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Psychiatric disorders impose tremendous economic burden on society and are leading causes of disability worldwide. However,
only limited drugs are available for psychiatric disorders and the efficacy of most currently used drugs is poor for many patients. To
identify novel therapeutic targets for psychiatric disorders, we performed genome-wide Mendelian randomization analyses by
integrating brain-derived molecular quantitative trait loci (mRNA expression and protein abundance quantitative trait loci) of 1263
actionable proteins (targeted by approved drugs or drugs in clinical phase of development) and genetic findings from large-scale
genome-wide association studies (GWASs). Using transcriptome data, we identified 25 potential drug targets for psychiatric
disorders, including 12 genes for schizophrenia, 7 for bipolar disorder, 7 for depression, and 1 (TIE1) for attention deficit and
hyperactivity. We also identified 10 actionable drug targets by using brain proteome data, including 4 (HLA-DRB1, CAMKK2, P2RX7,
and MAPK3) for schizophrenia, 1 (PRKCB) for bipolar disorder, 6 (PSMB4, IMPDH2, SERPINC1, GRIA1, P2RX7 and TAOK3) for
depression. Of note, MAPK3 and HLA-DRB1 were supported by both transcriptome and proteome-wide MR analyses, suggesting
that these two proteins are promising therapeutic targets for schizophrenia. Our study shows the power of integrating large-scale
GWAS findings and transcriptomic and proteomic data in identifying actionable drug targets. Besides, our findings prioritize
actionable novel drug targets for development of new therapeutics and provide critical drug-repurposing opportunities for
psychiatric disorders.
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INTRODUCTION
Psychiatric disorders (including schizophrenia, bipolar disorder
(BP), depression and attention deficit and hyperactivity (ADHD))
impose enormous economic burden on society and are a major
global public health threat [1, 2]. Due to the high prevalence,
substantial mortality and morbidity, psychiatric disorders con-
tributed about 14% of global burden of disease [1, 2]. Mental
disorders affect about 18% population of the worldwide [3] and
the global costs of mental disorders were estimated about 2.5
trillion US dollars in 2010 [4]. The COVID-19 pandemic further
exacerbates the threat of psychiatric disorders [5]. There is a
pressing need for efficient intervention and treatment of mental
disorders.
So far, treatment of psychiatric disorders remains a major

challenge. First, only limited drugs are available for psychiatric
disorders [6–12]. Second, most of the approved drugs exert their
therapeutic effects by targeting a small number of specific
molecular targets. For example, almost all antipsychotics exert
their therapeutic effects by antagonizing type 2 dopaminergic
receptor (DRD2) [13–15], and most antidepressants targeting
monoaminergic systems (including dopaminergic, noradrenergic
and serotonergic systems) [16–18]. Third, in addition to beneficial

therapeutic effects, antipsychotics and antidepressants also bring
considerable side effects [19–27], including hyperlipidemia,
myocarditis, weight gain, sexual side effects, type II diabetes
mellitus, etc. Fourth, many drugs take effect slowly (about several
weeks). Finally, many patients do not respond to pharmacological
treatment (i.e., treatment resistant) [28–34]. These challenges
account for a large proportion of the enormous costs of
psychiatric disorders.
Despite the fact that psychiatric disorders impose tremendous

economic burden on society and are a major global public health
threat, drugs discovery for psychiatric disorders gained little
progress for decades [35–38]. Therapeutic stasis is mainly
attributable to the unknown pathophysiology of psychiatric
disorders. The rapid progress of genome-wide association studies
(GWASs) provides an unprecedented opportunity for develop-
ment of novel drugs for many complex diseases [39]. In the past
two decades, GWASs have identified numerous risk variants and
genes for many human complex diseases and traits, including
psychiatric disorders such as schizophrenia [40–43], depression
[44, 45], BP [46] and ADHD [47]. GWASs have also revealed
important biological insights into psychiatric disorders [40], which
will facilitate to the identification of new drugs targets and
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development of new treatments. Nelson et al. showed that
selecting genetically supported target genes (as therapeutic
targets) could greatly increase the success rate of drug develop-
ment [48], indicating the pivotal role of human genetic studies in
drug discovery [49]. In fact, several new drugs have been
successfully developed based on human genetic studies, including
PCSK9 [50] and CCR5 [51].
Considering the huge time and economic costs of development

of new drugs, integrating GWAS findings and approved drugs
provides a unique opportunity for quick discovery of novel targets
(drug repurposing or repositioning). Most of risk variants for
complex diseases are though to exert their biological effects by
affecting gene expression [52], thus, integration of GWAS and
expression quantitative trait loci data (e.g., transcriptome-wide
association study [53], TWAS) will help to identify the potential risk
genes. Recently, Mendelian randomization (MR) has been widely
used to infer if the altered gene expression acts as a causal factor
for many diseases [54–59]. By using eQTL and GWAS data, the
main purpose of two sample MR is to test if a genetic variant (or
combination of several variants) mediates its effect on disease
through affecting gene expression. As many drugs exert their
therapeutic effects by down-regulating or up-regulating targeting
proteins, associations between the disease-associated risk genetic
variants (derived from GWAS) and gene or protein expression
provide a useful opportunity for drug repurposing. Risk genetic
variants that mimic the therapeutic effects of approved drugs
can inform drug development. Focusing on actionable proteins
(targeted by approved drugs or drugs in clinical phase of
development) provide a rapid and efficient approach for drug
repurposing as the safety and dose of the approved drugs have
been well-established.
To identify new drug targets and to seek potential drug

repurposing opportunities for psychiatric disorders, we performed
MR by integrating GWAS findings from large-scale human genetic
studies and brain-derived molecular quantitative trait loci (mRNA
expression and protein abundance quantitative trait loci) of 1,263
actionable proteins (targeted by approved drugs or drugs in clinical
phase of development). We identified promising actionable novel
drug targets for psychiatric disorders, including TIE1, AKT3, HLA-
DRB1, P2RX7, PSMA4, MAPK3, CACNA1C, PRKCB, PSMB4, IMPDH2,
GRIA1 and TAOK3.

MATERIALS AND METHODS
Actionable drug targets
We used 1263 actionable drug targets (approved drugs or drugs in clinical
phase of development) curated by Gaziano et al. [60] as potential
candidates in this study. To identify drug repurposing opportunity for
COVID-19, Gaziano et al. [60] curated 1263 actionable proteins targeted by
approved drugs (or drugs in clinical phase of development) using the
ChEMBL database [60, 61]. Among these 1263 proteins, 531 proteins are
therapeutic targets of approved drugs, 381 proteins are under clinical trial
evaluation and 351 proteins are potential drug targets of the approved
drugs. More detailed information about these actionable drug targets have
been described in study by Gaziano et al. [60].

QTL datasets used for genetic instrumental variables selection
We used 3 QTL datasets to derive genetic instrumental variables. The first
dataset is the expression quantitative trait loci (eQTL) data from The
Genotype-Tissue Expression (GTEx) [62], the second dataset is the
PsychENCODE eQTL [63], and the last dataset is ROSMAP protein
abundance quantitative trait loci (pQTL) [64].

GTEx eQTL. We downloaded GTEx eQTL data [62] using the MRInstru-
ments R package (https://github.com/mrcieu/mrinstruments). As we
focused on psychiatric disorders, we firstly extracted brain eQTL from all
the GTEx results and obtained 35,673 conditionally independent cis SNPs
that were associated with gene expression. We further investigated if
genes whose expression were associated with these SNPs were included
in the 1263 actionable drug targets. Genetic variants associated with

expression of actionable drug targets (eQTL P < 1 × 10−04) were selected
for subsequent analysis, as described in recent studies [65, 66]. As
MRInstruments R package uses top eQTL hit of each gene across 44
tissues of GTEx (i.e. one gene corresponds one instrument, and the
selected instrument shows the most significant association with the
gene in the GTEx eQTL summary statistics), LD clumping is not
applicable for this dataset [67]. Finally, we selected 1433 LD independent
top eQTL SNPs as the MR instrumental variables.

PsychENCODE eQTL. The PsychENCODE eQTL were generated using brain
tissues (the prefrontal cortex) of 1,378 human individuals [63]. The
PsychENCODE eQTL summary data were downloaded from the SMR website
(https://cnsgenomics.com/software/smr/#eQTLsummarydata) [68]. eQTL
Summary data corrected for 50 PEER factors were used. A total of
2,542,908 SNP-gene expression pairs were included in PsychENCODE
dataset. SNPs were retained if the target genes (i.e., genes whose expression
were associated with these SNPs) of these SNPs were included in the 1263
drug targets. For each gene, only SNPs with eQTL P values less than 1 × 10−04

were included. We performed LD clumping by using clump_data() function
in TwoSampleMR R package (https://mrcieu.github.io/TwoSampleMR/
reference/clump_data.html) [67], with the use of default LD clumping
parameters, i.e., the clumping r2 cutoff was set to 0.001 and “EUR” was
selected as LD reference panel. The LD reference panel of the European (EUR)
population was obtained from the 1000 Genomes project provided by
OpenGWAS API (https://gwas-api.mrcieu.ac.uk/) [69, 70]. A total of 926 LD
independent eQTL SNPs were finally included as instrumental variables in
the MR analysis. Please refer to the original paper for further details
about the PsychENCODE eQTL data [63]. For genes with two or more
independent instrumental variables, we performed heterogeneity test by
using the mr_heterogeneity() function implemented in the TwosampleMR R
package [67].

ROSMAP pQTL. The protein QTL (pQTL) data were from a recent study by
Wingo et al. [64]. Briefly, Wingo et al. performed a pQTL analysis in the
prefrontal cortex to identify genetic variants associated with protein
abundance in the human brain. We downloaded the pQTL summary
statistics (ROSMAP, n= 376) generated by Wingo et al. from Synapse
(https://doi.org/10.7303/syn23627957). A total of 912,253 SNP-protein
expression pairs were included in the ROSMAP pQTL dataset and SNPs
were extracted if they showed significant associations with expression of
actionable proteins (pQTL P < 0.05). LD clumping was conducted as
described in above PsychENCODE eQTL dataset. We finally selected 626
pQTL SNPs for 445 drug target proteins as MR instrumental variables.
Further information about ROSMAP pQTL data, please refer to the original
publication [64]. Heterogeneity test was also performed as described in
above PsychENCODE eQTL dataset when more than two instruments are
available for a protein [67].

GWAS summary statistics used in this study
We used genome-wide summary statistics of four common psychiatric
disorders [41, 45–47], including schizophrenia, BP, depression and ADHD.
The GWAS summary statistics were downloaded from the PGC website
(https://www.med.unc.edu/pgc/download-results/). The GWAS results were
used as outcome data in MR analysis.
For schizophrenia, we used GWAS results of European populations

(33,640 SCZ cases and 43,456 controls) reported by Lam et al. [41]. For BP,
we used the largest GWAS (41,917 BP cases and 371,549 controls) reported
by Mullins et al. [46]. The depression GWAS summary statistics were from a
large-scale GWAS study (170,756 cases, 329,443 controls) by Howard et al.
[45]. The ADHD GWAS were performed in 20,183 ADHD cases and 35,191
controls [47].

Mendelian randomization
The TwoSampleMR R package (version 0.5.6, https://mrcieu.github.io/
TwoSampleMR/) were used to perform two sample MR analysis [67]. The
two-sample MR framework requires two datasets to conduct MR analysis.
In this study, the cis eQTL and pQTL data were used as genetic proposed
instruments (exposure), and the GWASs were used as the outcome trait
data. MR tests the relationship between gene expression and diseases (or
traits) by using genetic variants associated with gene expression
(exposure) as instrumental variables and GWAS as outcomes. MR could
investigate if change of gene expression has causal effects on diseases or
traits. For proposed instruments with one SNP, Wald ratio was used. For
proposed instruments containing more than one SNP, fixed-effects,
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inverse-variance-weighted MR were conducted. As we only performed MR
analysis for the 1263 drug targets, the multiple correction level for MR
analysis result was set at P < 3.60 × 10−06 (Bonferroni corrected
P= 3.96 × 10−05 (0.05/1263). We further corrected the 11 eQTL panels
used in this study, including 10 GTEx eQTL panels and PsychENCODE eQTL
panel, obtaining the final Bonferroni correction threshold: (3.96 × 10−05)/
11= 3.60 × 10−06)) for eQTL MR analysis. For pQTL panel we used a
relatively relaxed correction threshold (0.05/445= 1.12 × 10−04, 445 is the
number of actionable drug targets that had instruments included in the
pQTL data). No further correction was applied for pQTL MR analysis as only
one pQTL panel was included in this study.

Consistency analysis between transcriptomic and proteomic
associations
To investigate whether there is a consistency between transcriptomic and
proteomic associations, we performed a correlation analysis on MR effect
(odds ratio, OR) between transcriptomic and proteomic associations as
described in a recently published study [71]. In brief, we select
P= 1 × 10−04 as the threshold for QTL instrumental variables for
PsychENCODE eQTL and ROSMAP pQTL datasets. SCZ genome-wide
summary statistics from European ancestry (33,640 cases and 43,456
controls) were used as outcomes. R function cor() was used to perform
Pearson correlation analysis of the MR effect of PsychENCODE eQTL and
ROSMAP pQTL MR analyses results.

Genome-wide Mendelian randomization by including all
proteins
In addition to the actionable druggable targets, we also performed a
genome-wide Mendelian randomization by including pQTL of all proteins.
The selection of instrumental variables was the same as described in above
PsychENCODE eQTL dataset. In total, we selected 1357 LD-independent
pQTL instruments of 1295 proteins. The multiple correction level was set at
P < 3.86 × 10−05 (Bonferroni correction 0.05/1295).

Protein-protein interaction (PPI) analysis
We performed protein-protein interaction (PPI) analysis to investigate the PPI
of the significant MR drug targets. The PPIs were retrieved from our previous
study which includes 517,927 high-confidence (i.e., experimentally validated)
non-overlapping PPIs [72]. Please refer to the original paper for further
information about the PPI datasets. Visualization of the PPI network was
performed in Cytoscape platform (https://cytoscape.org/) [73].

Expression analysis of the identified genes in different cell
types of the human brain and protein expression pattern
analysis
We utilized the Cortical Development Expression Viewer (CoDEx) data
portal to explore the expression pattern of the MR significant genes at the
single cell level. The CoDex database includes expression profile (measured
by RNA sequencing) of approximately 40,000 single cell from the
developing human cortex. Detailed information about the CoDex database
and the single cell data can be found in the original paper [74] and
the CoDex website (http://solo.bmap.ucla.edu/shiny/webapp/).
We also performed protein expression analysis of the identified drug

targets using The Human Protein Atlas (proteinatlas.org) database [75]. The
Human protein atlas includes protein expression data of 44 human tissues,
more details about human protein atlas is available in the original publication
and the website (https://www.proteinatlas.org/about/publications) [75].

RESULTS
MR analysis identifies 12 actionable therapeutic targets for
SCZ
MR analysis could make causal inference to investigate if gene or
protein expression change causes disease. Thus, the significant
genes or proteins identified by MR can be used as potential
therapeutic targets. Using cis eQTL SNPs from GTEx as genetic
instruments, we identified 8 actionable drug targets for schizo-
phrenia (MR P < 3.60 × 10−06) (Fig. 1a). These potential actionable
drug targets include HLA-DRB1, BRD2, CHRNA2, RORB, CACNA1C,
MAPK3, PTK6 and CYP2D6 (Fig. 1a, Table 1). Of note, CACNA1C had
the most significant MR result (P= 3.23 × 10−15, OR [95%CI]= 0.85

[0.81, 0.88]). HLA-DRB1 is supported by genetic instruments from
three different brain regions. BRD2 and HLA-DRB1 are located in the
major histocompatibility complex (MHC) region, which contains
the most significant genetic association signals for SCZ [40]. We
identified 3 significant associations (AKT3, PSMA4 and PTK6) when
using cis eQTL SNPs from PsychENCODE as genetic instruments
(Fig. 1b, Table 1). Interestingly, PTK6 was supported by both GTEx
(P= 1.53 × 10−06, OR [95%CI]= 0.90 [0.86, 0.94]) and PsychENCODE
(P= 2.31 × 10−06, OR [95%CI]= 0.49 [0.37, 0.66]) eQTL datasets. We
also identified significant MR results for 4 proteins (HLA-DRB1,
CAMKK2, P2RX7 and MAPK3), suggesting that abundance change of
these 4 proteins have a causal role in SCZ (Fig. 1c, Table 1). Of note,
three independent instruments were included for CAMKK2
(P= 9.68 × 10−06, OR [95%CI]= 0.32 [0.19, 0.53], heterogeneity test
P= 0.52) (Fig. 1c, Table 1). Intriguingly, two genes (MAPK3 and HLA-
DRB1) were supported by both gene expression-based MR analysis
and protein abundance-based MR, strongly suggesting that these
two genes might have a causal role in SCZ (Fig. 1a, c). Compared
with the original GWAS results, 9 genes (HLA-DRB1, BRD2, AKT3,
CHRNA2, CACNA1C, MAPK3, PSMA4, CAMKK2 and P2RX7) were located
in the genome-wide significant (GWS) risk loci. Considering that the
analyzed genes or proteins are therapeutic targets for approved
drugs or drugs in clinical phase of development, out results not only
provide an effective approach to identify novel therapeutic targets
for psychiatric disorders, but also provide drug-repurposing
opportunities to explore the repositioning of licensed drugs in
psychiatric disorders.
In addition, we conducted a correlation analysis to test whether

there is a consistency between transcriptomic and proteomic MR
associations of SCZ. Our results showed that the correlation of MR
effect between transcriptomic and proteomic associations is
moderate (Pearson correlation R= 0.35, Fig. S1).

MR analysis identifies 7 actionable drug targets for bipolar
disorder
We identified 7 actionable targets for BP. CACNA1C was identified
by using GTEx eQTL as genetic instruments, and 5 genes (DCLK3,
SRPK2, DAGLA, PSMD3 and STK4) were identified by using
PsychENCODE eQTL. We also identified significant MR results for
1 protein (PRKCB) (Fig. 2, Table S1). Five genes (CACNA1C, DAGLA,
SRPK2, PSMD3 and STK4) were nominated by the BP GWAS. No
overlapping genes were observed in the 3 QTL panels (Fig. 2).
However, we found overlapping MR results between SCZ and BP
(Figs. 1, 2). The CACNA1C gene is the top MR hit for BP (GTEx eQTL)
(Fig. 2a, P= 3.31 × 10−11, OR [95%CI]= 0.89 [0.85, 0.92]) and
SCZ (GTEx eQTL) (Fig. 1a). In addition, we noticed that two
independent instruments (rs75968099, rs56131451) were included
for DCLK3 gene (Table S1. MR P= 6.05 × 10−13, OR [95%CI]= 0.51
[0.42, 0.61], heterogeneity test P= 0.79) in our MR result.

Identification of 7 actionable therapeutic targets for
depression
We identified a total of 7 actionable targets for depression (Fig. 3,
Table S1), including 1 gene STK24 (MR P= 1.29 × 10−06, OR [95%
CI]= 1.05 [1.03, 1.07]) fromGTEx eQTL dataset (Fig. 3a) and 6 proteins
from ROSMAP pQTL (PSMB4, SERPINC1, IMPDH2, GRIA1, TAOK3 and
P2RX7) (Fig. 3c). Of note, 3 genes (STK24, IMPDH2 and P2RX7) were
nominated as risk genes in the original depression GWAS.
We observed protein-protein interactions between the signifi-

cant MR proteins. For example, PSMB4 interacts with PSMA4 and
PSMD3 (Fig. S2), and GRIA1 interacts with PRKCB (Fig. S2). These
results suggest the physical interactions between the nominated
risk proteins.

Identification of TIE1 as a potential drug target for ADHD
Only one significant MR result (TIE1) was identified for ADHD (Fig. 4b,
P= 2.12 × 10−07, OR [95%CI]= 1.56 [1.32, 1.85]). Interestingly, TIE1 is
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not nominated by the original ADHD GWAS. No significant MR
results were identified in GTEx eQTL and ROSMAP pQTL panels. The
top finding in GTEx eQTL panel (Fig. 4a, CD40) and ROSMAP pQTL
(Fig. 4c, ITGA5) were marked in Fig. 4.

Expression of the identified genes in different cell types of the
human brain
We explored the expression pattern of the prioritized genes using
the single cell RNA sequencing data. Among genes associated
with SCZ, AKT3, BRD2, CAMKK2, PSMA4 and RORB, are widely

expressed in different brain cell types at relatively high level
(Figs. S3–S6). RORB, MAPK3 and AKT3 are highly expressed in
human brain tissues, while PSMA4, CACNA1C and PTK6 show
moderate expression (Figs. S11–S14). For BP, DCLK3, PSMD3,
SRPK2, and STK4 are widely expressed in different brain cell types
(Figs. S7, S8). However, PRKCB is specifically expressed in excitatory
deep layer 1 (Fig. S7b). SRPK2 and PSMD3 proteins are highly
expressed in human brain tissues (Fig. S15). For depression,
GRIA1, IMPDH2, PSMB4, STK24 and TAOK3, are widely expressed
in different brain cell types (Figs. S8–S10). STK24, IMPDH2 and

Fig. 1 The Manhattan plots of MR analysis results using QTLs and SCZ GWAS summary statistics (33,640 SCZ cases and 43,456 controls).
The red dashed line is the Bonferroni corrected significant level. a The MR result using GTEx brain eQTL as instruments. b The MR result using
PsychENCODE eQTL as instruments. c The MR result using ROSMAP pQTL as instruments.
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TAOK3 show moderate protein abundance in the human brain
tissue (Figs. S16, S17).

Genome-wide MR analysis using all pQTL identified additional
candidate risk proteins
In addition to the actionable proteins, we also performed a
genome-wide Mendelian randomization by including pQTLs of all
proteins. We identified 25, 15, 10, and 1 risk proteins for SCZ, BP,
depression and ADHD, respectively (Table S2, Figs. S18–S21).
Notably, CNNM2 (MR P= 2.52 × 10−15) was the top risk protein for
SCZ, which is consistent with our previous findings (Fig. S18) [76].
NEK4 (MR P= 5.05 × 10−09) represents the most significant MR
result for BP (Fig. S19) and this protein was also nominated by SCZ
MR analysis (Fig. S18). Interestingly, CNNM2 (MR P= 2.49 × 10−06)
was also identified by pQTL MR analysis for depression (Fig. S20).
GMPPB showed association with both depression and ADHD
(Figs. S20, S21). These results nominated additional risk proteins
for psychiatric disorders.

DISCUSSION
Development of novel therapeutic drugs for psychiatric disorders
has been proved to be extreme challenging. A major reason for
this plight is the unknown pathophysiology of psychiatric
disorders. In the past decade, large-scale genetic studies have
identified multiple risk variants for psychiatric disorders. These
GWASs have provided important biological insights into psychia-
tric disorders. In fact, human genetics could provide important
information to inform drug development and a recent study by
Nelson et al. showed that selecting genetically supported target
genes (as therapeutic targets) could increase the success rate of

drug development substantially [48]. Thus, leveraging GWASs may
provide new opportunities to develop drugs for psychiatric
disorders. In this study, we conducted comprehensive MR analyses
to identify potential causal genes for psychiatric disorders. By
focusing on druggable genes or proteins, we prioritized 46
actionable drug targets for four common psychiatric disorders
(schizophrenia, BP, depression and ADHD). Our results provide
actionable promising candidates for drug repurposing for
psychiatric disorders. CACNA1C had the most significant MR
results among the prioritized targets for SCZ, strongly suggesting
that this gene represents a promising drug target for SCZ.
CACNA1C encodes the alpha-1 (Cav1.2) subunit of a voltage-
dependent calcium channel, which mediates the influx of calcium
ions into the cell [77]. CACNA1C regulates gene expression and
synaptic plasticity by initiating downstream signaling cascades
[78]. Genetic variants in CACNA1C showed robust associations
with SCZ and BP [78], and mouse models also revealed
psychiatric-like and mood phenotypes in Cacna1c heterozygous
deletion mice [78]. These lines of convergent evidence indicate
the pivotal role of CACNA1C in psychiatric disorders. Of note,
dihydropyridine could inhibits CACNA1C. Thus, this gene is a
promising drug target for SCZ and BP. We checked the ChEMBL
database (https://www.ebi.ac.uk/chembl/) and found that DRO-
NEDARONE (CHEMBL184412), which was approved by Food and
Drug Administration (FDA), could target voltage-gated L-type
calcium channel proteins (including CACNA1C, CACNA1D,
CACNA1S and CACNA1F), suggesting the therapeutic potential
of DRONEDARONE for SCZ and BP.
Other interesting candidate targets for SCZ include MAPK3 and

PSMA4. MR analysis indicated that MAPK3 showed significant
associations with SCZ in both eQTL and pQTL datasets, implying

Table 1. The Mendelian Randomization results of brain QTL datasets (GTEx eQTL, PsychENCODE eQTL and ROSMAP pQTL) and schizophrenia GWAS.

Gene Instruments Method Instruments dataset MR P value Beta OR [95% CI]

HLA-DRB1 rs926961 Wald ratio GTEx (Brain Cortex) 1.04 × 10−09 0.059 1.06 [1.04, 1.08]

BRD2 rs209474 Wald ratio GTEx (Brain Cerebellum) 3.08 × 10−09 −0.17 0.84 [0.80,0.89]

HLA-DRB1 rs9270692 Wald ratio GTEx (Brain Cerebellar
Hemisphere)

6.47 × 10−08 0.055 1.06 [1.04, 1.08]

HLA-DRB1 rs9281938 Wald ratio GTEx (Brain Nucleus
accumbens basal ganglia)

8.41 × 10−08 0.046 1.05 [1.03, 1.06]

CHRNA2 rs11783093 Wald ratio GTEx (Brain Cerebellum) 1.78 × 10−08 −0.085 0.92 [0.89, 0.95]

RORB rs11144082 Wald ratio GTEx (Brain Cerebellum) 1.78 × 10−06 0.16 1.17 [1.10, 1.25]

CACNA1C rs7297582 Wald ratio GTEx (Brain Cerebellum) 3.23 × 10−15 −0.17 0.85 [0.81, 0.88]

MAPK3 rs28529403 Wald ratio GTEx (Brain Frontal
Cortex BA9)

1.55 × 10−06 0.13 1.14 [1.08, 1.20]

CYP2D6 rs2142694 Wald ratio GTEx (Brain Putamen basal
ganglia)

2.92 × 10−07 −0.066 0.94 [0.91, 0.96]

CYP2D6 rs2267448 Wald ratio GTEx (Brain Cerebellar
Hemisphere)

4.52 × 10−07 −0.053 0.95 [0.93, 0.97]

PTK6 rs139707650 Wald ratio GTEx (Brain Cerebellar
Hemisphere)

1.53 × 10−06 −0.10 0.90 [0.86, 0.94]

CYP2D6 rs2743451 Wald ratio GTEx (Brain Frontal
Cortex BA9)

4.97 × 10−07 −0.066 0.94 [0.91, 0.96]

CYP2D6 rs2284087 Wald ratio GTEx (Brain Hippocampus) 3.16 × 10−06 −0.064 0.94 [0.91, 0.96]

AKT3 rs3008660 Wald ratio PsychENCODE 7.82 × 10−07 −1.29 0.28 [0.17. 0.46]

PSMA4 rs28498264 Wald ratio PsychENCODE 1.09 × 10−10 1.70 5.48 [3.27, 9.19]

PTK6 rs2150808 Wald ratio PsychENCODE 2.31 × 10−06 −0.71 0.49 [0.37, 0.66]

HLA-DRB1 rs502771 Wald ratio ROSMAP 1.15 × 10−08 0.50 1.65 [1.39, 1.96]

CAMKK2 rs3794207; rs12825611;
rs792600

Inverse variance
weighted

ROSMAP 9.68 × 10−06 −1.15 0.32 [0.19, 0.53]

P2RX7 rs3751143 Wald ratio ROSMAP 5.00 × 10−05 −0.15 0.86 [0.80, 0.93]

MAPK3 rs11865086 Wald ratio ROSMAP 2.38 × 10−05 1.93 6.91 [2.82, 16.93]
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the causal effects of expression change of these two genes in SCZ.
Many studies, including genetic study [40], transcriptome and
proteome profiling [79], integrative analysis [80], network-based
prioritization [81] and functional genomics study [82], have
showed the pivotal role of MAPK3 in SCZ. For example, MAPK3
has been reported to be dysregulated in schizophrenia cases
compared with healthy controls (P= 0.0001) [79]. The potential
role of PSMA4 in SCZ was also supported by large-scale GWAS [40]
and a recent prioritization study [81]. These results highlight the
pivotal role of MAPK3 and PSMA4 in SCZ. Thus, these two genes

may be served as promising therapeutic targets for SCZ treatment.
MAPK3 is a potential target of SORAFENIB (CHEMBL1336), and
PSMA4 (20 S proteasome subunit alpha-3) is a potential target of
CARFILZOMIB (CHEMBL451887, targeting 26 S proteasome). Our
MR analysis suggested that SORAFENIB and CARFILZOMIB may be
repositioned for schizophrenia treatment. However, further clinical
trials are needed.
For depression, interesting protein candidates include PSMB4,

GRIA1 and TAOK3. Interestingly, a previous study also has revealed
the potential role of PSMB4 in depression [83]. Glutamate

Fig. 2 The Manhattan plot of MR analysis using QTLs and BP GWAS summary statistics (41,917 BP cases and 371,549 controls). The red
dashed line is the Bonferroni corrected significant level. a The MR result using GTEx brain eQTL as genetic instruments. b The MR result using
PsychENCODE eQTL as genetic instruments. c The MR result using ROSMAP pQTL as genetic instruments.
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ionotropic receptor AMPA type subunit 1 (GRIA1) has a critical role
in glutamate-mediated neurotransmission and synaptic plasticity.
In fact, the rapid antidepressant ketamine is an inhibitor of
N-methyl D-aspartate (NMDA) receptors, indicating the crucial role
of glutamate signaling in depression. TAOK3 is a serine/threonine
protein kinase that regulates the p38/MAPK14 stress-activated
MAPK cascade and the MAPK8/JNK cascade [84, 85]. Interestingly,
previous studies have reported the crucial role of MAPK signaling
in depression [86–89]. These lines of evidence support that TAOK3

and MAPK signaling pathway may be a promising target for
depression treatment.
Only TIE1 gene is significant in our MR analysis for ADHD. TIE1

encodes a transmembrane tyrosine-protein kinase. TIE1 has been
reported as one of the significant genes in a Transcriptome-wide
association study (TWAS) of ADHD [90], suggesting that the
expression level change of TIE1 gene may have a role in ADHD
etiology. These evidence supported that TIE1 may be served as a
promising therapeutic drug target for ADHD.

Fig. 3 The Manhattan plot of MR analysis result using QTLs and depression GWAS summary statistics (170,756 cases, 329,443 controls).
The red dashed line is the Bonferroni corrected significant level. a The MR result using GTEx brain eQTL as instruments. b The MR result using
PsychENCODE eQTL as instruments. c The MR result using ROSMAP pQTL as instruments.
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The candidate genes identified by MR varied across the 4
psychiatry disorders (e.g., 12 for SCZ, and only 7 for depression and
1 for ADHD, respectively). Following reasons may lead to this result:
First, the sample size included in the original genome-wide
association studies (GWASs) of different psychiatric disorders were
different. For example, the SCZ GWAS included 33,640 cases and
43,456 controls. However, the sample size included in the ADHD
GWAS was smaller (20,183 ADHD patients and 35,191 controls). The
larger sample size, the higher power to detect the associations
between common variations and diseases. Second, the heritability

of these psychiatric disorders are different [91–94]. The heritability
of depression (about 30–40%) is much smaller than other
psychiatric disorders [91–94]. Accordingly, the number of identified
candidate genes for depression is less than SCZ. In addition, our
significant MR analysis findings were not supported by both eQTL
and pQTL MR analysis. The potential reasons may due to the weak
correlation between mRNA expression level and protein level as
previously [95] reported. Besides, the number of instruments and
sample size of pQTL panel is smaller than eQTL panels, leading to
less proteins were included in MR.

Fig. 4 The Manhattan plot of MR analysis result using QTLs and ADHD GWAS summary statistics (20,183 cases, 35,191 controls). The red
dashed line is the Bonferroni corrected significant level. a The MR result using GTEx brain eQTL as genetic instruments. b The MR result using
PsychENCODE eQTL as genetic instruments. c The MR result using ROSMAP pQTL as genetic instruments.
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It should be noted that many genes identified in this study
have been reported in previous studies [45, 76, 90, 96–102].
However, the key purpose of our study is to prioritize the
actionable novel drug targets for psychiatric disorders (which is
different from previous studies as the main goal of these studies
is to identify risk genes). We thus believe that our findings
provide critical drug-repurposing opportunities for psychiatric
disorders.
In summary, we identified actionable new drugs targets for

psychiatric disorders. As these proteins are targets of approved
drugs or drugs in clinical phase of development, our findings
prioritize actionable novel drug targets for development of new
therapeutics and provide critical drug-repurposing opportunities
for psychiatric disorders.
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