies suggest that

it is possible to develop drug molecules to inhibit the binding of a large fraction of MG antibodies

to nAChR and related pathological immune reactions, and the crystal structures presented here pro-

vide a basis for developing such drug molecules.

Materials and methods

Construction of the stabilized nAChR a1 ECD (= a211)
The mouse a211 construct was provided by Dr. Zuo-Zhong Wang, Zilkha Neurogenetic Institute,

Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California.

The detailed construction information is as previously described (Yao et al., 2002). Briefly, a Flag-
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tag and a His-tag were added at the N-terminus and the C-terminus, respectively, for higher expres-

sion and purification purposes. The construct was truncated at the 211th amino acid from the N-ter-

minal of nAChR a1 subunit without a signal sequence, and three point mutations (V8E, W149R, and

V155A) were introduced for improved solubility and stability (Dellisanti et al., 2007a; Chen, 2010).

The human a211 construct was designed based on the mouse a211 construct, and the synthesized

cDNA was ordered from GenScript. The gene codons were optimized for yeast, and cloned into a

pPICZaA vector using the EcoRI and XbaI sites.

a211 expression
Both mouse and human a211 constructs were linearized by digesting with SacI restriction enzyme

(New England Biolabs) and transformed into KM71H of P. pastoris (Invitrogen) by electroporation.

The transformants were plated on YPDS plates, which contained 100 mg mL�1 Zeocin. Plates were

incubated at 30˚C for 3–5 days until colonies formed, and several colonies were restreaked on fresh

YPDS plates. Pre-inoculation was made by seeding a single colony in 30 mL BMGY medium. The cul-

ture was incubated at 30˚C with shaking overnight. About 5–7 mL of this culture was used to inocu-

late 500 mL of BMGY in a 2 L baffled flask (total 2 L of culture). The inoculated culture was

incubated at 30˚C with shaking to OD600 value of 6. Cells were harvested by centrifugation at

3000�g for 15 min at room temperature. The supernatant was discarded, and cell pellets were

resuspended in 400 mL of BMMY medium for induction. The resuspended culture was divided

between two 2 L baffled flasks (200 mL each) and incubated at 20˚C with shaking for 72 hr. 100%

methanol was added every 24 hr to a final concentration of 0.5% (v/v) to induce protein expression.

After 72 hr of induction, cells were harvested by centrifuging at 6000�g for 20 min at room temper-

ature. Protein purification proceeded with the supernatant as the protein was secreted.

a211 purification
Ni-NTA agarose beads (QIAGEN) were incubated with the supernatant at 4˚C overnight with end-

over-end rotation. The protein was eluted with elution buffer (50 mM NaH2PO4, pH 7.8, 0.5 M KCl,

10% (v/v) glycerol, and 500 mM imidazole) after washing with washing buffer containing 20 mM

imidazole and 0.1% Triton X-100 to remove loosely bound proteins. The eluted protein was concen-

trated and ran over a size exclusion column (Superdex 75 10/300 GL, GE Healthcare) with 20 mM

HEPES, pH 7.5 and 150 mM NaCl buffer for further purification. After each peak fraction was ana-

lyzed by OD280 measurement and SDS-PAGE, fractions containing a211 were pooled and concen-

trated for further experiments.

Cell culture and reagents for mAb35
Hybridoma cells of mAb35 were purchased from American Type Culture Collection (ATCC). The cells

were maintained in DMEM medium containing 1.97 g L�1 NaHCO3 and 10% fetal bovine serum

(FBS). The cells were cultured in a 37˚C incubator with 5% CO2 and subcultured every 2 to 3 days

with cell density between 1 � 105 and 1 � 106 cells mL�1. For protein production, the cell culture

was incubated at 37˚C for several days until the medium color changed to yellow.

mAb35 purification
After 7–10 days of incubation at 37˚C, the cell culture was harvested by centrifuging at 6000�g for

15 min. Affinity purification was performed using Protein G Sepharose 4 Fast Flow (GE Healthcare).

The supernatant and beads were incubated at room temperature for 2 hr with rotation. The beads

were washed with washing buffer (20 mM sodium phosphate, pH 7.0), and the protein was eluted

with elution buffer (0.1 M glycine-HCl, pH 2.7). Due to the low pH of the elution buffer, a neutralizing

buffer (1 M Tris-HCl, pH 9.0) was added to the collection tubes (60 to 200 mL mL�1 elute) prior to

collection. After checking the presence of the protein with SDS-PAGE gels, the protein elution was

concentrated and ran over a size exclusion column (Superdex 200 10/300 GL, GE Healthcare). The

fractions of protein peak were pooled and concentrated for further study.

mAb35 digestion and Fab35 purification
Purified mAb35 was buffer-exchanged into digestion buffer (20 mM sodium phosphate, pH 7.0, 10

mM EDTA and 20 mM cysteine-HCl; adjust pH to 7.0 right before use) using Zeba Spin columns
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(Thermo Scientific), and the resulting sample was incubated with immobilized papain beads (Thermo

Scientific). The sample was rotated at 30˚C overnight, and the flow through was collected. The pro-

tein was identified by SDS-PAGE, and then the sample was concentrated down to ~500 mL while

exchanging buffer to Mono Q Buffer A (20 mM sodium phosphate, pH 7.0). An anion exchange col-

umn (Mono Q HR 5/5, GE Healthcare) was used to separate the Fab portion from the rest using a

salt gradient of 0–100% Buffer B (20 mM sodium phosphate, pH 7.0 and 1 M NaCl). Fab fractions

(Fab35) were collected and concentrated for gel shift assay and a211 complex purification.

Gel shift assay
a211, a-bungarotoxin (a-Btx) and Fab35 were mixed in an equimolar ratio, and the mixture was

incubated on ice for 1 hr. For the binding specificity experiment, a9-3Mut, which contains three

point mutations (V189W, S191F and G193S) in the loop C that were designed to enhance the bind-

ing of a-Btx, was prepared in the same manner as a211 (Kaori Noridomi, Ph.D. dissertation, Univer-

sity of Southern California, 2015). A 10% native PAGE gel was run at 4˚C for 3.5 hr at 100–120

V, ~15 mA, with 1� TBE buffer. Bands were detected with Coomassie Blue staining.

The a211/Fab35/a-bungarotoxin complex purification
a211, a-Btx and Fab35 were mixed at a 1:1.5:1.5 molar ratio, and the mixture was incubated on ice

for 1 hr. Ni-NTA purification was performed to remove excess a-Btx and Fab35. The elution was run

over a size exclusion column (Superdex 200 10/300 GL, GE Healthcare) with 20 mM HEPES, pH 7.5

and 150 mM NaCl buffer. Two peaks were obtained, and fractions of each peak were pooled sepa-

rately and concentrated for crystallization.

Crystallization and X-ray diffraction data collection
The purified and concentrated ternary complex of a211 (both mouse and human)/Fab35/a-Btx was

diluted to 2.5 mg mL�1. Crystals were screened using Crystal Screen, Crystal Screen 2 and Index kits

(Hampton Research) by a hanging drop method at room temperature. Each reservoir contained 0.5

mL of screening solution, and each drop contained 0.5 mL of protein and 0.5 mL of reservoir solution.

Three conditions gave initial hits, and one condition was selected to optimize a crystallizing condi-

tion. The optimized condition was 0.1 M sodium cacodylate trihydrate, pH 6.5, 0.1–0.15 M calcium

acetate hydrate and 18–20% (w/v) PEG 8K. Rod-shaped crystals were grown as bundle with the size

of 10 mm � 20–100 mm � 200 mm. Crystals were harvested using harvest solution (0.2 M calcium ace-

tate hydrate, 0.1 M sodium cacodylate trihydrate, pH 6.5 and 30% (w/v) PEG 8K) and cryo-solution

(harvest solution +20% glycerol) as follows. Crystals were transferred to different concentrations of

harvest/cryo mixture solution to protect crystals from osmotic shock (in order of 100% harvest solu-

tion, 3:1 harvest/cryo solution, 1:1 harvest/cryo solution, 1:3 harvest/cryo solution and 100% cryo

solution). Each incubation time was approximately 5–10 min. The cryoprotected crystals were fished

using 100-300 mm Hampton CryoLoop (Hampton Research) and flash-cooled in liquid nitrogen.

Diffraction data were collected at the Advanced Photon Source (APS) beamline 23-ID-B at

Argonne National Laboratory using a 10 mm � 10 mm beam (l = 1.0332 Å, 12.000 keV) with the

attenuation factor of 5.0 and a MARmosaic 300 CCD detector. The detector distance was 300.0

mm. The oscillation range and the exposure time per frame were 0.5˚ and 2.0 s, respectively. Data

were processed and scaled using HKL2000 package (Otwinowski and Minor, 1997). Both human

and mouse complex crystals belong to the space group C2, with unit cell dimensions of a = 160.0 Å,

b = 42.1 Å, c = 136.5 Å, b = 117.1˚; and a = 159.9 Å, b = 42.0 Å, c = 137.6 Å, b = 116.5˚, respec-
tively. The crystal structures were solved by molecular replacement using PHASER MR

(McCoy et al., 2007) in CCP4 (Collaborative Computational Project Number 4, 1994) and the

coordinates of a211/a-Btx complex (PDB ID, 2QC1) and Fab198 (PDB ID, 1FN4, modified to poly-

Ala) (Dellisanti et al., 2007a; Poulas et al., 2001). Refmac5 was used for the final refinement of the

structures (Murshudov et al., 2011, 1997). The amino acid sequence of mAb35 was obtained from

an antibody sequencing company, MCLAB Molecular Laboratories (San Francisco, CA), and the

sequence of Fab35 was added using Coot (Emsley et al., 2010). Additional model building in Fab35

was carried out with O (Jones et al., 1991). Crystallographic analysis and refinement statistics are

summarized in Supplementary file 1.
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Accession numbers
Coordinates and structure factors have been deposited in the Protein Data Bank under accession

codes PDB: 5HBT (Fab35/human nAChR a1 ECD/a-Btx) and 5HBV (Fab35/mouse nAChR a1 ECD/a-

Btx).
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