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Stochastic dynamics govern many important
processes in cellular biology, and an underlying
theoretical approach describing these dynamics
is desirable to address a wealth of questions in
biology and medicine. Mathematical tools exist
for treating several important examples of these
stochastic processes, most notably gene expression
and random partitioning at single-cell divisions or
after a steady state has been reached. Comparatively
little work exists exploring different and specific ways
that repeated cell divisions can lead to stochastic
inheritance of unequilibrated cellular populations.
Here we introduce a mathematical formalism to
describe cellular agents that are subject to random
creation, replication and/or degradation, and are
inherited according to a range of random dynamics
at cell divisions. We obtain closed-form generating
functions describing systems at any time after any
number of cell divisions for binomial partitioning
and divisions provoking a deterministic or random,
subtractive or additive change in copy number, and
show that these solutions agree exactly with stochastic
simulation. We apply this general formalism to
several example problems involving the dynamics
of mitochondrial DNA during development and
organismal lifetimes.
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1. Introduction
Stochastic dynamics underlie a multitude of processes in cellular biology [1–6]. Understanding
the sources of this randomness within and between cells is a central current challenge
in quantitative biology [7]. Noise has been found to affect processes including stem-cell
fate decisions [8,9], bet-hedging in bacterial phenotypes [10,11], cancer development [12]
and responses to apoptosis-inducing factors [13,14], illustrating the fact that a theoretical
understanding of stochastic cellular biology is of great importance in medical and biological
problems.

Partitioning of cellular components at cell divisions provides a considerable source
of stochasticity in cell biology [15]. Huh and Paulsson [16] have shown that uneven segregation
of cellular constituents at mitosis can contribute significantly to cell-to-cell differences in levels of
cellular components and proteins in a population, focusing on stochasticity in protein inheritance
between sister cells. In addition to variability in protein levels, there is evidence that random
partitioning of mitochondria at cell divisions can lead to substantial extrinsic variability in
the physical and chemical attributes, and behavioural phenomena including differentiation
propensity, in a population of cells [17].

Historically, mathematical modelling, including the use of birth-and-death processes, has
provided a theoretical foundation with which to describe phenomena in stochastic biology [18].
Early work on the problem of the stochastic evolution of cellular constituents in a population of
dividing cells was performed in the context of protein levels in bacterial cells by Berg [19] and
Rigney [20], who made analytic progress with birth-and-death models coupled to cell division
in the case of a steady-state population of cells with constant birth-and-death rates. A famous
example of stochastic analysis of cellular systems is the Luria–Delbrück treatment of population
statistics of bacterial mutations [21], which has been addressed by several analyses including
generating function approaches [22]. Matrix equations, with operators corresponding to the
processes of birth, death and partitioning, have also been used to obtain numerical results on
stochastic effects in populations of dividing cells [23,24], and a framework of non-equilibrium
statistical mechanics has been used to derive general properties of protein content of dividing cells
[25]. Stochastic models examining the behaviour of a continuous variable (for example, protein
concentrations) have also been widely used in cellular biology [26].

Several stochastic models have been formulated for systems involving compartmentalized
elements which replicate and are partitioned as compartments divide. An early example of this
approach is due to Dowman [27], who considers mean copy number and extinction probability
of cellular elements for specific birth, death and partitioning dynamics. Other applications are
in the study of growing intestinal crypts, in which a collection of crypts, each containing a
replicating quantity of stem cells, grow and divide according to a branching process [28], and
in the stochastic corrector model, whereby a population of replicators with given concentrations
of constituents divide and propagate [29]. More recently, Swain et al. [30] have derived analytic
results describing stochastic gene expression in dividing cells after a steady limit cycle has
been reached. Quantitative results, in terms of integrals over kinetic rate dynamics, have been
obtained for stochastic gene expression where cellular components are binomially partitioned at
cell divisions [31]. The variance resulting from more general partitioning dynamics of cellular
components has also been addressed for single-cell divisions [15,16].

In this article, we focus on birth–immigration–death (BID) dynamics rather than the well-
studied model dynamics of stochastic gene expression. With this framework, we attempt to
provide a model for the stochastic dynamics of cellular components other than gene products;
we particularly focus on mitochondrial DNA (mtDNA) in several examples. Populations of
hundreds or thousands of mtDNA molecules are typically present in eukaryotic cells, replicating
and degrading somewhat independently of the cell cycle. mtDNA encodes vital bioenergetic
machinery, making it an important target for stochastic analysis. We will consider a variety of
partitioning regimes and, where possible, an arbitrary number of cell divisions, and aim to derive
closed-form generating functions describing the dynamics of our model cellular components. In
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so doing, we avoid assumptions about equilibrium behaviour and restrictions to lower-order
moments of copy number distributions, aiming to produce a non-equilibrium theory to describe
stochastic dynamics in full distributional detail, at arbitrary times during any cell cycle. Our
specific consideration of mtDNA dynamics provides a theoretical framework with which a class
of models, often analysed numerically through simulation, can be described analytically.

In the first section, we introduce our formalism and derive generating functions for BID
dynamics with binomial partitioning and the inheritance of a deterministically or randomly
reduced or increased complement of the parent cell’s population. We next illustrate the exact
agreement between our theory and stochastic simulation, and investigate several example
biological questions, regarding the dynamics of mtDNA during a copy number bottleneck and
over organismal lifetimes involving many cell divisions. We further harness the power afforded
by a generating function approach to explore extinction probabilities in these systems, and
also perform our analysis for a given number of cell divisions in which cellular components
are deterministically partitioned, and randomly partitioned in clusters. Finally, we discuss the
implications of our mathematical formalism for approaches to stochastic biology.

2. Model and analysis
In this section, we detail the approach we take to obtain generating functions describing the
stochastic dynamics of cellular agents subject to BID dynamics and stochastic partitioning at cell
divisions. We first illustrate how the generating function describing agent dynamics within a
cell cycle is derived. We next consider how this solution may be extended over cell divisions,
using an assumption (later shown to be true) about the functional form of the expression
describing the inheritance of agents at cell divisions. We then show that this extended solution
gives rise to an overall generating function containing factors that are the solutions to recursion
relations, where each recursive step corresponds to a cell division. We obtain solutions for these
recursion relations, thus yielding general generating functions for dynamics over arbitrarily many
cell divisions. Finally, we validate our early assumption for several important specific cases of
inheritance dynamics and derive the specific solutions in these cases.

(a) Agents within a cell cycle
We consider BID dynamics, where agents are created (∅ → •) with rate α, replicate (• → ••)
with rate λ and are removed (• → ∅) with rate ν (figure 1a); these processes are referred to as
immigration, birth and death, respectively, and are assumed to be Poissonian, with non-time-
varying rates (see Results). We will later consider setting some of these parameters to zero, as
special cases of the overall BID dynamics. We note that some literature refers to our ‘immigration’
term (producing agents from nothing) as ‘birth’, using the term ‘replication’ to describe the
production of agents from existing agents; the specific symbols used to denote these rates also
vary. For compatibility with a wide body of literature we adopt the nomenclature above.

The dynamics of populations under BID dynamics are given by the corresponding master
equation, describing the time evolution of the probability P(m, t) that the system contains m agents
at time t:

dP(m, t)
dt

= αP(m − 1, t) + ν(m + 1)P(m + 1, t) + λ(m − 1)P(m − 1, t) − (α + ν m + λm)P(m, t), (2.1)

with initial condition

P(m, 0) = δmm0 . (2.2)

We are concerned with the generating function G(z, t) =∑∞
m=0 zmP(m, t) for the distribution

of cellular components in a general set of conditions. Once this generating function has
been calculated, then, by its definition, all information about the distribution P(m, t) can
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dynamics between cell divisions

immigration  m Æ m + 1, rate a 
birth              m Æ m + 1, rate l m 
death             m Æ m – 1, rate vm

partitioning at cell divisions

example 1: binomial partitioning (fission-like division)

example 2: subtractive partitioning (budding)

(e.g. m = 5)
(e.g. m = 11)

(e.g. m = 6)

(e.g. m = 8)

random
processes:

Δ

Δ

(a) (b)

Figure 1. Illustration of birth–immigration–death (BID) dynamicswith randompartitioning.Wewill derive expressions for the
statistics of copy numberm of cellular agents over successive cell generations, separated by divisions. (a) Between cell divisions,
agents may be produced, replicated or degraded; each is a Poissonian event. The copy numberm of agents in a cell is a random
variable that changes with these dynamics. (b) At cell divisions, the copy number of agents changes according to a different
type of random event. Two possibilities are illustrated here: the binomial partitioning of agents into two daughter cells (one of
whichwill be tracked in the next generation), and the loss of a randomnumber of agents to a smaller bud (the larger remaining
cell will be tracked in the next generation).

be obtained through taking its derivatives; for example, E(m) = ∂G/∂z|z=1, V(m) = (∂2G/∂z2 +
∂G/∂z − (∂G/∂z)2)|z=1 and P(m) = (1/m!)(∂mG/∂zm)|z=0. The generating function corresponding
to equations (2.1) and (2.2) obeys

∂G(z, t)
∂t

= α(z − 1)G(z, t) + (ν(1 − z) + λ(z2 − z))
∂G(z, t)

∂z
(2.3)

and

G(z, 0) = zm0 , (2.4)

the solution to which is well known (see electronic supplementary material, appendix S1):

G(z, t) =
(

ν − λ

λ e(λ−ν)t(z − 1) − λz + ν

)α/λ

︸ ︷︷ ︸
ξ (z,t)

(
ν e(λ−ν)t(z − 1) − λz + ν

λ e(λ−ν)t(z − 1) − λz + ν

)
︸ ︷︷ ︸

g(z,t)

m0

(2.5)

≡ ξ (z, t)(g(z, t))m0 , (2.6)

where the final line, using the underbraced substitutions in equation (2.5), casts the solution in a
form that will be useful later.

(b) Partitioning of agents at cell divisions
We now consider a series of cell divisions, linked by quiescent periods governed by the within-
cell-cycle dynamics above. Time is accounted for throughout this model in the following manner.
A full cell cycle is assumed to take time τ , after which a division occurs. A variable t measures the elapsed
time since the most recent cell division. As divisions occur every interval τ , t is always less than or
equal to τ . If n divisions have occurred, the total elapsed time since the initial state is nτ + t. We
will here assume that τ is constant, showing later that this assumption can be relaxed when our
approach is extended to deal with many different dynamic phases.

We will generally write Pi(m, t|m0) for the probability of observing m agents at a time t after
the ith cell division, given initial condition m0 (at the start of the cell cycle before the first cell
division). Hence, P0(m, t|m0) is the probability of observing copy number m at time t, given that
zero cell divisions have occurred; and Pi−1(m, τ | m0) is the probability of observing m agents at a
time τ after the (i − 1)th cell division (i.e. immediately before the ith cell division).
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Consider the ith cell division in a series of divisions. Throughout this article, we will use subscript
a to denote ‘after’ and subscript b to denote ‘before’ a cell division: thus, we write mi,b for copy number
before the division and mi,a for copy number afterwards. We assume that mi,b ≥ mi,a always. We
write Pδ(a | b) for the probability of observing a agents after a cell division, given b agents before
that division. The generating function at time t after the cell division is then given by

Gi(z, t) =
∑

m

∞∑
mi,b=0

mi,b∑
mi,a=0

zmP0(m, t | mi,a)Pδ(mi,a | mi,b)Pi−1(mi,b, τ | m0) (2.7)

=
∞∑

mi,b=0

mi,b∑
mi,a=0

G(z, t | mi,a)Pδ(mi,a | mi,b)Pi−1(mi,b, τ | m0) (2.8)

=
∞∑

mi,b=0

mi,b∑
mi,a=0

ξ (z, t)g(z, t)mi,a Pδ(mi,a | mi,b)Pi−1(mi,b, τ | m0). (2.9)

We will make the assumption that the expression in equation (2.9) may be reduced to the form

Gi(z, t) ≡ ξ (z, t)φ(z, t)
∞∑

mi,b=0

θ (g(z, t))mi,b Pi−1(mi,b, τ | m0), (2.10)

where θ and φ are functions to be determined, given knowledge of a particular partitioning rule.
The partitioning mechanisms that we will subsequently consider can all be cast in this form, as
we will demonstrate.

We now consider the overall generating function describing a set of cell divisions. To represent
the sum over all possible copy numbers before and after all cell divisions between divisions j and
i, we introduce the notation

′∑
i,j

≡
∞∑

mi,b=0

mi,b∑
mi,a=0

∞∑
mi−1,b=0

mi−1,b∑
mi−1,a=0

· · ·
∞∑

mj,b=0

mj,b∑
mj,a=0

. (2.11)

This combination of sums takes into account all possible states before and after each cell
division i, i − 1, . . . , j, for i ≥ j. We note that the ordering of sums here progresses backwards in
time from left to right: the leftmost two sums sum over all configurations related to the most recent
cell division i, the next two sum over all configurations related to the preceding cell division i − 1,
and so on. The final probability distribution is then

Pn(m, t | m0) =
′∑

n,1

P0(m, t | mn,a)
n−1∏
i=1

Φi, (2.12)

where Φi is a ‘probability propagator’ of the form

Φi = Pδ(mi,a | mi,b)P0(mi,b, τ | mi−1,a), (2.13)

representing the probability that a cell, which started with mi−1,a units after division i − 1, grew
to have mi,b units, of which mi,a units were inherited by the next daughter cell after division i. The
chain of divisions can be terminated at n divisions in the past by setting m0,a ≡ m0 as the initial
condition of the ancestor cell. Thus, a subscript 1 labels the first cell division, and a subscript n
labels the most recent of n cell divisions.
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The overall generating function after n divisions is

Gn(z, t | m0) =
∑

m

′∑
n,1

zmP0(m, t | mn,a)
n−1∏
i=1

Φi (2.14)

=
′∑

n,1

G(z, t | mn,a)
n−1∏
i=1

Φi (2.15)

=
′∑

n−1,1

∞∑
mn,b=0

mn,b∑
mn,a=0

ξ (z, t)g(z, t)mn,a Pδ(mn,a | mn,b)P0(mn,b, τ | mn−1,a)
n−2∏
i=1

Φi. (2.16)

Generalizing the approach of Rausenberger & Kollmann [31], we now employ the assumption
in equation (2.10) to write

′∑
n−1,1

∞∑
mn,b=0

mn,b∑
mn,a=0

ξ (z, t)g(z, t)mn,a Pδ(mn,a | mn,b)P0(mn,b, τ | mn−1,a)
n−2∏
i=1

Φi (2.17)

= ξ (z, t)φ(z, t)
′∑

n−2,1

∞∑
mn,b=0

θ (z, t)mn,b P0(mn,b, τ | mn−1,a)
n−2∏
i=1

Φi (2.18)

= ξ (z, t)φ(z, t)
′∑

n−2,1

G(θ (g(z, t)), τ | mn−1,a)
n−2∏
i=1

Φi (2.19)

≡ ξ (z, t)φ(z, t)
′∑

n−2,1

G(z1, τ | mn−1,a)
n−2∏
i=1

Φi, (2.20)

where in equation (2.20) we have changed variables z1 ≡ θ (g(z, t)). Comparing equation (2.15)
and (2.20), we can see that this process can be followed inductively. Each further step through
the induction corresponds to another cell division, extracts a prefactor of φ(zi, τ ), and causes
another change of variables zi+1 = θ (g(zi, τ )). Extending this induction to n cell divisions, the
overall generating function after n divisions is then

Gn(z, t) =
( n∏

i=1

ξ (zi, τ )

)( n∏
i=1

φ(zi, τ )

)
ξ (z, t)h0(z, t)m0 , (2.21)

where hi and zi obey recurrence relations

hi(z, t) = g(θ (hi+1), τ ); hn(z, t) = g(z, t) (2.22)

and

zi+1 = θ (g(zi, τ )); z1 = θ (g(z, t)). (2.23)

The recurrence relations equations (2.22) and (2.23) are rather similar, but we retain their
distinction for mathematical convenience, also noting that their indexing runs in opposite
directions through time. Hence, the boundary condition for hi arises from the most recent cell
division, corresponding to i = n; the boundary condition for zi also arises from the most recent
division, but in this indexing this corresponds to i = 1. Of equation (2.22), only h0 plays a role in
equation (2.21); from equation (2.23), all zi for i = 1 to n feature.

It can be noted that, for n = 0, the products in equation (2.21) vanish and the boundary
condition hn ≡ h0 = g(z, t) leads to G0(z, t) = ξ (z, t)g(z, t)m0 as required.

For BID dynamics, the products and final terms in equation (2.21) are analytically tractable for
several important inheritance regimes, allowing us to write the generating function in an exact
form. We will first analyse two partitioning regimes of importance for biological modelling, and
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illustrate how this approach produces statistics of interest for mtDNA populations under these
regimes. We will later explore other partitioning regimes.

(c) Binomial inheritance
We first consider the case where agents are partitioned binomially at cell divisions. In this case,
the following identities hold:

Pδ(mi,a | mi,b) =
(

mi,b
mi,a

)
2−mi,b ; (2.24)

mi,b∑
mi,a=0

ξ (z, t)g(z, t)mi,a Pδ(mi,a | mi,b) = ξ (z, t)
(

1
2

+ g(z, t)
2

)mi,b

; (2.25)

and so

φ(z, t) = 1; (2.26)

θ (g(z, t)) =
(

1
2

+ g(z, t)
2

)
, (2.27)

where equations (2.26) and (2.27) follow by comparing equation (2.25) with equation (2.10). We
are thus concerned with the solutions to the recurrence relations

zi = 1
2

+ g(zi−1, τ )
2

; z1 = 1
2

+ g(z, t)
2

(2.28)

and

hi = g
(

1
2

+ hi+1

2
, τ
)

; hn = g(z, t). (2.29)

We will introduce the symbols l ≡ e(λ−ν)τ and l′ ≡ e(λ−ν)t for convenience here and throughout.
In the electronic supplementary material, appendix S1, we solve these related systems of
equations, showing that the solutions take the form

hi = κ112i + κ12li

κ132i + κ14li
(2.30)

and

zi = κ212i + κ22li

κ232i + κ24li
, (2.31)

with κ11 = lnl′(z − 1)(λ + ν(l − 2)), κ12 = κ14 = 2n(λ(l′ − z(l + l′ − 2)) + ν(l − 2)), κ13 = lnl′(z − 1)λ
(l − 1), κ21 = κ23 = −l(λl′(z − 1) + (l − 2)(λz − ν)), κ22 = l′(z − 1)(l(λ + ν) − 2ν) and κ24 = 2λl′(z − 1)
(l − 1).

We also show in the electronic supplementary material, appendix S1, that the first product in
equation (2.21) takes the form(

Bn+1
1 B−n−1

2 (A2 + B2)(−A1/B1; ρA/ρB)n+1

(A1 + B1)(−A2/B2; ρA/ρB)n+1

)γ

, (2.32)

where A1 = 2λl′(l − 1)(z − 1), A2 = λll′(z − 1)(l − 1), B1 = B2 = l(λl′(1 − z) − (l − 2)(λz − v)),
ρA = l, ρB = 2 and γ = α/λ. (a; q)n is the q-Pochhammer symbol defined by (a; q)n ≡∏n−1

k=0
(1 − aqk). While this symbol is hard to interpret intuitively, we will see that expressions for
important moments of distributions often only involve particular derivatives of the symbol that
reduce to simple algebraic expressions (see Results). In addition, this term vanishes in the α = 0
case where immigration dynamics can be ignored.

Combining h0 from equation (2.30) and equation (2.32), we can then use equation (2.21) to yield
a closed-form generating function for BID dynamics with binomial partitioning at cell divisions
(the full form is explicitly presented in the electronic supplementary material, appendix S1). In
the Results section, we will demonstrate the efficacy of this generating function solution (and
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Figure2. Comparisonof analytic results for thefirst twomomentswith stochastic simulation. Trajectories of copynumbermean
and standard deviation resulting from our analytic results (lines) and stochastic simulation (points). (a) Birth–immigration–
death (BID) dynamics within cell cycles; binomial partitioning at cell divisions. (b) BID dynamics within cell cycles; loss of a
binomially distributed number of agents (p= 1

2 , N = 100) at each cell division. Other parameters for these systems are given
in the text. There is an excellent match between theory and simulation in all cases.

subsequent solutions) by showing that moments derived from the generating function exactly
match stochastic simulation (figure 2). This algebraic generating function for an arbitrary number
of cell divisions extends a previous solution presented in integral form from [31], with the
advantage that the methodology allows straightforward analytic investigation of this and a wider
class of systems; we next demonstrate this generalization with a new inheritance regime which
we will demonstrate has biological applicability.

(d) Random additive or subtractive inheritance
We now consider the case where a number of agents are lost or gained at each cell division, and
this number is itself a random variable (we will consider the case where this number is a fixed
constant later). For mathematical convenience, we shall first assume that a certain number of
agents are lost at partitioning and that this number is taken from a binomial distribution with
population size 2η and probability 1

2 , so that the average loss number is η (it is straightforward
to see that a negative value for the η parameter corresponds to the gain of a number of elements
identically distributed). In this case, by considering the possible values of n, the number of agents
lost at a division, we obtain

Pδ(mi,a|mi,b) =
2η∑

n=0

δmi,a,mi,b−n

(
2η

n

)
2−2η; (2.33)

mi,b∑
mi,a=0

ξ (z, t)g(z, t)mi,a Pδ(mi,a|mi,b) = ξ (z, t)
(

1
2

+ 1
2 g(z, t)

)2η

g(z, t)mi,b ; (2.34)

and so

φ(z, t) =
(

1
2

+ 1
2 g(z, t)

)2η

; (2.35)

θ (g(z, t)) = g(z, t). (2.36)



9

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150050

...................................................

The solutions to the corresponding recurrence relations are derived in the electronic
supplementary material, appendix S1, and are

hi = lnl′ν(z − 1) + li(ν − λz)
lnl′λ(z − 1) + li(ν − λz)

(2.37)

and

zi = lil′ν(z − 1) + l(ν − λz)
lil′λ(z − 1) + l(ν − λz)

. (2.38)

The first product in equation (2.21) is
∏n

i=1 ξ (zi, τ ), which we show in the electronic supple-
mentary material, appendix S1, takes the form of equation (2.32) with A1 = λl′(z − 1),
A2 = λll′(z − 1), B1 = B2 = l(ν − λz), ρA = l, ρB = 1 and γ = α/λ. The second product term is∏n

i=1(1/2 + 1/(2g(zi, τ )))2η. We here introduce the symbols x1 ≡ λ(l−1 − 1)/(λ − ν) and x2 ≡
λ(l − 1)/(λ − ν). In the electronic supplementary material, appendix S1, we show that this
product takes the form of equation (2.32) with A1 = l′(λ + ν)(−x2)n(z − 1), B1 = B2 = −2xn

1(λz − ν),
A2 = 2l′ν(−x2)n(z − 1), ρA = x1, ρB = (−x2) and γ = 2η.

We then have a closed-form generating function for random subtractive partitioning and BID
dynamics (the full form is presented in the electronic supplementary material, appendix S1).
We note here that applying this approach to the case of loss at cell divisions does not explicitly
restrict copy number to be non-negative, and care must therefore be taken in its application. If the
dynamics under investigation are such that the probability of copy number m < η is negligible,
the absence of this restriction will have negligible influence on results extracted from the analysis.
If low copy numbers are likely, this approach can still yield useful results if α = 0, if expressions
for P(m, t) are derived and P(m ≤ 0, t) is treated as equivalent to P(m = 0, t). This approximation is
valid because the birth and death operations have m = 0 as an absorbing state, so a copy number
below zero can never subsequently exceed m = 0. However, the simple expressions for E(m, t)
and V(m, t) in terms of generating function derivatives will yield incorrect results in these cases.
The approximation will fail in cases where a non-negligible probability of attaining zero copy
number is coupled with dynamics involving immigration (as opposed to birth). In this case, a
specific boundary rule must be written in equation (2.1); we have been unable to find closed-form
solutions in this case.

3. Results and applications

(a) Comparison with stochastic simulation
In figure 2, we compare the analytic results for copy number mean and variance, derived
from our generating functions above, with the results obtained over 105 simulations using
Gillespie’s stochastic simulation algorithm [32]. In order to compute moments arising from the
generating functions for subtractive inheritance it is necessary to compute a small number of
values corresponding to derivatives of the q-Pochhammer symbol (a; q)n with respect to the
first argument a. These values can be evaluated to arbitrary precision by symbolic software or,
if such software is not available to the reader, through numerical perturbation, by evaluating
((a; q)n − (a + ε; q)n)/ε for suitably small ε. In this case, we take ‘suitably small’ to mean ‘yielding
an estimate converged to the required degree of accuracy’. In addition, in several cases which
arise (e.g. a = 0, emerging from our analysis below), this perturbative approach yields an
analytic solution. In the electronic supplementary material, we provide Mathematica notebooks
illustrating these calculations (and other calculations in this article).

We choose arbitrary parametrizations for these confirmatory studies: we use m0 = 100,
τ = 10, for binomial partitioning we use α = 0.2, λ = 0.06, ν = 0.01, and for subtractive inheritance
we use α = 10, λ = 0.01, ν = 0.02, with η = 50 for deterministic and random subtraction. Analytic
results provide an excellent match to simulation results throughout.

We proceed by considering two examples motivated by specific biological questions involving
cellular populations of mtDNA.
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(b) mtDNAbottlenecking: birth dynamics, binomial partitioning, changingpopulation size
mtDNA is observed to be present in fertilized oocytes at copy numbers around 105 [33–35].
During subsequent development, a pronounced copy number decrease occurs, as cells divide
rapidly with little replication of mtDNA. The copy number per cell falls to a low bottleneck then
recovers during later development. This mechanism is believed to ameliorate the inheritance of
mutated mtDNA by increasing the cell-to-cell variability of mutant load in a cellular population
and hence allowing cell-level selection to discard those cells that drift towards high mutant
content. Substantial debate surrounds this topic [36,37]: competing mechanisms have been
proposed to increase mutant load variability [34,35], and the size of the copy number bottleneck,
its power to generate variance, and thus its biological importance have been questioned [34].

Results from classical population genetics [38,39] have been applied to the statistics of mtDNA
populations [40], but even with refinements modelling fluctuations in the size of, and substructure
in, the mtDNA population [41,42], these results lack straightforward physical interpretability and
the ability to address population statistics at arbitrary, non-steady-state points in developmental
dynamics. The stochastic formalism we present has recently been used to address these issues,
specifically in modelling the mtDNA bottleneck in mice [43]. Here we explore a more general
question: what increase in copy number variance is possible through enforcing an mtDNA
bottleneck of a specific size, and how does it relate to the size of that bottleneck? Results on the
copy number statistics of mtDNA can then readily be extended to explore statistics of the mutant
load of mtDNA, by considering two decoupled populations of mutant and wild-type mtDNA.

In the case of the birth–death (BD) model with binomial partitioning, we can explore the levels
of cellular noise introduced by controlled variation of the population size of cellular components
without making continuous or steady-state approximations. We will consider a number rmax of
dynamic phases labelled by r, where the rates λ, ν are constant within a phase but may take
different values in different phases. To extend the above reasoning to describe different phases
of dynamics it is necessary to compute the function gr(z, t) for each regime r, where gr(z, t) is the
generating function using the appropriate parameters λr, νr for phase r and calculated at n = nr,
the number of cell cycles of phase r. For consistency with the above approach, we label phases
starting from a zero index, so the first phase corresponds to r = 0, and we use rmax to denote the
label of the final phase. Then we use

hrmax = grmax (z, t), (3.1)

hr = gr(hr+1, 0) (3.2)

and Goverall = hm0
0 , (3.3)

using induction over the different phases in the way we used induction over different cell cycles
above. Here we consider the changeover between phases by using the generating function at the
start of the incoming phase.

The system equations (3.1)–(3.3) can be solved for arbitrarily many phases with different
kinetic parameters, producing closed-form results for a wide range of different dynamic
trajectories, including arbitrarily varying population size and cell doubling times (see electronic
supplementary material, appendix S1). We illustrate this approach with the following simple two-
phase model system. Initially, m0 agents exist in a cell, with no associated cell-to-cell variability.
These agents subsequently follow birth-only dynamics and binomial partitioning at cell divisions.
The rate of birth is initially λ1 in the first dynamic phase, changing to λ2 after n1 cell divisions.
We choose λ2 = 2 ln 2/τ − λ1, to ensure that mean copy number returns to m0 after a further n1
cell divisions. We will use λ2 ≥ λ1 ≤ ln 2/τ , so the mean copy number either remains constant or
initially drops to a minimum (the ‘bottleneck’) before recovering.

For simplicity, we have here assumed that τ , cell-cycle length, is the same constant in each
dynamic phase. This assumption can readily be relaxed by using different τi, so that cell-cycle
length is labelled by the current dynamic phase. In this way, our formalism can be used to explore
the dynamics of systems with arbitrarily varying (though deterministic) cell-cycle lengths.
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Figure 3. Modelling copy number variability due to mtDNA bottlenecking. (a) Trajectories of mean copy number of cellular
agents born with rate λ1 (t < 120) and λ2 = 2 ln 2/τ − λ1 (t ≥ 120). Lower λ1 values enforce a smaller copy number
bottleneck, with copy number recovering to its initial value after the bottleneck. λ′

1 = ln 2τ is the value required to
maintain a constant-mean copy number between cell divisions. Lines are analytic results; points are stochastic simulations.
(b) Trajectories of coefficient of variation (CV) as different bottleneck sizes are imposed on the system. Horizontal lines give the
analytic predictions for final CV derived from equation (3.5). Other lines are analytic results; points are stochastic simulations.
(c) CV as a function of bottleneck size from equation (3.5); points show specific instances of stochastic simulation.

Using equation (2.21) with equations (2.30) and (2.32), the solution to equations (3.1)–(3.3) for
two dynamic phases is simply G = g1(g2(z, t), 0)m0 , with α = 0 and ν = 0. After some algebra, we
obtain, after n1 cell divisions in the first phase and another n1 in the second,

V(m) = m0 e−λ1n1τ (eλ1τ + 2)(eλ1n1τ − 2n1 )
eλ1τ − 2

. (3.4)

The minimum copy number attained immediately follows cell division n1 and is thus of size
b = 2−n1 m0 en1λ1τ . This allows us to write the parameter λ1 in terms of the bottleneck it produces,
λ1 = ln(2n1 b/m0)/(n1τ ). Inserting this expression into equation (3.4) gives

V(m) = m0(b − m0)
b

(
(b/m0)1/n1 + 1
(b/m0)1/n1 − 1

)
. (3.5)

In figure 3, we simulate the above system for n1 = 12, m0 = 105, roughly matching the above
mtDNA copy number magnitudes and number of divisions [44] observed in the mouse germ line.
We use various λ1 values, reporting mean copy number and copy number coefficient of variation
(CV). It can be observed that lower λ1 rates lead to more pronounced copy number bottlenecks,
resulting in increased CVs that match the predictions derived from the above analysis.

Equation (3.5) analytically describes the increased variance due to a copy number bottleneck
under specific circumstances, whereby a copy number m0 is decreased to a minimum b over n1
cell divisions then raised to its original value over a further n1 cell divisions. Lower bottleneck
sizes b lead to exponential increases in the cell-to-cell variability associated with an mtDNA
population. The assumptions within our illustrative model here can also straightforwardly
be relaxed and closed-form solutions derived for more general dynamics, and a closed-form
expression for the probability distribution function can also be derived using the above approach.
These results can then be used to address any statistical questions about the system, including
fixation probabilities of mutant mtDNA (readily extracted from the generating function) and
the behaviour of heteroplasmy variance with time (from the variances of mutant and wild-type
populations). For brevity we here just present these illustrative results for copy number variance;
further development of a more specific model is a focus of [43]. We note that, in this example, the
variance does not converge to a final fixed value: longer times will result in higher variances. This
feature can be altered using a model involving more homeostatic dynamics (see next subsection)
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or, in biology, may conceivably be dealt with on a cellular level by retaining cells with certain
copy number statistics.

(c) Relaxed replication of mtDNA: immigration–death dynamics and various inheritance
regimes

A quantitative model for mtDNA dynamics throughout organismal lifetimes has been proposed
to account for the intuitive feature that mtDNA copy number should be subject to cellular
control [45]. This ‘relaxed replication’ model has influenced a wide range of studies on mtDNA
dynamics in many contexts from human disease [46] to forensics [47]; its quantitative behaviour
has been explored (considering low-order moments without cell divisions) in the contexts of
nuclear control on mtDNA [48] and through simulation studies in topics including ageing
mtDNA [49], the effect of anti-retroviral drugs on mtDNA [50], and many others. As variability
in mtDNA can have important physiological consequences [36], we aim here to analytically
extend this model beyond a mean-only treatment to a more general (and realistic) situation both
explicitly modelling the stochastic dynamics of individual mtDNA production and degradation
and including different forms of cell division dynamics.

The governing dynamics of copy number m in the model are

dm
dt

=

⎧⎪⎨
⎪⎩

α̃mopt

τ̃
− α̃m

τ̃
if m ≤ α̃mopt

α̃ − 1
;

−m
τ̃

otherwise,
(3.6)

where mopt is a ‘target’ copy number, τ̃ is the time scale of mtDNA degradation, and α̃ > 1
is a parameter of the model describing nuclear feedback (in the original papers, α̃ and τ̃ are,
respectively, assigned the symbols α and τ : we use tildes to avoid ambiguity with the symbols
in our preceding analysis). For α̃ not much greater than 1 and an initial condition m0 < mopt, the
probability of m > α̃mopt/(α̃ − 1) is very low; we will thus assume that the contribution of the term
in equation (3.6) corresponding to m > α̃mopt/(α̃ − 1) is negligible.

When considering cell divisions in the above model, the meaning of mopt needs to be made
explicit. We will consider mopt to be the target copy number for the end of a cell cycle, immediately
before division. We then note that the first term in equation (3.6) contains a combination of an
immigration term (independent of copy number) and a death term (dependent on copy number);
we can therefore write the model as equation (2.1) with α ≡ βmopt, λ = 0 and ν ≡ β, defining the
new parameter β ≡ α̃/τ̃ . We can then use the above treatment to obtain the generating function
of the relaxed replication model under different partitioning regimes (full forms are given in the
electronic supplementary material, appendix S1) and moments of interest of the copy number
distribution in each case.
Binomial partitioning. First we consider the case where mtDNA molecules are binomially
partitioned at cell divisions. The dynamics in this case are illustrated in figure 4 for mopt = m0 =
1000, α̃ = 5, τ̃ = 10 and cell-cycle length τ = 5. This parameter set was chosen for compatibility
with original work on the relaxed replication model: mtDNA copy numbers around 1000 are
biologically reasonable, α̃ = 5 is an intermediate value of the nuclear feedback parameter explored
in [48], and τ̃ = 10 corresponds to an mtDNA half-life of 10 ln 2 	 7, compatible with the range
(in days) of half-lives assumed in [48]. The cell-cycle length τ = 5 was chosen both for rough
biological applicability (corresponding to cells dividing every 5 days) and to illustrate transient
behaviour of the model.

It can be observed that the variance and the mean converge on the same behaviour; the
difference between the two is straightforwardly found to be E(m) − V(m) = 4−nm0 e−2β(t+nτ ),
clearly decreasing to zero with cell divisions n. The mean copy number immediately before
a division E(m, τ ) takes a value that approaches, but does not reach, mopt. Some algebra
(see electronic supplementary material, appendix S1) shows that this value, in the long time
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Figure 4. Copy number statistics for the relaxed replication model of mtDNA. Lines are analytic results; points are from
stochastic simulation. (a) E(m) and (b) V(m) for binomial partitioning, modelling dividing cells, with m0 = mopt = 1000,
β = 1
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point (blue crosses) in the cell cycle. (e) Comparison of theory and stochastic simulation in illustrative snapshots of probability
distribution functions at given times in the binomial case using equation (3.8).

limit, is

E(m, τ ) = mopt − 1
2 eβτ − 1

mopt. (3.7)

The generating function analysis also allows an expression to be derived for the probability
distribution function for mtDNA copy number (see electronic supplementary material,
appendix S1),

P(m, t) =
(

1
m!

)
(−b)m(1 − b)m0−m e−aU

(
−m, 1 − m + m0,

a(b − 1)
b

)
, (3.8)

where U(., ., .) is the confluent hypergeometric function of the second kind (Tricomi’s function
[51]), a = mopt(1 − e−βt + (2−n e−βt(eβτ − 1)(2n − e−βnτ ))/(2 eβτ − 1)) and b = 2−n e−β(t+nτ ). As
n → ∞, this converges to a simpler expression, neatly corresponding to a Poisson distribution:

P(m, t) = 1
m!

(
mopt(1 − 2 eβτ + e−β(t−τ ))

1 − 2 eβτ

)m

exp

(
−mopt(1 − 2 eβτ + e−β(t−τ ))

1 − 2 eβτ

)
. (3.9)

Equation (3.8) thus provides a complete solution for the relaxed replication model with
binomial cell divisions (see figure 4 for a comparison with stochastic simulation for E(m), V(m)
and P(m); other statistics and quantities of interest are readily extracted from the generating
function).
Subtractive partitioning. Next we consider the case of dynamics under which a random amount
of mtDNA is lost at each division. This picture could model, for example, mtDNA dynamics in
budding yeast, where cells with 50–200 mtDNA molecules [52] undergo asymmetric partitioning,
with 10–20% of their mitochondrial content being lost at budding events, and homeostasis
acting to maintain copy number [53]. Figure 4 illustrates the behaviour of this system with
mopt = 100, η = 15. Interestingly in this case, the variance of copy number reaches a minimum at
an intermediate point in each cell cycle, after the partitioning event (which increases the variance)
and before an extended period of dynamics under homeostasis has led to an increase in copy
number and variance. As above, the difference between mopt and E(m, τ ) can easily be computed
in the long time limit (see electronic supplementary material, appendix S1):

E(m, τ ) = mopt − η

eβτ − 1
. (3.10)

The expression for the variance in this case involves derivatives of the q-Pochhammer symbol,
which at first would seem to prevent extracting simple and intuitive expressions for the variance.
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However, as with several applications of this approach, the derivatives involved all reduce to
simple algebraic expressions (see electronic supplementary material, appendix S1). Taking the
limit of many cell divisions n → ∞, we obtain

V(m, t) = mopt + η

2(e2βτ − 1)
(3 e2β(τ−t) − 2 eβ(τ−t) − 2 eβ(2τ−t)). (3.11)

This expression allows us to characterize the form of the variance curve. Writing η′ ≡
η/(2(e2βτ − 1)), we find that V(m, 0) = mopt + η′(e2βτ − 2 eβτ ) and V(m, τ ) = mopt + η′(1 − 2 eβτ ),
and that the minimum variance occurs at t′ = τ − (1/β) ln( 1

3 (1 + eβτ )) and takes value V(m, t′) =
mopt − (η/6) coth(βτ/2). All these results are in agreement with stochastic simulation, as
illustrated in figure 4, and other statistics and quantities of interest can readily be extracted
from the generating function. We can thus characterize the expected biological behaviour of
the relaxed replication model under different partitioning regimes, including quantities such
as the probability of pronounced depletion of mtDNA (vanishingly small under these example
parametrizations), and the cell-to-cell variability expected in a biological population.

We note that, as this example falls in the regime where η 
 mopt, the probability of low copy
number is negligible, so the statistics derived using our generating function approach are reliable
(and the approach can also be used to compute the probability distribution function and other
moments). In cases where low copy numbers are likely, caution must be used in employing this
approach, as described above.

(d) Extinction probabilities under balanced copy number dynamics
A strength of the use of generating functions to analyse stochastic dynamics and partitioning
of cellular species is that statistics other than low-order moments can be straightforwardly
computed. As demonstrated in the previous subsection, full probability distribution functions
can be extracted for cellular populations of agents from generating functions, although these
functions can be rather complicated. As simple examples of biological interest, we here consider
the extinction probability P(0, t) of cellular species under two dynamic different regimes. The
first is birth–death (BD) dynamics with binomial partitioning, with a ‘balancing’ choice of
λ = ln 2/τ + ν, so that mean copy number stays constant through cell divisions. The second is
the relaxed replication model above; that is, immigration–death (ID) dynamics with binomial
partitioning, and α ≡ βmopt and ν ≡ β. Both of these examples exhibit a balanced mean copy
number, with the expected production of agents over a cell cycle balancing the expected loss
through cell divisions. As previously described, the variance of the BD case increases with time,
whereas the variance of the ID case converges.

Extinction probabilities can be straightforwardly extracted from our generating functions,
using P(m = 0) = G(0, t), allowing us to explore the probability of extinction under these dynamics.
The resulting expressions under BD and ID models are

PBD(0, t) =
(

2t/τ (ντ (n + 2) + n ln 2) − 2ντ

2t/τ (ντ (n + 2) + (n + 2) ln 2) − 2ντ

)m0

(3.12)

and

PID(0, t) = (1 − 2−nunu′)m0 exp

(
mopt(2−n(u − 1)un − (u − 2)u′ − 1)

u′(u − 2)

)
, (3.13)

where u ≡ e−βτ and u′ ≡ e−βt. Consideration of the n → ∞ limit shows that, in the long time limit,
extinction probability under the BD model converges to unity, whereas in the ID model a limiting
probability is reached. Setting t = 0 for simplicity (thus considering the population at the start of
a cell cycle), this limiting probability is exp(−mopt(1 + (u − 2)−1)). The difference between the BD
and ID cases is because of the irreversibility of extinction under the BD model (and the non-zero
probability associated with extinction during every cell cycle); by contrast, extinction in the ID
model can be escaped as immigration creates more agents in the cell without necessitating a non-
zero source population. Hence, a non-zero probability flux away from the m = 0 state exists, and
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eventually balances the flux into that state because of partitioning noise: the extinction probability
may thus be thought of as representing the proportion of time during which the system occupies
the m = 0 state.

Further results can straightforwardly be extracted from our formalism for extinction
probabilities in non-balanced cases. As a brief example, we consider the BD model with binomial
partitioning, with a new parameter κ = λ − ν − ln 2/τ , so that κ measures the ‘excess’ birth rate
beyond that required for copy number balance. For κ ≤ 0, extinction is certain in the long time
limit, but for κ > 0 there is a finite probability that the copy number will never reach zero. To
illustrate the qualitative behaviour of the system, we set ν = 0, and we obtain

PBD(m = 0) =
(

1 − eκnτ

1 + eκnτ − 2 eκ(n+1)τ

)m0

, (3.14)

showing that extinction probability in the long time limit decays roughly exponentially with κ .
The more general extinction probabilities for ν �= 0 and in the absence of cell divisions are given
in the electronic supplementary material, appendix S1.

(e) Other inheritance dynamics
In addition to the binomial partitioning and random additive or subtractive changes of copy
number, we have explored several other possible dynamic regimes of inheritance. The case where
a fixed, deterministic number of agents is gained or lost at cell divisions is analytically tractable
(see electronic supplementary material, appendix S1). We also consider deterministic halving of
copy number, so that each daughter cell inherits half of the mother cell’s content (rounded down).
Additionally, we consider the inheritance of clusters of agents, such that agents are split into
clusters of size nc and these clusters are binomially partitioned. We have not found closed-form
analytic solutions for the generating function for a general number of cell divisions for these latter
two cases, but analytic statistics can nonetheless be obtained for a given number of cell divisions
through the calculation of the appropriate recurrence relations (see electronic supplementary
material, appendix S1).

Figure 5 illustrates the use of this approach to calculate the mean and variance of copy
number for these systems, and for BD dynamics in the binomial and constant subtractive
inheritance regimes described earlier. The agreement between stochastic simulation and analytic
results is again excellent, showing, as expected, that deterministic inheritance leads to the lowest
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magnitude of stochasticity in copy number, followed by binomial partitioning, followed by
clustered partitioning (illustrated for nc = 10 in this case). We expect that other inheritance
regimes of interest may be addressable through a similar approach.

4. Discussion
We have introduced a general mathematical formalism with which to address the stochastic dyna-
mics of cellular agents that are inherited according to non-trivial and potentially stochastic
dynamics at cell divisions. Our approach differs from, and extends, several previous tools
designed to address stochastic partitioning in biology. First, our approach yields full, closed-
form generating functions for several cases, allowing the extraction of all details of copy
number distributions, rather than focusing on variance or other low-order moments alone.
Second, we nowhere assume that a steady state or equilibrium has been reached, and are thus
capable of extracting copy number statistics at any given time during the stochastic biological
process of interest. Third, we focus on BID dynamics rather than the more common stochastic
gene expression dynamics, with a view to modelling the behaviour of non-protein cellular
components (including mtDNA, which we explore in particular). Fourth, we explore several
specific partitioning regimes, obtaining closed-form results for arbitrary numbers of cell divisions
under those we term binomial partitioning and random and deterministic subtractive or additive
inheritance. We also obtain results for finite numbers of cell divisions under deterministic
partitioning and binomial partitioning of clusters.

We have focused on agents undergoing BID dynamics between cell divisions; we expect that
any random dynamics with a corresponding generating function of the form equation (2.6) will
also admit treatment using this approach, paving the way for further generalization of this
approach.

We note that the results arising from our analysis should be interpreted as ensemble statistics
of single-cell measurements. If tracking a particular lineage of dividing cells, it should be
remembered that the statistics of daughter cells will exhibit correlations because of their shared
heritage. Our results represent expected statistics from a well-mixed bulk case.

In the absence of immigration dynamics, we have shown that a system governed by different
rate parameters at different times can also be solved analytically. The rates associated with the
production and destruction of cellular agents can vary arbitrarily as long as the rate of this change
is lower than the cell division rate. This approach therefore provides a way to explore the statistics
of stochastic systems with arbitrarily changing population size, in contrast with many results
from classical statistical genetics which assume a constant or constant-mean population size (and
additionally often only provide equilibrium results, preventing the quantitative exploration of
systems before a steady state is reached) [38,39,41,42]. It is also straightforward to vary the cell-
cycle length τ in these dynamic phases and so allow a treatment of cellular dynamics under
varying division times. We have illustrated a general use of this approach in addressing the
mtDNA bottleneck, and it has been used to explore the bottleneck specifically in mice in detail
[43]. We believe that this formalism may prove useful in other contexts where organellar content is
subject to dramatic and non-random population size changes; for example, in considering cellular
populations during tumour development, where variability in cellular conditions causes time
differences in physiological rate constants as tumour cells continually divide [54].

We have demonstrated the applicability of our stochastic formalism with some illustrative
problems from cellular biology. We have found expressions for the cell-to-cell variability in
mtDNA populations because of the imposition of a copy number bottleneck of given size, and
extended the classic ‘relaxed replication’ model of mtDNA to include the stochastic dynamics
of individual mtDNAs, and the effects of cell divisions. This model is widely influential in the
study of mtDNA genetics and disease, but its quantitative analysis has typically been limited to
descriptions of its mean behaviour or simulation studies with a fixed set of parameters. We have
thus used our approach to further analytic understanding of this important model. Furthermore,
we have explored in detail the statistics of populations of cellular agents under passive copy
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number balance over many cell divisions, a situation of importance for organelles and which
may be of general applicability in cell biology.

Accurate models for the variability of cellular populations enable more powerful inference
using experimental measurements of mean and variance across cells [55]. We hope that our
results for stochastic inheritance dynamics will facilitate the strengthening of this link between
theoretical and experimental biology and allow more information about underlying cellular
dynamics to be obtained from the wealth of experimental measurements currently appearing.
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