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Constructing synthetic gene circuits has always been at the heart 
of synthetic biology. Various examples for bacteria, yeast and 
mammalian cells have been demonstrated (1–4) and enabled 
applications in metabolic engineering (5), therapeutic cells (6) 
and biosensing (7). However, genetic circuits are still at an early 
stage in plants and especially more complex logical operations 
have not been shown yet (8, 9). Recently, Brophy et al. estab-
lished a rapid workflow for prototyping genetic circuits in tobacco 
leaves and subsequently used the learned design principles to 
control spatial gene expression patterns in the root tip of Arabidop-
sis thaliana and to alter the root architecture (10). The ability to 
exactly control where in a plant and when genes are expressed 
could open up the possibility in the future to engineer crops to 
respond to extreme conditions, such as drought, extreme heat and
flooding (11).

The plant engineering toolkit developed by the Dinneny lab-
oratory at Stanford University that was recently published in 
Science presents a major advancement for the field of plant syn-
thetic biology, in both scope and complexity. Plants grow slow. 
This makes it difficult to go through multiple rounds of the 
design–build–test–learn cycle or test multiple designs in parallel, 
which is typically required to engineer functional circuits. Fur-
thermore, the engineering of complex multicellular organisms 
has remained almost unexplored, as genetic parts, which have 
been characterized to operate on the whole organism level, have 
been missing. To overcome these hurdles, the authors started 
by constructing the basic building blocks for their genetic cir-
cuits, which are synthetic transcription activators and repressors. 
Developing these tools necessitated several rounds of testing and 
debugging, and the authors not only describe those designs that 
worked but also commendably describe failed designs. By using 
transient expression in tobacco leaves as an intermediate model 
system, they were able to technically overcome the slow-growth 
constraint in plants and could measure the performance of a 
circuit within 2 days instead of waiting several weeks for sta-
bly transformed plants. This was possible by co-infiltrating the 
leaves with Agrobacterium strains—a bacterium that has the nat-
ural ability to genetically transform plants—containing the dif-
ferent combinations of the circuit inputs (which are encoded on 
separate plasmids) and outputs. Depending on which combination 

of plasmids had been infiltrated, different circuit states could be
obtained.

After prototyping via their transient assays in tobacco leaves, 
the authors moved to stable transformed Arabidopsis lines, where 
root tips were used as a model for spatial-specific gene circuits—
circuits that control at which position in a plant genes are 
expressed. Although many findings could be transferred from the 
prototyping phase in tobacco, several logical operators differed 
and needed further adjustments and debugging. After this tuning 
phase, all logic gates resulted in the desired expression patterns 
and the authors continued by utilizing these synthetic gene cir-
cuits to engineer root branching—a process that allows a plant 
to expand their root system to ensure water and nutrient sup-
ply. At the end of this tedious endeavor of designing, building and 
testing, the authors could successfully show that their developed 
tools can be used for highly fine-tuned spatial gene expression pat-
terns, which enable the engineering of complex processes, such as 
regulation of the root architecture.

In the future, the platform and the tools developed in this work 
are not limited to engineering plant morphology, but could also be 
utilized for more ambitious plant engineering efforts such as the 
C4 Rice project, where one of the limitations is to achieve spatial-
specific gene expression for at least 20 or more genes (12). This 
work demonstrates the first step to moving from single cells to 
more complex multicellular organisms and also provides a start-
ing point to engineer other multicellular chassis, such as animal 
models.

Even though many challenges for the field still lay ahead, the 
tools developed in this work represent a very important milestone 
for plant synthetic biology and could in the future significantly 
contribute to engineering the next generation of crops that are 
able to cope with the effects of the climate crisis.
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