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Correlations between thresholds and degrees: An analytic approach to model
attacks and failure cascades
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Two node variables determine the evolution of cascades in random networks: a node’s degree and threshold.
Correlations between both fundamentally change the robustness of a network, yet they are disregarded in
standard analytic methods as local tree or heterogeneous mean field approximations, since order statistics are
difficult to capture analytically because of their combinatorial nature. We show how they become tractable in
the thermodynamic limit of infinite network size. This enables the analytic description of node attacks that are
characterized by threshold allocations based on node degree. Using two examples, we discuss possible implications
of irregular phase transitions and different speeds of cascade evolution for the control of cascades.
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I. INTRODUCTION

How robust is a complex network? This is of fundamental
interest for network science [1–3] and tightly linked to the study
of binary state dynamics in physics, for instance, in the form
of percolation models [4], the zero-temperature random field
Ising model [5], fiber bundle models [6], or models of epidemic
spreading [7]. Similar approaches also describe phenomena
diverse as opinion formation [8,9], financial systemic risk [10–
13], black-out cascades in power grids [14], and the resilience
of food webs in ecology [2,15].

Most of these models can be mapped to a setup [16,17]
where the binary state si ∈ {0, 1} of a node i ∈ V is determined
by two variables: its load λi , which indicates the fragility of
the node, and its threshold θi , which indicates its robustness.
A node fails (si = 1) whenever its load exceeds its threshold,
θi � λi (t ). The load λi (t ) can change over time, is measured
in discrete time steps, t = 0, . . . , T , and is dependent on the
interaction between nodes. Usually, an interaction is defined
by a form of load distribution. A failing node sends load to
nodes it is connected with (i.e., its network neighbors). The
number of these neighbors is called the degree of the node. The
load distribution can cause further node failures and kick off
a failure cascade that spans a considerable share of the whole
network. A robust network is considered to be less prone to
large cascades that start from a few initial failures.

Consequently, one way to prevent failure cascades is to
allocate specific thresholds to nodes. While, in general, this
allocation of thresholds could be dynamic, here, we focus
on quenched networks where the thresholds and the network
topology stay constant over time.

In the following, we concentrate on allocation schemes
based on node degrees so that thresholds and node degrees
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become correlated. Such correlations are empirically
grounded, e.g., well connected banks have the tendency of
lower equity than less connected banks [10,18], even though
the opposite is expected to lead to more robust systems
[19,20]. Some models already assume that a threshold depends
explicitly on the node degree [17,21,22] or on degree-related
centrality measures. Also the study of random or targeted
attacks on networks can be described by our approach, as the
allocation of a threshold that is smaller than the initial load
θ � λ0 implies the initial failure of the node with this threshold
and can also be interpreted as an attack of this node. In this well
studied context, it is important to note that, dependent on the
specific network, attack strategies based on centrality measures
can be more effective than attacks based on node degrees [23].

Yet, in the following, we consider random graph ensembles
with prescribed degree distribution p(k) [24,25]. Thus, the
main node variables of interest are node degrees and thresholds.
The study of these ensembles has the advantage that ensemble
averages of interesting quantities can be derived by ana-
lytic iterative approaches, so called local tree approximations
(LTAs) or heterogeneous mean field approximations (HMFs).
They become exact in the thermodynamic limit of infinite
network size N → ∞ (where N is the number of nodes
in the network). These approximations have been extended
to capture degree-degree correlations. Yet, surprisingly, the
equally fundamental correlations between degrees and thresh-
olds have not been studied analytically. Only one specific
case, i.e., the removal of nodes with higher degrees, has been
studied for percolation [26,27]. Other investigations of deter-
ministic attacks so far rely on simulations [19,22]. Imposing
correlations includes the ranking of nodes and this leads to
order statistics that are difficult to capture analytically. In this
work, we show that for infinitely large networks the ranks
simplify significantly and we can identify them by a trans-
formation of the respective cumulative distribution function
(cdf).
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We further apply our derivations to two basic cascade
models termed exposure diversification (ED) and damage
diversification (DD) models and explore a phenomenon that
is related to the robust-yet-fragile property, which scale free
networks exhibit with respect to percolation [3]. We observe a
similar phenomenon for ED cascades, interestingly for Poisson
and scale free networks, not only for scale free networks. Yet,
DD models do not support this finding, i.e.; it strongly depends
on the dynamics of the cascade.

II. THRESHOLD ALLOCATION IN FINITE AND
INFINITELY LARGE NETWORKS

Let’s assume that N degrees are drawn independently
from a degree distribution p(k) with cdf F (k). We order
them so that k1/N � k2/N � · · · � kN/N . Correspondingly, N

thresholds are drawn independently from an arbitrary threshold
distribution with cdf �(θ ) and ordered θ1/N � θ2/N � · · · �
θN/N . Each node in the network receives exactly one degree
and one threshold. A specific allocation or attack strategy
a defines this assignment. It thus decides which nodes are
prone to failure because of a small threshold. Formally, a

is a bijective (Borel-measurable) function a : [0, 1] → [0, 1]
that assigns each degree rank i/N a threshold rank a(i/N ).
Thus, a node has degree ki/N and threshold θa(i/N ). While a

can be nonlinear in general, the two most common heuristics
correspond to linear a. In the case of the identity a(x) = x,
thresholds and degrees are perfectly positively correlated.
Nodes with a higher degree receive higher thresholds and
are less prone to failure, while peripheral nodes with a small
degree are conjectured to fail. We call this threshold allocation
the peripheral failures (pf) scheme. The choice a(x) = 1 − x,
on the other hand, means that degrees and thresholds are
perfectly anticorrelated. Nodes with higher degrees receive
lower thresholds and therefore are more prone to fail. Hence,
this threshold allocation is focused on hubs and we refer to it
as the central failures (cf) scheme.

As i/N counts the fraction of nodes in the network with
degree k � ki/N , it coincides with the value of the empirical
cdf i/N = F emp(ki/N ). In the case that several nodes have the
same degree k, we assume that the index i belongs to the node
with the highest index among the nodes with degree k. Thus, for
N → ∞, a rank i/N converges to a value of the theoretical cdf
F (x) [i/N → F (x)] and, correspondingly, its threshold rank
to a[F (x)], which belongs to a threshold θ with a[F (x)] =
�(θ ). Hence, for F (x) ∈]F (k − 1), F (k)], a node equipped
with the rank F (x) has degree k and threshold �−1{a[F (x)]},
where �−1 denotes the generalized inverse or quantile function
of �. Accordingly, we can express the threshold cdf F�(k)(x)
of a node conditional on its degree k as

F�(k)(x) = �|�−1{a(]F (k−1),F (k)])}
p(k)

, (1)

where �|M denotes the restriction of � to a set M, i.e.,
�|M(x) = �(x) for x ∈ M and �|M(x) = 0 for x /∈ M. The
initial threshold cdf � is restricted to thresholds that belong to
nodes that we can identify with the interval ]F (k − 1), F (k)],
i.e., the nodes with degree k. It is renormalized by p(k), the
probability mass of the respective set of nodes. Based on
this consideration, we can also compute the Spearman rank

FIG. 1. Illustration of the threshold assignment for central fail-
ures. The interval ]F (k − 1), F (k)] (in cyan color) represents (the
fraction of) all nodes with degree k in the network, while the
blue interval corresponds to nodes with threshold θ � x. Their
intersection, the purple interval, can thus be associated with all nodes
in the network which have degree k and a threshold smaller than or
equal to x.

correlation coefficient between thresholds and degrees as

rs =
√

12

∫ 1
0 (x − 1/2)[a(x) − ā] dx√∫ 1

0 [a(x) − ā]2 dx

, (2)

where ā = ∫ 1
0 a(x) dx is defined as the average of a with

respect to a uniform distribution. As we would expect, rs = 1
for peripheral failures and rs = −1 for central failures. Also the
derivation of the conditional threshold distributions F�(k)(x)
becomes more intuitive for these two extreme cases.

In Figs. 1 and 2, all nodes of an infinitely large network
are mapped to the interval [0, 1], where their position is
defined by the degree cdf F . Thus, all nodes with degree k

can be associated with the interval ]F (k − 1), F (k)] (cyan
color in Figs. 1 and 2). This way, we do not depict nodes,
but fractions of nodes in the network or their probability
mass when randomly sampling from all nodes in the network.
Analogously, the bottom interval (in Fig. 1) corresponds to the
ordered thresholds. For peripheral failures (Fig. 1), nodes with
degree k are equipped with threshold values in the interval
]�−1[F (k)],�−1[F (k − 1)]]. For central failures, we have
]�−1[1 − F (k − 1)],�−1[1 − F (k)]]. Consequently, Eq. (1)
simplifies for peripheral failures to

F�(pf) (k)(x)= |]F (k − 1), F (k)]∩]0,�(x)]|
|]F (k − 1), F (k)]|

= min {F (k),�(x)} − F (k − 1)

p(k)
1{�(x)>F (k−1)}(k),

(3)

FIG. 2. Illustration of the threshold assignment for central failures
analogously to Fig. 1.
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where 1 denotes the indicator function that is defined for any
set M as 1M(x) = 1 if x ∈ M and 1M(x) = 0 for x /∈ M.
Formally, this formula measures the overlap between the
intervals ]F (k − 1), F (k)] and ]0,�(x)], divided by the width
|]F (k − 1), F (k)]| = p(k) to normalize the cdf. The same
idea applies also to central failures, however, in this case the
fraction of nodes are ordered decreasingly. As illustrated in
Fig. 2, the position of nodes in the interval corresponds to
the probability mass 1 − �(x). Thus, nodes with a threshold
bigger or equal to x correspond to the interval [0, 1 − �(x)],
while nodes with threshold smaller than or equal to x belong
to [1 − �(x), 1]. To calculate the fraction of failed nodes with
a threshold smaller than or equal to x within the fraction of
nodes with degree k, we have to measure the overlap between
the intervals [1 − �(x), 1] and ]F (k − 1), F (k)]:

F�(cf) (k)(x) = |]F (k − 1), F (k)]∩]1 − �(x), 1]|
|]F (k − 1), F (k)]|

= F (k) − max{F (k − 1), 1 − �(x)}
p(k)

1{F (k)>1−�(x)}(k).

(4)

III. CASCADE MODELS AND LOCAL TREE
APPROXIMATIONS (LTAs)

To know the threshold distributions it is necessary to com-
pute average quantities in infinitely large random networks.
The cascade size, i.e., the fraction of failed nodes ρ(t ) =
1/N

∑
i si (t ), is of particular interest as a measure of network

robustness or systemic risk. We can express it as [28]

ρ(t ) =
∑

k

p(k)
∫

p�(k,t )(λ)F�(k)(λ) dλ. (5)

if the second moment of the degree distribution is finite,
i.e.,

∑
k p(k)k2 < ∞. The part

∑
k p(k) indicates an av-

erage over node fractions with a given degree k, while∫
p�(t )(λ)F�(k)(λ) dλ refers to the fraction of failed nodes

with degree k. A node with degree k and load λ according to
p�(k,t )(λ) fails with probability F�(k)(λ), i.e., the probability
that its load exceeds its threshold �(k). This form simplifies
for models where the load only depends on the number of failed
neighbors m of a node. The term F�(k)(λ) then refers to the
response function Fk,m in Ref. [17]. In general, the iterative
update of the load distribution p�(t ) in time follows from the
specific cascade model, for instance as in [12,28,29], and can
also depend on multiplex network structures [13].

To elucidate our approach, we use two well studied and
generic models that have been termed exposure diversification
(ED) and damage diversification (DD) [12].

A. Exposure diversification

The ED model, introduced in [8], was applied to different
fields, including opinion formation [30] and finance [19,31]. It
is based on the idea that a node simply carries the fraction of
its failed neighbors as load, i.e., λi (t + 1) = ni (t )/ki , where
ni (t ) denotes the number of failed neighbors of node i at time t .
Thus, the failure of hubs usually has devastating consequences,

as it impacts many nodes. The cascade size can be reduced
by protecting nodes with higher degree, by assigning them
higher thresholds (pf) without changing the overall threshold
distribution. For infinitely large (configuration model) random
graph ensembles, the fraction of failed nodes can be expressed
as

ρ(t ) =
∑

k

p(k)
k∑

n=0

b(k, n, π (t ))F�(k)

(
n

k

)
, (6)

where the failure probability of a neighbor π (t ) at time t is
given by

π (t ) =
∑

k

kp(k)

z

k−1∑
n=0

b(k − 1, n, π (t − 1))F�(k)

(
n

k

)
(7)

according to [12,29], where z = ∑
k p(k)k denotes the average

degree and b(k, n, π ) = (k

n)πn(1 − π )k−n.

B. Damage diversification

The DD model is a cascade model variant [16], where
each failing node j spreads the load 1/kj to each of its
neighbors, i.e., λi (t + 1) = ∑

j sj (t )/kj , where the sum runs
over all neighbors of node i. Hence, the load that single
neighbors receive from a failing hub is rather small. Thus, the
negative impact of failing hubs is counteracted. The local tree
approximation for this model has been derived by Ref. [12]
and is of the form of Eq. (5). The load λ(t, k) that a node with
degree k carries is a random variable that is given by a sum

λ(t, k) =
k∑

i=1

Lnb
i (t − 1)

of independent variables Lnb
i (t − 1) that represent the load

that has been distributed by neighbors to the node under
consideration before. Thus, the distribution of λ(t, k) is given
by the k-fold convolution of the distribution of Lnb(t − 1) that
can be calculated iteratively and is defined as

P[Lnb(t ) = 0] =[1 − π (t )],

P[Lnb(t ) = 1/d] =
∑

d

p(d )d

z
P

(
�(d ) �

d−1∑
i=1

Lnb
i (t − 1)

)
.

for d > 0. π (t − 1) denotes again the failure probability of a
neighbor and is given by

π (t ) =
∑

d

P[Lnb(t ) = 1/d].

A neighbor does not send any load if it has not failed with
probability 1 − π (t ). Otherwise, it sends the load 1/d if its
degree isd with probabilitydp(d )/z and its load

∑d−1
i=1 Lnb

i (t −
1) has exceeded its threshold �(d ). Its load here is the sum∑d−1

i=1 Lnb
i (t − 1) of all the loads sent to it previously by its

remaining neighbors. A more detailed explanation is given by
Refs. [12,32].

As we show, the cascade size can be reduced by protecting
nodes with smaller degree, i.e., by assigning them higher
thresholds, as in the central failures scheme (cf).
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FIG. 3. Comparison of the average final cascade size ρ obtained
from numerical analytic calculations and simulations, where lines
represent the former and symbols in the same color correspond to
the latter. Numerically, we consider T = 50 cascade time steps. In
simulations, we realize 100 independent networks of size N = 105

by the configuration model and draw independently N normally
distributed thresholds with mean μ and standard deviation σ [� ∼
N (μ, σ 2)] that are assigned to nodes according to pf or cf strategies.
(a) pf: Results for scale free networks and σ = 0.5 are depicted in
light blue triangles for the ED model and in red x for the DD model.
Poisson random graphs and σ = 0.2 correspond to black circles for
ED and to dark blue plus signs + for DD. (b) As in (a), but for cf.

IV. NUMERICAL RESULTS

In the following, we explore different combinations of the
two cascade models (ED, DD) and the two threshold allocation
schemes (cf, pf). We use a standard setup [12,28], i.e., we
calculate average cascade sizes on random graphs ensembles
with Poisson degree distribution p(k) ∼ λk/k! or on scale
free networks with p(k) ∼ k−3, both with average degree
z = ∑

k p(k)k = 3. Further, we assume normally distributed
thresholds � ∼ N (μ, σ 2) to test the influence of mean node
robustness μ and heterogeneity σ .

The ED model has been studied widely on different topolo-
gies and different degree-degree correlations. Only two studies
concerning correlations between thresholds and degrees are
known to us. Reference [19] considers directed networks
with different degree distributions and normally distributed
thresholds whose variance depends on the degree of a node as
well via Monte Carlo simulations. Reference [22] focuses on
directed networks with scale free out-degrees in combination
with uniformly distributed thresholds (of different range)
and is based on Monte Carlo simulations. The authors also
provide semianalytic approximative master equations for the
fraction of failed nodes and their specific choice of threshold
distribution.

Complementarily, we provide a general and exact local tree
approximation approach (LTA) and demonstrate the correct-
ness for different cascade models (ED and DD models) and nor-
mally distributed thresholds. Our analytic results are compared
with Monte Carlo simulations (see Fig. 3 for details). We note
that our calculations based on the analytic derivations perfectly
match the simulation results, even at the discontinuous phase
transition.

We further discuss the influence of different threshold
allocation schemes on systemic risk. For comparison, we also
present the case of uncorrelated thresholds and degrees [12].
In this reference setup, the DD model usually leads to smaller
average cascades ρ than the ED model. Figure 4 provides

an overview for all considered cases. Introducing correlations
between threshold and degrees, we can confirm this finding
for negative correlations, i.e., for the central failures scheme
(the higher the degree the lower the threshold). However, if
we choose positive correlations between threshold and degrees
(peripheral failures), the ED model on average leads to smaller
cascades than the DD model. Hence, positive correlations can
significantly improve the robustness of the ED network.

Second, we compare the robustness for different network
topologies and find that, in comparison to Poisson random
graphs, scale free networks are more robust, even for com-
binations as DD and pf and ED and cf in a region of small
μ. This is interesting because so far mostly the opposite case,
namely the increase of systemic risk because of the presence of
hubs, has been discussed. The central failures scenario reflects
that hubs have a high failure risk. However, their better risk
diversification, expressed by the large number of neighbors,
supports the system robustness.

This finding is related to the robust-yet-fragile property that
scale free networks exhibit with respect to percolation [3]. We
observe a similar phenomenon for ED cascades, interestingly
for both topologies, not only for scale free networks. Even
more, correlations can lead to larger cascades than in case of
uncorrelated threshold allocations. But this conclusion does
not apply to DD models, i.e., it strongly depends on the
dynamics of the cascade. Further, it is also sensitive to the
parameters μ and σ characterizing the threshold distribution.
In some cases, even the combination DD and cf that is
usually most robust can lead to the largest cascades. Still, the
combination DD and cf is able to reduce the largest average
cascades for both topologies. Hence, it can be considered as
the most promising strategy for increasing cascades. This is
the goal in the spreading of rumor, for instance.

To shed light on the nontrivial dependence between dy-
namic processes on networks (ED and DD) and threshold
allocation schemes (cf and pf), we compare the two combi-
nations with lowest systemic risk: DD and cf and ED and
pf. Figure 5 shows the results for scale free networks. Two
remarkable facts are immediately apparent. First, the phase
transition for ED and pf in Fig. 5(a) is of irregular shape.
Usually, increasing the threshold heterogeneity σ leads to a
sudden increase of ρ followed by a slow continuous decrease.
Yet, for ED and pf, ρ can jump several times for small
changes of σ . The presence of positive correlations between
thresholds and degrees (pf) changes even the qualitative nature
of the ED phase diagram. Our simulations confirm that these
observations cannot be attributed to (hypothetical) numerical
instabilities when calculating our approximations. Second,
neither of the two studied variants, ED and pf and DD and cf,
outperforms the other for all threshold parameters, as depicted
in Fig. 5(b). While ED and pf leads to the smallest average
cascades for most threshold parameters, DD and cf reduces
the severity of cascades in the region of big cascades.

Hence, to reduce systemic risk, system designers are con-
fronted with two feasible options: ED and pf or DD and cf. It
is left to them to decide whether they prefer to minimize the
average cascade size for most threshold parameters or to reduce
the parameter space where the system breaks down completely.
One objective excludes the other, but both cases lead to a
very different outcome with respect to the surviving nodes.
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FIG. 4. Phase diagrams for the final fraction of failed nodes ρ calculated numerically according to the analytic local tree approximation
(LTA) for our two different degree distributions with average degree z = 3, diversification variants ED and DD, and threshold allocation schemes
pf or cf. SF stands for scale free random networks, while Poisson indicates Poisson random graphs. We have always calculated 50 fixed point
iterations. The left column presents results for pf and the right column presents results for cf. The middle column shows their difference,
ρ (pf) − ρ (cf).

Figure 6 shows clearly that for the ED/pf combination nodes
of almost every degree survive a cascade, while in the DD/cf
only nodes with a small degree stay functional. In consequence,

the remaining overall connectivity is much lower for DD and
cf. This may have implications for the functionality of the
overall system. Furthermore, the cascades evolve at different

FIG. 5. Phase diagram for the fraction of failed nodes ρ with thresholds distributed according to the order statistics obtained from a normal
distribution N (μ, σ 2) on scale free random graphs with average degree z = 3. (a) ED with pf, and (c) DD with cf. The middle panel (b) shows
their difference ρ (a) − ρ (b). The inner graphic of (a) shows a snippet of (a) for μ = 0.17 and varying σ , where the black curve belongs to
numeric results and the red circles to simulations.
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FIG. 6. Fraction of failed nodes P(s(t ) = 1; k) with degree k �
10 in Poisson random graphs, which fail at the time indicated by the
color of the bar. Gray corresponds to fractions of nodes that remain
functional. � ∼ N (0.2, 0.32). (a) ED pf. (b) DD cf.

speeds. In the ED and pf cases, cascades tend to evolve much
slower than in the DD and cf case, which leaves more time for
interventions that could hinder cascades to grow larger.

V. DISCUSSION

We have discussed two basic cascade processes and simple
threshold allocation schemes that either imply perfect correla-
tion between node degrees and thresholds or perfect anticorre-
lation. Such correlations naturally occur in engineered or self-
organizing systems, and can be even more fundamental to cas-
cade effects than degree-degree correlations, hence they need
to be included in any robustness analysis. To facilitate this, we
have provided an analytic description in heterogeneous mean
field or local tree approximations, respectively, which becomes
exact in the thermodynamic limit of infinite networks size and
which applies to quite general threshold allocation schemes.

In general, such correlations can change considerably the
occurrence of phase transitions and the overall phase diagrams,
as Ref. [22] has also noted for the exposure diversification (ED)
model on directed networks and uniformly distributed thresh-
olds. For a different process, the Susceptible - Infectious -
Susceptible (SIS) model, Ref. [33] similarly highlights that
differences in the susceptibility of individuals can lead to
over- or underestimate a network’s vulnerability to epidemic
spreading. While this suggests a similar mechanism in place,
importantly we show that the effect of positive or negative
correlations on systemic risk depends considerably on the
studied cascade process.

In the ED model, where the failure of hubs usually triggers
large cascades, it is worthwhile to consider protecting those
hubs by assigning them higher thresholds, i.e., ED and pf.
In contrast, the DD model limits the negative impact of the
failure of hubs so that, for most threshold parameters, higher
thresholds are better used to protect the failure of the majority
of small degree nodes, i.e., DD and cf.

We have highlighted a fundamental tradeoff for system
designers which can hypothetically decide about the cascade
mechanism and the threshold allocation scheme. They can
either minimize the average cascade size for most threshold
parameters (ED and pf) or to reduce the parameter space where
the system breaks down completely (DD and cf).

What conclusions can we draw from these insights for
the control of cascades? While we have not studied the
control of cascades explicitly, we have observed several aspects
that would become relevant if we would like to steer the
system to a state of small systemic risk. Let’s assume that
we want to minimize systemic risk by a good choice of the
cascade mechanism, threshold allocation a, and a possible
range of threshold distribution parameters (here μ and σ ).
While minimizing the fraction of failed nodes, we might also
want to decide which nodes survive (hubs or leaves), the
overall connectivity of the surviving network, and the speed
of cascade evolution. A slower evolving cascade would allow
for further dynamic interventions (e.g., the increase of some
thresholds).

In light of these criteria, the ED and pf model seems to be
most beneficial. Yet, in the threshold parameter region where
we find a phase transition of irregular shape, we argue that
robust control is impossible in practice if we have to live with
uncertainty (for instance, of the model, the data, the precise
threshold parameters, finite size effects). Our findings suggest
that already small changes in the studied parameters could
demand a converse control strategy.

We support the quest for such control strategies for gen-
eral threshold models of cascades by incorporating threshold
allocation schemes in analytic local tree approximations. This
enables faster and exact computations, for instance, of the frac-
tion of failed nodes and might even enable explicit optimization
strategies that rely on gradients.
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