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Abstract

Background: Cystic fibrosis (CF) is a genetic disease but is greatly impacted by non-genetic 

(social/environmental and stochastic) influences. Some people with CF experience rapid decline, 

a precipitous drop in lung function relative to patient- and/or center-level norms. Those who 
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experience rapid decline in early adulthood, compared to adolescence, typically exhibit less severe 

clinical disease but greater loss of lung function. The extent to which timing and degree of 

rapid decline are informed by social and environmental determinants of health (geomarkers) is 

unknown.

Methods: A longitudinal cohort study was performed (24,228 patients, aged 6–21 years) using 

the U.S. CF Foundation Patient Registry. Geomarkers at the ZIP Code Tabulation Area level 

measured air pollution/respiratory hazards, greenspace, crime, and socioeconomic deprivation. 

A composite score quantifying social-environmental adversity was created and used in covariate-

adjusted functional principal component analysis, which was applied to cluster longitudinal lung 

function trajectories.

Results: Social-environmental phenotyping yielded three primary phenotypes that corresponded 

to early, middle, and late timing of peak decline in lung function over age. Geographic differences 

were related to distinct cultural and socioeconomic regions. Extent of peak decline, estimated 

as forced expiratory volume in 1 s of % predicted/year, ranged from 2.8 to 4.1 % predicted/

year depending on social-environmental adversity. Middle decliners with increased social-

environmental adversity experienced rapid decline 14.2 months earlier than their counterparts 

with lower social-environmental adversity, while timing was similar within other phenotypes. 

Early and middle decliners experienced mortality peaks during early adolescence and adulthood, 

respectively.

Conclusion: While early decliners had the most severe CF lung disease, middle and late 

decliners lost more lung function. Higher social-environmental adversity associated with increased 

risk of rapid decline and mortality during young adulthood among middle decliners. This sub-

phenotype may benefit from enhanced lung-function monitoring and personalized secondary 

environmental health interventions to mitigate chemical and non-chemical stressors.
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1. Introduction

Cystic fibrosis (CF) is a rare genetic disease, but nearly 50 % of the variation in lung 

function is attributable to non-genetic (social, environmental and stochastic) factors (Collaco 

et al., 2010). The crucial role of social and environmental exposures in the development 

and exacerbation of lung diseases such as asthma and chronic obstructive pulmonary 

disease (COPD) is widely acknowledged (Guarnieri and Balmes, 2014; Hansel et al., 

2016; Louisias et al., 2019). Air pollutants can harm lung tissue directly upon exposure 

and indirectly by producing reactive oxygen species and causing systemic inflammation. 

Despite the well-established link between air pollution and respiratory disorders, the impact 

of social and environmental factors on people living with CF remains largely unexplored. 

Furthermore, the effects of social and environmental exposures on CF lung function decline 

have primarily been studied one exposure domain at a time. Examples of two separate but 

frequently studied exposures are air pollution (Blayac et al., 2022) and Medicaid insurance 

use (Schechter et al., 2001). While the former has been linked primarily to pulmonary 
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exacerbation onset (Goeminne et al., 2013; Goss et al., 2004), which is largely driven by 

acute drops in lung function, the latter has often corresponded to prolonged drops in lung 

function (Schechter and Margolis, 1998). Recent tobacco smoke exposure studies using 

pediatric data from the U.S. Cystic Fibrosis Foundation Patient Registry (CFFPR) found 

that first- or second-hand smoking cessation associated with improved lung function over 

time (Oates et al., 2021), and, for individuals treated with tezacaftor/ivacaftor, there was 

dampened benefit from modulator therapy shown by continued divergence in lung function 

trajectories of exposed and unexposed groups (Baker et al., 2021).

The CF lung disease process is typically characterized by acute and prolonged drops in lung 

function. Attenuated decreases in lung function relative to patient- and/or center-level norms, 

clinically termed rapid decline, typically manifest during adolescence and early adulthood 

(Konstan et al., 2007; Vandenbranden et al., 2012). Early rapid decline tends to happen 

in individuals with below-average lung function, infections, poor/deteriorating nutrition, 

increased antibiotic use, and more frequent hospitalizations. Meanwhile, regardless of 

clinical phenotype, lung function trajectories exhibit nonlinear, heterogeneous patterns over 

this age range (Harun et al., 2016; Szczesniak et al., 2013; Vandenbranden et al., 2012). A 

classification study of F508del homozygotes indicated that lung function (initial level and 

rate of decline) coupled with survival percentiles at 20 years of age accurately distinguished 

mild and severe pulmonary phenotypes from the Gene Modifier Study (Schluchter et al., 

2006). An effort to phenotype rapid decline was made using the aforementioned CFFPR 

data source while accounting for both age-related nonlinearity and heterogeneity in lung 

function trajectories suggested that the magnitude of peak lung function decline is similar; 

however, timing of peak decline differed according to early, middle, and late ages during 

adolescence/early adulthood: 12.9, 16.3, and 18.5 years, respectively (Szczesniak et al., 

2017). In addition to the above risk factors of rapid decline, the early phenotype was 

associated with Medicaid insurance use. A single-center study including young adults with 

CF developed an index score of rapid decline using quantiles of lung function trajectories, 

showing that nutrition- and sex-related effects were more influential in higher quantiles 

corresponding to worsening disease severity (Denaro et al., 2020).

Past approaches have illuminated subsets of social and environmental exposures that are 

correlates of rapid decline, primarily studied independent from phenotyping. As a result, 

social-environmental phenotypes of rapid decline have not been characterized. In this study, 

we hypothesized that a comprehensive evaluation of social and environmental exposures 

(geomarkers), including the formation of an adversity index, would yield distinct age-

related phenotypes of rapid decline. Additionally, we hypothesized that more severe social-

environmental phenotype scores would associate with worsening patient characteristics that 

are routinely surveilled as part of CF care, including genotype, lung infections, smoking 

status, and comorbidities.

2. Methods

2.1. Study population and health data

Inclusion criteria: We performed a longitudinal cohort study of patients aged 6–21 years 

followed in the CFFPR (over the timeframe 1997–2017) approved by the local Institutional 

Palipana et al. Page 3

Environ Adv. Author manuscript; available in PMC 2023 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Review Board (Protocol ID: 2018-4839). The CFFPR has been used to track demographic 

and clinical characteristics of people living with CF in the U.S. for many decades with 

a recently estimated coverage of 77 % allowing for generalizability across the population 

(Cromwell et al., 2023). The primary outcome was forced expiratory volume in 1 s (FEV1) 

of % predicted from Global Lung Function Initiative reference equations (Quanjer et al., 

2012). Age (in years) was the time variable. Individuals with less than 7 quarterly FEV1 

observations over the study timeframe or who never reported ZIP Code were excluded. Post-

lung transplantation data was censored. Baseline was individually defined as first observed 

FEV1 during the study period once the patient was aged ≥ 6 years.

Routinely collected health measures: Non-time-varying CFFPR variables were 

genotype defined by F508del alleles (homozygous, heterozygous, or neither/unknown), 

race (White or non-White), ethnicity (Hispanic or non-Hispanic), sex (male or female), 

age at CF diagnosis, any recorded use of pancreatic enzymes (yes/no). Time-varying 

variables were private insurance use (yes or no); lung infections (each coded as yes or no): 

Pseudomonas aeruginosa (Pa) and Methicillin-resistant Staphylococcus aureus (MRSA); 

CF-related diabetes (CFRD) status; modulator use: ivacaftor or lumacaftor/ivacaftor; 

reporting either first- or secondhand tobacco smoke exposure (obtained from annual self-

report). Pulmonary exacerbation (PEx) frequency was defined by counting the number of 

events with intravenous antibiotic use that required hospitalization within the prior year.

2.2. Geomarker assessments

Social and environmental exposures (geomarkers) were linked to ZIP Codes in the CFFPR 

by using ZIP Code tabulation areas (ZCTAs, a census-derived geography for 5-digit 

residential ZIP Codes). Geomarkers (respective data sources) included traffic proximity, 

ozone and PM2.5 concentrations, diesel particulate matter, and respiratory hazard index 

(Environmental Protection Agency Environmental Justice Screen Index (United States 

Environmental Protection Agency, 2015), landcover (% of greenspace, impervious, and 

tree canopy areas derived from the National Land Cover Database (Jin et al., 2019)), total 

crime (Applied Geographic Solutions (Federal Bureau of, 2018)), neighborhood material 

deprivation index (Brokamp et al., 2019) (assesses extent of poverty, vacant housing, 

assisted income, education level, median income and health insurance coverage for a 

given neighborhood), lengths and densities of primary and secondary roads (derived from 

geospatial data in the Topologically Integrated Geographic Encoding and Referencing 

system (United States Department of Commerce, 2018)). Rationale for including each 

geomarker was based on components of a postulated CF disease-outcome model (Schechter, 

2011) and their roles as potential correlates of rapid CF lung disease progression from more 

recent literature review (Szczesniak et al., 2020) (e-Table 1). We imputed missing data on 

demographic/clinical variables and ZIP Codes based on the nature of collection for each 

CFFPR variable (e-Table 2). Backward-imputing was employed for geomarkers and ZIP 

Codes that were not reported until after baseline.

2.3. Statistical analyses

We summarized all variables at baseline and over follow-up as mean (standard deviation 

or SD) for continuous variables and n (%) for categorical variables. Analyses were 

Palipana et al. Page 4

Environ Adv. Author manuscript; available in PMC 2023 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



implemented using R and MATLAB (code and packages described in e-Section A). 

We performed a two-stage approach to obtain social-environmental phenotypes of rapid 

decline. In the first stage, principal components analysis (PCA) was used to characterize 

relationships between geomarkers at baseline and acquire a composite geomarkers score 

for subsequent cluster analysis. For the second stage, we performed covariate-adjusted 

functional principal components analysis (FPCA) for longitudinal data (Jiang and Wang, 

2010), using mean quarterly FEV1% predicted as the outcome variable.

Since the available FPCA method only accommodates one covariate aside from the 

time variable (which is age in our approach), we included the aforementioned social-

environmental adversity index as the covariate. Detailed implementation and results, 

including selecting the first functional principal component and forming tertiles to represent 

phenotypes of rapid decline according to age, are provided in e-Section B.

After performing the two-stage analysis, we examined associations between derived 

phenotypes with respect to individual demographic/clinical characteristics using Wilcoxon 

rank sum with Bonferroni-adjusted p-values and Chi-square tests. A p-value less than 0.05 

was considered statistically significant.

2.4. Sensitivity analyses

We assessed the impact of identifying phenotypes using average rather than baseline values 

of the geomarkers in PCA (first stage). Second-stage sensitivity analyses evaluated (i) 

potential selection bias from requiring a minimum number of FEV1 measurements; (ii) 

how FPCA findings may be impacted by variable length of follow-up between patients; 

(iii) impact of modulator initiation; (iv) impact of loss-to-follow-up in the CFFPR due to 

2003–2006 intake changes, which included introduction of a web-based platform to capture 

encounter-level data in 2003 followed by detailed medication collection that began in 2006 

(Knapp et al., 2016); (v) extent to which imputation of later-observed geomarkers into 

earlier time periods (largely prior to 2015) affected results.

3. Results

3.1. Study population and routinely monitored characteristics

There were 24,228 individuals with 664,267 quarterly measurements who met inclusion 

criteria (e-Fig. 1). The analysis cohort primarily included F508del homozygotes, had slightly 

more males, and many did not have private insurance during the analysis timeframe (Table 

1 – Overall cohort). Infections and CFRD prevalence increased expectedly over follow up. 

Very few individuals used modulators at baseline, but prevalence increased over follow 

up. Reported tobacco smoke also increased over time. Most individuals did not undergo 

lung transplant and remained alive through follow up. Geomarker data was variable across 

the overall cohort (Table 2). Deprivation index, which ranges from 0 to 1 with higher 

values being associated with higher levels of material community deprivation, for the overall 

CF cohort was below the national average, estimated to be 0.37 and 0.35 (computed by 

weighting each tract-level deprivation index by its population under age 18) for 2015 and 

2018, respectively.
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The first PC score was retained from scree-plotting (e-Fig. 3) and used to collectively 

measure extent of social-environmental adversity (higher scores implied more negative 

social and/or environmental exposure levels; details shown in e-Section A). Social-

environmental adversity was primarily driven by crime, landcover, traffic-related air 

pollution, and density and length of primary and secondary roadways, respectively 

(loadings for rotated PC1, e-Table 6). Although not used to form the social-environmental 

adversity index, the second principal component mainly linked to deprivation index, ozone 

concentration, primary roadway length, and secondary roadway density (loadings for rotated 

PC2, e-Table 6).

3.2. Social-environmental lung phenotypes over age

Functional principal component analysis (FPCA) suggested highly heterogeneous lung 

function decline according to age and social and environmental exposures, although all 

individuals lost some degree of lung function by early adulthood (Fig. 1A). Overall, 

increased social-environmental adversity corresponded to higher lung function at younger 

ages, but the degree of rapid decline was more pronounced in adolescence and early 

adulthood, indicating declines of more than 4 % predicted/year for some individuals 

(Fig. 1B). Upon segmenting these unusual results, subjects with less social-environmental 

adversity also experienced lung function decline, but at a slower rate, compared to 

counterparts with high social-environmental adversity (e-Fig. 4). Specifically, excluding 

individuals with outlier values for the social-environmental adversity index showed that 

higher social-environmental adversity associated with more rapid lung function decline over 

age (e-Fig. 5).

We classified individuals into three distinct social-environmental phenotypes of rapid 

decline over age (early, middle, or late) based on FPC1 first and third quantiles from 

FPCA cluster analysis (e-Table 5). Further segmenting early, middle, and late decliners into 

subgroups according to median social-environmental adversity, there was within-phenotype 

variability (Fig. 2). Early decliners experienced similar timing and extent of peak decline 

regardless of social-environmental adversity (Fig. 2A versus 2D). Middle decliners had 

similar peak decline, but those with greater extent of social-environmental adversity 

experienced peak decline an average of 14.4 months or 1.2 years earlier than those 

with lower social-environmental adversity (Fig. 2B versus 2E). Late decliners with lower 

social-environmental adversity had slightly earlier peak decline (approximately four months 

earlier), compared to their counterparts with higher social-environmental adversity (Fig. 2C 

versus 2F).

Specific geomarkers primarily drove differences in social-environmental adversity among 

the early, middle, and late decline phenotypes (Table 2). The earlier declining phenotypes 

tended to reside in areas with higher community deprivation and crime. The average 

deprivation index for late decliners was lower than the aforementioned national averages, 

while average deprivation for early decliners was similar to national averages. Compared 

to late decliners, early decliners tended to reside in areas with slightly higher green space 

and imperviousness. Early decliners also tended to live in areas with higher air pollution, 

measured by the respiratory hazard index, ozone concentration, proximity to traffic, and 
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diesel particulate matter. Middle decliners tended to live closer to longer/denser secondary 

roadways compared to late decliners. While early decliners tended to live closer to longer 

secondary roadways compared to late decliners, they also live closer to denser secondary 

roadways compared to middle decliners.

Estimated peak decline and degree of social-environmental adversity were jointly mapped 

across the contiguous U.S. (Fig. 3). While findings were heterogeneous, the most severe 

declines coupled with greatest social-environmental adversity (purple shaded areas) were 

concentrated in western and southern regions. These regions also included areas with 

higher social-environmental adversity but less rapid decline (pink shaded areas). In 

examining designations from the American Communities Project, areas with the highest 

social-environmental adversity and peak decline levels corresponded to Hispanic Centers, 

Working Class Country (rural communities) and Big City (densely populated urban areas). 

Social-environmental adversity appeared lowest in the Central Plains, but these areas were 

marked with higher peak declines (green-shaded areas). A subset of the map was not 

estimable (black shaded areas). The map referred to as Fig. 3 has been made available in an 

interactive R Shiny app. This app allows readers to explore the joint variation of estimated 

peak decline and the degree of social-environmental adversity on a state-by-state basis. 

This app can be accessed using the following link: https://medmonitoring.shinyapps.io/

Interactive_map3digZip/

3.3. Clinical subgrouping of phenotypes

Preliminary comparisons between early, middle, and late decline phenotypes (Table 1) 

showed that middle decliners had higher representation of F508del homozygotes and males, 

compared to other phenotypes. Middle decliners were slightly older with substantially lower 

baseline lung function. Having no insurance or use of public insurance, lung infections and 

CFRD diagnosis were more prevalent in early decliners. However, late decliners had the 

highest prevalence of reported impaired glucose tolerance. Middle decliners had the highest 

reported use of pancreatic enzymes. Ivacaftor use was most common among late decliners, 

followed by middle, then early decliners. Middle decliners had the highest reported use 

of lumacaftor/ivacaftor, followed by late, then early decliners. Reported tobacco smoke 

exposure was most prevalent among middle decliners. Early decliners had the lowest PEx 

frequency but highest rates of hospitalizations prior to baseline and lung transplant and 

death over follow-up. Kaplan–Meier analysis of phenotype-specific survival probabilities 

extending beyond early adulthood suggest mortality peaks occurred in early adolescence and 

again in early adulthood, followed by exceedingly higher rates of lung transplant/death in 

the early phenotype (e-Fig. 2).

3.4. Sensitivity analyses

The social-environmental adversity index was similar when performing PCA on average 

geomarker values, compared to using baseline geomarker values (e-Table 6). When 

comparing the included individuals in the analysis cohort to those who were excluded 

due to an insufficient number of FEV1 measurements, we found that the excluded cohort 

had higher prevalence of F508del homozygotes, and those with no completed genotype 

were older, on average, and had slightly higher rates of Pa infection and modulator use 
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(e-Table 7). However, distributions of FPC1 scores were similar (e-Table 8). Variable length 

of follow-up between patients did not apparently impact FPCA results based on correlation 

analyses (e-Fig. 7). We further examined how rate of follow up (number of visits/year) 

varied geographically and found that urban and rural areas had similar median years of 

follow-up but differing ranges: 5.67 (1.52-18.02) versus 5.56 (1.34-27.13). To consider how 

loss to follow up may have been impacted by CFFPR-related intake changes during 2003–

2006, we summarized social-environmental adversity and degree of rapid decline separately 

for those individuals entering before versus after 2006. Distributions of scores from FPCA 

and geographical associations were similar to primary analysis (e-Fig. 10), indicating that 

results were not impacted by data intake changes. Detailed results are provided in e-Section 

C. We evaluated impact of geomarker imputation by comparing distributions of FPC1 scores 

from individuals with observations only from 2015 or later to the overall cohort and to those 

who only had observations prior to 2015 (e-Fig. 11). Scores were largely similar among 

these groups; those observed 2015 and onward had a slightly higher median score.

3.5. Converting phenotypes into digestible clinical information

While the results have different implications among the three main social-environmental 

phenotypes, we found that existing strategies for maintaining lung function in CF under each 

phenotype could be layered with enhanced social and environmental health interventions 

(Table 3), which are based on results of this study and previously published literature 

(Khreis et al., 2023; McArdle et al., 2023; McGarry et al., 2017; Morgan et al., 2013; Oates 

and Schechter, 2016; Park et al., 2021). Routine or more frequent social needs screening, 

for example, could be made available for people with CF who live in communities with 

high deprivation or crime levels. We found that the nature of potential environmental health 

interventions ranges from personalized, such as installing HEPA filters in the home, to 

policy-level alerts or actions, including smog notifications during periods in which air 

pollution spikes are present or anticipated due to extreme climate events. We observed 

higher within-area variation compared to between areas with respect to social-environmental 

adversity and risk of rapid decline (e-Fig. 12), implying that people with CF and their 

families who make long-distance moves to different geographic regions (e.g., moving from 

the Midwest to the Eastern seaboard) may be subject to the same risk of rapid decline if 

social-environmental adversity is similar between regions. However, relocating within the 

same city but to a community with less social-environmental adversity may result in lower 

risk of rapid decline; although such a measure may be unrealistic for many with CF.

Another clinically informative takeaway for individual patients, providers and researchers 

may be the review of each social and environmental exposure based on how pronounced it is 

for their given residential area or where they will spend a significant amount of time (e-Fig. 

13), in light of their individual clinical risk factors (Table 3). From the patient and clinician 

perspective, this more granular review could identify risk of environmental triggers of PEx, 

such as seasonal or event-specific spikes in air pollution levels that could be mitigated 

with masking. Masking strategies could be developed and implemented, similar to those 

being undertaken by some people with CF and their families during peak influenza season. 

For health equity researchers, these data may pinpoint communities suffering outcome 

disparities and enable clinics to implement enhanced screening of psychosocial needs.
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4. Discussion

This longitudinal cohort study of children and young adults living with CF in the U.S. 

shows that both social and environmental stressors associate with greater degree and 

earlier timing of rapid lung function decline, and that, to some extent, social-environmental 

phenotypes of lung function decline are associated with a subset of routinely collected 

demographic and clinical characteristics. We observed that young people with early decline 

tend to reside in areas with higher total crime rates and community deprivation; in 

contrast, their late-declining counterparts typically reside in low-crime, low-deprivation 

areas, which highlights the significant role of non-chemical, socioeconomic stressors on 

CF disease. We also identified geographic regions with elevated ambient air pollution 

(traffic proximity and roadway length/density) and less greenspace in which young people 

with CF may be at the highest risk of early, rapid lung function decline, but we found 

that these areas represent heterogeneous environmental conditions spread across the US. 

Social-environmental adversity in CF was heavily influenced by levels of chemical stressors, 

such as those from traffic-related air pollution exposure. This finding corroborates a recent, 

pediatric single-center study performed in the Midwest, which identified elemental carbon 

attributable to traffic as a strong predictor of rapid CF lung function decline; while not 

statistically significant, greenspace and community deprivation were also selected in the 

final prediction model (Gecili et al., 2023). In the current study, community deprivation, 

which is a non-chemical stressor, in the CF population was estimated to be beneath the 

national average. To provide some context, given that the population level SD in 2018 was 

0.14, the difference of 0.02 units in the deprivation index is roughly 14 % of the SD.

The current study corroborates earlier work suggesting that individuals with the highest 

levels of lung function are late decliners but cumulatively lose more lung function over 

childhood and adolescence than their counterparts who maintain lower lung function 

(Vandenbranden et al., 2012). From characteristics of late decliners identified in the current 

study, an outlying percentage maintained high lung function initially in the presence of 

extreme social-environmental adversity, while the majority of this phenotype had higher 

social-environmental adversity associated with more rapid decline. Identification of three 

prominent clusters reflects prior joint longitudinal-survival modeling of the CFFPR that also 

identified three distinct latent classes of FEV1 progression (Andrinopoulou et al., 2020). 

Mortality among phenotypes diverged at early adolescence for those with the most severe 

declines, while middle- and late-declining phenotypes had similar survival probabilities. 

These mortality peaks are consistent with prior literature (Vandenbranden et al., 2012) 

but also highlight the risk to a newly identified middle-decliner subgroup susceptible to 

early mortality and high social-environmental adversity. It is possible that the influence 

of social-environmental factors may be less pronounced for individuals who decline early 

or late compared to their middle declining counterparts. Additionally, the impact of social-

environmental adversity on lung function may vary depending on the timing of exposure 

and age could serve as a confounding variable in the clustering of environmental factors and 

rapid decline. Tailored secondary prevention strategies (e.g.: avoiding living near highways 

or high pollution areas; use of HEPA filters in the home (James et al., 2020)), could benefit 

this sub-phenotype the most. How social-environmental adversity mediates effectiveness of 
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established strategies, (e.g., more frequent monitoring and timely treatment of lung function 

declines (Schechter et al., 2018)) requires additional research.

Our work substantiates recent findings that chemical stressors (e.g., tobacco smoke 

exposure) have explanatory value distinct from socioeconomic deprivation (Oates et al., 

2020). In COPD, the relationship between ambient air pollution and lung function appears to 

be moderated by sex, household income, and occupation type (Doiron et al., 2019). Specific 

chemical stressors have not been widely studied in CF, but causal pathways identified 

in asthma link air pollution to exacerbation (Pfeffer et al., 2021). Clinical manifestations 

among CF, asthma and COPD are distinctive (e.g.: given the prolonged versus acute nature 

of exacerbation onset in CF versus asthma, or the nature of airway obstruction in CF versus 

COPD), suggesting that causal pathways between chemical stressors and disease severity/

onset differ.

The current study utilized mean quarterly FEV1% predicted measurements, while other CF 

epidemiological studies have utilized different aggregates, such as the maximum. Recent 

advances in linear mixed effects models, which have been instrumental in monitoring and 

predicting the natural history of CF lung disease, suggest that use of mean or maximum 

quarterly FEV1% predicted measurements result in similar trajectory estimates (Szczesniak 

et al., 2023). Functional data analysis techniques such as FPCA can be applied to temporally 

collected FEV1% predicted measurements to identify longitudinal functional data with 

similar characteristics and cluster them together. Linear mixed effects models, which 

estimate associations between the longitudinal outcome variable and a set of explanatory 

variables, have led to a consensus that rapid decline often occurs between adolescence and 

early adulthood, although the specific timing varies across studies. In this study, using FPCA 

on CF and social and environmental exposure data not only helped identify patients with 

phenotypes at risk of rapid lung function decline but also characterized the timing of rapid 

lung function decline within each phenotype. This approach can enhance opportunities for 

more timely and targeted interventions for patients clustered into high-risk phenotypes.

This study has inherent limitations, including those previously described with CFFPR 

analyses (Schechter, 2008) and the large extent of missing data in income and education 

variables (Cystic Fibrosis Foundation, 2022), which precluded their use in the current 

study as a measure of individual-level socioeconomic status. There are differing amounts 

of overlap among the geomarker and clinical data sources, which make it difficult to 

produce a single, contemporaneous collection of data. Due to computational issues with 

FPCA of data with short-term follow-up, we were unable to restrict follow-up to the 

more contemporaneous time period in which select geomarkers were observed (2015 and 

up). To offer some insight into how the findings are impacted by contemporality, we 

conducted several sensitivity analyses, but acknowledge that the findings are still based 

on the original FPCA with assumed imputations of earlier data and therefore subject to 

bias especially over earlier time periods of follow-up. There is also the influence of bigger 

data sets on precision estimates and statistical significance (Cox et al., 2018). Variability 

in social-environmental adversity and rapid decline was observed in aggregated estimates 

throughout the US, but ZIP-Code-specific inference was intentionally limited for patient 

privacy. U.S. Postal Service ZIP Codes are designed to facilitate the distribution of mail, 
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which makes the resulting ZCTAs and geomarker resolution dependent upon residential 

size (i.e.: cities typically have far more ZIP Codes than rural areas). Opposing PCA 

loadings on roadway lengths and densities show the impact of the area of ZIP Codes. 

An example of the granularity impact is provided showing secondary roadway densities 

and aggregation for a given city and rural areas (e-Fig. 14). Covariate-adjusted FPCA only 

allows for a single covariate, which necessitated a two-stage approach, but the resulting 

social-environmental adversity index was partially driven by previously identified features, 

such as air pollution (Goss et al., 2004), while examining novel geomarkers. This index 

could enhance research on CF-specific social and environmental determinants of health 

by aggregating exposures across a breadth of young people with CF living in the US. 

Covariate adjustment with geomarkers appeared to improve upon marginal FPCA in which 

identified phenotypes exhibited stronger differential selection according to baseline age 

(Szczesniak et al., 2017). Air temperature and seasonality were not considered, given that 

these characteristics typically vary over time for many locations. However, geomarkers of 

traffic-related air pollution, which can be driven by increased temperatures within warmer 

seasons, were included. Furthermore, sensitivity analysis suggested that incorporating time-

varying exposures may not lead to differing conclusions. As the study focused on a 

specific timeframe, patients receiving treatment with the highly effective CFTR modulator, 

elexacaftor-tezacaftor-ivacaftor (ETI), were not included in the analysis. However, it is 

possible to make assumptions about the impact of ETI treatment on the phenotypes 

described during the ETI era, such as the potential attenuation of lung function decline; 

however, effects may be dampened depending on social-environmental influences on extent 

to which CFTR is modulated. Considering the available literature, it is plausible that the 

average trajectory levels will rise but with a variable degree of rate of decline (Nichols et al., 

2021).

5. Conclusion

Cystic fibrosis lung phenotypes are characterized by social-environmental adversity and a 

subset of routinely monitored demographic and clinical characteristics. Middle decliners 

have the greatest differences in timing of peak decline related to social-environmental 

adversity and mortality. The present study offers a comprehensive profile of geographic 

exposure risks and how individuals with mild to moderate amounts of lung disease who are 

subject to adverse social-environmental exposures may maximally benefit from personalized 

(rather than primary or global) environmental health interventions.
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Abbreviations:

CF cystic fibrosis

CFFPR Cystic Fibrosis Foundation Patient Registry

CFRD cystic fibrosis related diabetes

CI confidence interval

FEV1 forced expiratory volume in 1 s

FPC1 first functional principal component

FPCA functional principal components analysis

MRSA Methicillin-resistant Staphylococcus aureus

OR odds ratio

Pa Pseudomonas aeruginosa

PC principal component

PCA principal components analysis

PEx pulmonary exacerbation

Q1 first quartile

Q3 third quartile

SD standard deviation

ZCTA ZIP Code tabulated area.
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Fig. 1. Lung function trajectories by age and social-environmental adversity.
Three-dimensional plotting is used to examine how (A) lung function trajectory (FEV1 % 

predicted) and (B) rate of change in lung function trajectory (% predicted/year) vary over 

age (the time variable, measured in years) and extent of social-environmental adversity 

(higher values imply more negative environmental exposure). Blue areas imply higher lung 

function or rate of change, while red areas indicate lower lung function or more rapid 

decline. Results were obtained as fitted curves from covariate-adjusted functional principal 

components analysis (see Study Design and Methods section). FEV1 (% pred) indicates 

forced expiratory volume in 1 s of % predicted. Sub-plots by age are shown as supplemental 

material (e-Figs. 4 and 5).
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Fig. 2. Peak decline in lung function over age according to social-environmental phenotype.
Average rates of change (y-axis) over age (the time variable, measured in years) are shown 

for early (A and D), middle (B and E), and late (C and F) environmental phenotypes of 

rapid decline. Rate of change is shown for each phenotype sub-grouped by degree of social-

environmental adversity (lower and higher correspond to blue dashed and red dot-dashed 

curves, respectively). “X” is used to mark coordinates for the average timing of peak decline 

and estimated age at which it occurred. Results were obtained by differentiating the fitted 

curves from covariate-adjusted functional principal components analysis (see Study Design 

and Methods). FEV1 (% pred/year) indicates annualized rate of change forced expiratory 

volume in 1 s of % predicted.
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Fig. 3. Geographic variation of social-environmental adversity and rapid lung function decline.
Bivariate quantities are shown representing extent of social-environmental adversity and 

severity of peak decline in lung function in the continental U.S. Higher values of social-

environmental adversity imply more negative social and/or environmental exposure levels 

(vertical arrow pointing upward), and more negative values of severity of peak decline imply 

greater maximal loss of lung function (horizontal arrow pointing leftward). Dark blue (upper 

left corner of the grid) represents extremely rapid decline and worst environmental adversity, 

while gray (lower right corner of the grid) corresponds to at or below average rate of decline 

(−1.5 % predicted/year) with least degree of social-environmental adversity. Results were 

obtained from two-stage cluster analysis (see Study Design and Methods). Estimates as 

shown on the map are aggregated to three-digit ZIP Codes and displayed using HIPAA Safe 

Harbor Guidelines. A three-digit ZIP Code was colored black if it did not contain either (1) a 

population of at least 20,000 residents or (2) a sufficient number of residents in the analysis 

cohort to make an estimate.
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Table 1

Demographic and clinical characteristics, overall and across social-environmental phenotypes.

Overall
cohort
(n = 24,228)

Early
(n = 6,057)

Middle
(n = 12,114)

Late
(n = 6,057)

F508del mutation*

 Homozygous 11,618 (48.0 %) 2,887 (47.7 %) 6,006 (49.6 %) 2,725 (45.0 %)

 Heterozygous 8,711 (36.0 %) 1,983 (32.7 %) 4,363 (36.0 %) 2,365 (39.0 %)

 Neither/unknown 3,899 (16.0 %) 1,187 (19.6 %) 1,745 (14.4 %) 967 (16.0 %)

Male* 12,367 (51.0 %) 2,769 (45.7 %) 6,325 (52.2 %) 3,273 (54.0 %)

Race b

 White 22,486 (92.8 %) 5,589 (93.4 %) 11,241 (92.8 %) 5,656 (93.4 %)

 Non-White 1,742 (7.2 %) 468 (7.7 %) 873 (7.2 %) 401 (6.6 %)

Hispanic ethnicity* 1,973 (8.1 %) 650 (10.7 %) 916 (7.6 %) 407 (6.7 %)

Diagnosis ageb,c 2.0 (3.7) 1.55 (2.99) 2.00 (3.71) 2.43 (4.05)

Baseline age a,b,c 8.6 (6.0 - 20.4) 9.2 (3.8) 8.5 (3.6) 8.3 (3.4)

Birth year a,b,c 1990 (1980–2010) 1990 (1980–2010) 2000 (1980–2010) 2000 (1980–2010)

Baseline FEV1 (% predicted)a,b,c( 89.2 (21.6) 66.1 (19.6) 89.9 (15.4) 107 (13.9)

Non-private or no insurance

 At baseline* 12,160 (50.2 %) 3,625 (59.8 %) 6,000 (49.5 %) 2,535 (41.9 %)

 Ever during follow-up* 19,272 (79.5 %) 5,064 (83.6 %) 9,591 (79.2 %) 4,617 (76.2 %)

Microbiology

 Pa

 At baseline* 4,495 (18.6 %) 1,612 (26.6 %) 2,153 (17.8 %) 730 (12.1 %)

 Ever during follow-up* 19,449 (80.3 %) 5,564 (91.9 %) 9,556 (78.9 %) 4,329 (71.5 %)

 MRSA

  At baselinea 1,247 (5.1 %) 366 (6.0 %) 639 (5.3 %) 242 (4.0 %)

  Ever during follow-up a 10,897 (45.0 %) 2,997 (49.5 %) 5,506 (45.5 %) 2,394 (39.5 %)

CFRD status

 Impaired

 Glucose

 Tolerance

  At baseline 67 (0.3 %) 22 (0.4 %) 33 (0.3 %) 12 (0.2 %)

  Ever during follow-up* 3,220 (13.3 %) 736 (12.2 %) 1,596 (13.2 %) 888 (14.7 %)

 CFRD diagnosis

  At baseline a,b 117 (0.5 %) 44 (0.7 %) 48 (0.4 %) 25 (0.4 %)

  Ever during follow-up* 5,880 (24.3 %) 2,347 (38.7 %) 2,577 (21.3 %) 956 (15.8 %)

Pancreatic Enzymes 22,955 (94.7 %) 5,987 (98.8%) 11,471 (94.7 %) 5,497 (90.8%)

Ivacaftor#

 Ever during follow-up* 1,067 (4.4 %) 107 (1.8 %) 537 (4.4 %) 423 (7.0 %)
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Overall
cohort
(n = 24,228)

Early
(n = 6,057)

Middle
(n = 12,114)

Late
(n = 6,057)

Lumacaftor/Ivacaftor#

 Ever during follow-up* 3,930 (16.2 %) 697 (11.5 %) 2,214 (18.3 %) 1,019 (16.8 %)

PEx frequency in year prior to baseline

 None a,b,c 21,130 (87.2 %) 5,030 (83.0 %) 10,551 (87.1 %) 5,549 (91.6 %)

 1 a,b,c 1,049 (4.3 %) 327 (5.4 %) 555 (4.6 %) 167 (2.8 %)

 2 a,b,c 287 (1.2 %) 84 (1.4 %) 148 (1.2 %) 55 (0.9 %)

 3 or more a,b,c 1,762 (7.3 %) 616 (10.2 %) 860 (7.1 %) 286 (4.7 %)

Hospital visits in the year prior to baseline visit

 None a,b,c 20,115 (83.0 %) 4,841 (79.9 %) 10,000 (82.5 %) 5,274 (87.1 %)

 1 b,c 1,147 (4.7 %) 305 (5.0 %) 605 (5.0 %) 237 (3.9 %)

 2b 463 (1.9 %) 130 (2.1 %) 237 (2.0 %) 96 (1.6 %)

 3 or more a,b,c 2,503 (10.3 %) 781 (12.9 %) 1,272 (10.5 %) 450 (7.4 %)

Smoke exposure ##

 At baseline* 1,296 (5.3 %) 266 (4.4 %) 292 (4.8 %) 738 (6.1 %)

 Ever during follow-up* 8,130 (33.6 %) 1,845 (30.5 %) 4,227 (34.9 %) 2,058 (34.0 %)

Lung transplant during follow-up* 1810 (7.5 %) 1,251 (20.7 %) 523 (4.3 %) 36 (0.6 %)

Alive through follow-up* 20,380 (84.1 %) 3,519 (58.1 %) 10,982 (90.7 %) 5,879 (97.1 %)

Mean (SD) and n (%) are reported for continuous and categorical variables, respectively. P-values from Wilcoxon rank sum test or chi-square test. 
Statistical significance of comparisons (P-value < 0.05) marked as

a
Early versus Middle;

b
Early versus Late;

c
Middle versus Late for continuous variables and

*
evidence of overall association between phenotype and categorical variable.

^
Indicates insufficient sample size or censoring prohibiting standard statistical comparison. Abbreviations include CFRD = cystic fibrosis-related 

diabetes; MRSA = methicillin-resistant Staphylococcus aureus; Pa = Pseudomonas aeruginosa; PEx = pulmonary exacerbation.

#
Baseline use of modulator therapies was suppressed for patient privacy purposes due to low cell counts (< 5 subjects).

##
Types of smoke exposure (firsthand, secondhand and within household) were combined due to low cell counts.
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Table 2

Baseline geomarker characteristics, overall and across social-environmental phenotypes.

Overall cohort
(N = 24,228)

Early (n =
6,057)

Middle (n =
12,114)

Late (n =
6,057)

Deprivation indexa,b,c 0.341 (0.0983) 0.359 (0.100) 0.340 (0.0972) 0.324 (0.0950)

Total crimea,b,c 87.3 (59.7) 90.4 (57.8) 86.6 (59.2) 85.6 (62.5)

Landcover

 % Greenb,c 83.4 (20.9) 83.1 (21.5) 83.6 (20.8) 83.2 (20.3)

 % Imperviousb,c 15.9 (18.1) 16.1 (18.6) 15.7 (18.1) 16.2 (17.8)

 % Tree canopy 26.8 (21.6) 27.1 (22.3) 26.7 (21.4) 26.6 (21.4)

Respiratory hazard indexa 1.57 (0.811) 1.59 (0.791) 1.56 (0.815) 1.58 (0.823)

Ozone concentrationa,b 46.2 (6.69) 46.4 (6.85) 46.1 (6.62) 45.9 (6.65)

PM2.5 Concentration 9.64 (1.58) 9.68 (1.57) 9.63 (1.58) 9.63 (1.57)

Traffic proximityc 74.4 (128) 75.3 (121) 73.1 (131) 76.1 (128)

Diesel particulate matterc 0.695 (0.615) 0.696 (0.606) 0.689 (0.623) 0.705 (0.608)

Primary roadways

 Length 19100 (27600) 19000 (27800) 19400 (28000) 18400 (26300)

 Density 1.24 (2.75) 1.30 (2.87) 1.21 (2.70) 1.23 (2.72)

Secondary Roadways

 Lengthb,c 59300 (73200) 63100 (76700) 59900 (74600) 54400 (66400)

 Densitya,b 2.54 (4.98) 2.61 (4.45) 2.55 (5.41) 2.46 (4.56)

Mean (SD) are reported. P-values from Wilcoxon rank sum test. Statistical significance of comparisons (P-value < 0.05) marked as

a
Early versus Middle;

b
Early versus Late

c
Middle versus Late.
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