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Abstract: Ethylene was previously reported to repress stamen development in both cucumber and
Arabidopsis. Here, we performed a detailed analysis of the effect of ethylene on anther development.
After ethylene treatment, stamens but not pistils display obvious developmental defects which lead to
sterility. Both tapetum and microspores (or microsporocytes) degenerated after ethylene treatment. In
ein2-1 and ein3-1 eil1-1 mutants, ethylene treatment did not affect their fertility, indicating the effects
of ethylene on anther development are mediated by EIN2 and EIN3/EIL1 in vivo. The transcription
of EIN2 and EIN3 are activated by ethylene in the tapetum layer. However, ectopic expression of
EIN3 in tapetum did not induce significant anther defects, implying that the expression of EIN3
are regulated post transcriptional level. Consistently, ethylene treatment induced the accumulation
of EIN3 in the tapetal cells. Thus, ethylene not only activates the transcription of EIN2 and EIN3,
but also stabilizes of EIN3 in the tapetum to disturb its development. The expression of several
ethylene related genes was significantly increased, and the expression of the five key transcription
factors required for tapetum development was decreased after ethylene treatment. Our results
thus point out that ethylene inhibits anther development through the EIN2-EIN3/EIL1 signaling
pathway. The activation of this signaling pathway in anther wall, especially in the tapetum, induces
the degeneration of the tapetum and leads to pollen abortion.

Keywords: ethylene; anther wall; tapetum; microspore

1. Introduction

Ethylene (C2H4) is a simple but important gaseous phytohormone. It regulates vari-
ous developmental processes, including seed germination, leaf development, senescence,
sex determination, fruit ripening, and abiotic and biotic stress response [1]. Ethylene is
produced from methionine (Met), and the biosynthetic pathway involves three enzymatic
steps. Met is firstly converted to S-adenosyl-L-methionine (SAM) by SAM-synthetases, then
converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthases (ACS). As
an immediate ethylene precursor, ACC is converted to ethylene by ACC oxidases (ACO) [2].
In Arabidopsis, the ethylene receptor family members, [ETHYLENE RESPONSE SENSOR
1 (ERS1), ERS2, ETHYLENE RESPONSE 1 (ETR1), ETR2, and ETHYLENE-INSENSITIVE
4 (EIN4)], activate CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) in the absence of ethy-
lene [3]. CTR1 is a serine/threonine protein kinase. It acts as a negative regulator of the
ethylene signaling pathway by inhibiting the EIN2 protein [4]. In the presence of ethylene,
the inactivation of CTR1 releases the repression of EIN2. EIN2 plays an essential role in
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the stabilizing of EIN3 and EIN3-LIKE 1 (EIL1) proteins which are key transcriptional fac-
tors regulating the downstream ethylene response genes such as ETHYLENE RESPONSE
FACTORs (ERFs) [5].

During plant reproduction, ethylene and its signaling pathway are involved in several
developmental processes. In Arabidopsis, ethylene signaling components such as CTR1,
EIN2, EIN3, and EIL1 are required for the degeneration of synergid cells in the embryo sac
to ensure successful fertilization and prevent supernumerary pollen tubes [6–8]. Cucumber
(Cucumis sativus) is a monoecious plant with unisexual flowers, and has been used as a
model plant for plant sex determination and differentiation. In the cucumber female flower,
anther development is arrested as soon as the differentiation of anther and filament in
stamen primordium [9,10]. It has been well documented that exogenous ethylene appli-
cation promotes monoecious cucumber to produce female flowers [11–13]. The A, F and
M loci that genetically control the sex determination especially governs the development
of female flowers in cucumber have been cloned and showed to encode three ACC syn-
thases, CsACS11 (A), CsACS1G (F) and CsACS2 (M) [14–16]. All of these results indicate the
function of ethylene in cucumber for the formation of the female flower. Some evidences
from cucumber and Arabidopsis have proven that the ethylene-induced female flowers is
a result of stamen development inhibition. For example, overexpression of the cucumber
ethylene synthesis gene (CsACO2) or the down-regulation of the ethylene receptor CsETR1
in Arabidopsis resulted in abnormal stamen formation [17,18]. In Arabidopsis, the double
loss-of-function mutation of ERS1 and ETR1 leads to both male and female gametophyte
development defects in an EIN2-dependent manner [19]. During female flower devel-
opment, expression of CsETR1 was decreased and anther-specific DNA damage became
detectable [9,18]. It has been proposed that the ethylene-inducible calcium dependent
nuclease CsCaN may be responsible for the DNA damage of anther primodia in cucumber
female flower [20].

It is quite clear that ethylene represses stamen development in both cucumber and
Arabidopsis, while the exact mechanisms and the detailed roles of ethylene during anther
and pollen development remain elusive. In Arabidopsis, the anther wall contains four
somatic cell layers: the epidermis, endothecium, middle layer, and tapetum [21]. They form
an anther locule (anther theca), where the diploid microsporocytes undergo meiosis and
two rounds of pollen mitosis to develop into mature pollen grains. Here, we investigate the
effect of ethylene in each cell layers of anther wall and microspores and how the ethylene
signaling pathway acts during this process. We found that ethylene treatment leads to
shortened filaments and severe degeneration for tapetum and microspores. Our results
pointed out that ethylene treatment induces the EIN2-EIN3/EIL1 signaling pathway in the
tapetum, then repressing the growth in anthers.

2. Materials and Methods
2.1. Plant Material, Growth Conditions and Mutant Identification

The Arabidopsis ecotype used in this study is the Columbia-0. ein2-1, ein3-1, eil1-1, ein3-1
eil1-1, etr1-7 ers1-2 mutants have been described previously [19,22–24]; these mutants seeds
were kindly provided by Chi-Kuang Wen (Chinese Academy of Sciences, Shanghai 200032,
China). can1-1 (GABI_022B01) and can2-1 (SALK_023120.55.75.n) were obtained from
Arabidopsis Biological Resource Center (www.arabidopsis.org (accessed on 10 February
2015 and 15 July 2015)). can1-1 can2-1 was produced in this study by genetic crosses. ein2-1
and ein3-1 are point mutants identified by enzyme digestion after PCR [22,23]. etr1-7 also
has a single nucleotide substitution, which resulted in a stop codon at Trp-74 [3]. eil1-1,
ers1-2, can1-1 and can2-1 are T-DNA insertion mutants, and the identification of eil1-1 and
ers1-2 mutant was also described [23,24]. Primers for the identification of all these mutants
are listed in Supplementary Table S1. All plant materials were grown at ~22 ◦C under 16 h
light/8 h dark photoperiod in a growth room.

www.arabidopsis.org
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2.2. Ethylene Gas Treatment

The growing inflorescences (with about three just opened buds) of 28-days-old plants
were marked with red lines. Arabidopsis plants were placed in an airtight chamber
(30 cm × 20 cm × 20 cm, the volume is 12 L), and ethylene gas was injected into the
chamber (100 µL L−1). Another chamber injected with the same volume of air was used as
a control. The chambers were then put in a growth room for a certain time (6 h, 12 h, or
24 h). To treat mutants such as ein2-1, ein3-1, eil1-1, ein3-1 eil1-1, can1-1, can2-1 and can1-1
can2-1, a pot of wild-type plants (Col-0) was placed in the same chamber to confirm an
effective ethylene treatment.

2.3. Microscopy

Plants were imaged using a Nikon digital camera (D-7000). Alexander staining was
performed as described [25]. In brief, the anthers at later stage 12 or stage 13 were dissected
under a dissecting microscope and immersed in an Alexander staining solution for about
1 h before the images were taken. For the production of semi-thin sections, flower buds
were fixed by formalin-acetic acid (FAA) for 3 days and then embedded in Spurr’s epoxy
resin and cut into 1-µm thick sections, stained with toluidine blue, then photographed with
an Olympus BX51 digital camera [26]. Fluorescence detection involving laser scanning con-
focal microscopy (LSCM) for transgenic plants expressing pEIN2:VENUS, pEIN3:VENUS,
or pEIN3:EIN3-GFP involved a Zeiss LSM510.

2.4. Molecular Cloning

The VENUS was amplified and inserted into the XbaI-SalI site to modify vector
pCAMBIA1300 (purchased from the CAMBIA center) into pCAMBIA1300-VENUS. The
pEIN2 and pEIN3 fragments (2121 bp and 1900 bp respectively) for the pEIN2:VENUS
and pEIN3:VENUS transgenes were cloned from the genomic DNA of wild type (Col-0).
The involved primer sequences are listed in Supplementary Table S1. The purified DNA
fragments were ligated and inserted into the modified vector, pCAMBIA1300-VENUS,
using the ClonExpress II One Step Cloning Kit (Vazyme, Nanjing, China). The pDYT1
used in this study was the pDYT1-550 reported previously [27]. The EIN2, and EIN3
clones for the pDYT1:EIN2 and pDYT1:EIN3 constructs were amplified from the genomic
DNA of Col-0. Relevant primer sequences are listed in Supplementary Table S1. All
constructions were sequenced, transformed into Agrobacterium tumefaciens strain GV3101
and then transformed into Arabidopsis using the floral dip method.

2.5. Real-Time PCR Analyses

Total RNA was extracted from inflorescences of single T1 transgenic plants or can1 and
can2 mutants using the TRIzol kit (Invitrogen, Carlsbad, CA, USA) following the manufac-
turer’s instructions. The total RNA was then reverse transcribed into cDNA according to
the manufacturer’s instructions (TransGen Biotech, Beijing, China). Quantitative real-time
PCR was performed using the ABI 7300 System with the SYBR Green Real-Time PCR
Master Mix (Toyobo, Osaka, Japan). All genes were normalized to β-tubulin, and three
biological replicates were performed per experiment. Relevant primer sequences are listed
in Supplementary Table S1.

3. Results
3.1. Exogenous Ethylene Treatment Causes Filament Shortening, Pollen Abortion and Leads to
Male Sterility

To investigate the detailed effect of ethylene on the stamen, we carried out an ethylene
treatment experiment in Arabidopsis. The process of anther development has been divided
into 14 stages according to structure properties [21]. Based on each flower position and
the DAPI staining results of its microspores from more than three inflorescences, we can
judge the approximate developmental stage of the anther by its position in an inflorescence
(Figure 1A). We treated the wild type (Col-0) with ethylene (100 µL L−1) for 6 h, 12 h, or 24 h,
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respectively, then observed the fertility of each plant after 14 days of growth. Compared
with the Col plants after mock treatment (Figure 1B), plants treated with ethylene for 6 h had
basically normal fertility (Figure 1C). Plants treated with ethylene for 12 h or 24 h showed
that some siliques failed to produce seeds (Figures 1D,E and S1). Artificially pollinated
viable pollens from untreated plants to the ethylene-treated stigma could produce normally
elongated siliques, indicating that the sterility phenotype did not result from female defects.
The anthers in the flower bud that correspond to these short siliques were from stage 11 to
stage 12 (for 12 h treatment) and from stage 6 to stage 12 (for 24 h treatment) (Figure 1D,E).
Dissection of these flower buds after ethylene treatment revealed shortened filaments
(Figure 1G,H) and abnormal anthers (Figure 1H).
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Figure 1. The fertility was disturbed after exogenous ethylene treatment. (A) Inflorescence before
ethylene treatment. Note that the start position of inflorescence (flower with anthers at stage 13) was
marked with a red line so as to observe the elongation of siliques after 14 days. (B–E) Inflorescence of
Col without ET treatment (B), with ethylene (100 µL L−1) treatment for 6 h (C), 12 h (D), and 24 h
(E). After ET treatment, these plants grew for 14 days under normal conditions. Arrows indicate the
closed buds or short siliques without seeds. The developmental stage of anthers in each bud before
ethylene treatment is marked next to the corresponding siliques or flower buds. Bars = 2 cm in B–E.
(F) Col flower. Bar = 1.0 mm. (G,H) Col flower after ethylene (100 µL L−1) treatment for 12 h (G) and
24 h (H). Note that filaments are shortened after 12 h or 24 h ethylene treatment, and the development
of the anther of stage 8 is abnormal after 24 h ethylene treatment. Bars = 1.0 mm in (G,H).

We then carried out Alexander staining to detect pollen activity for anthers at different
stages after ethylene treatment. After ethylene treatment, the pollen activity was not
disturbed in the anthers at stage 5 or younger than stage 5, which was consistent with
the normal fertility of these buds (Figures 1 and 2A). While in ethylene-treated anthers
from stage 6 to stage 10, no viable pollen was observed in the anther when it should be
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mature (Figure 2B–F), indicating that the anthers at this period are very sensitive to ethylene
treatment. For anthers at early stage 11, ethylene induces some pollen abortion (Figure 2G).
At later stage 11 and stage 12, anthers could produce normal pollens Figures 2H,I and S1),
indicating that these flowers’ sterility phenotype resulted from the filament’s elongation
inhibition. We thus conclude that ethylene treatment inhibits filaments elongation and
leads to pollen abortion. The sensitivity of anthers that respond to ethylene is dependent
on specific stages. For the anthers younger than stage 5 or older than stage 11, ethylene
treatment could not disturb the following pollen development. Anthers from stage 6 to
early-stage 11 were mostly sensitive to ethylene treatment, showing complete or partial loss
of pollen activity. Because the anther defects induced by the 24 h treatment of ethylene are
similar to the phenotype of the female flowers in cucumber, we conducted the following
ethylene treatment experiments with this condition.
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Figure 2. Alexander staining of anthers after 24 h of ethylene treatment. (A–I) Alexander staining
of stage 5 to stage 12 anthers after 24 h treatment with ethylene (100 µL L−1). Bars = 50 µm. After
ethylene treatment, plants were transferred to normal condition for further growth. The flower buds
in the inflorescence gradually mature, and Alexander staining was carried out to stain the anthers of
each mature flower.

3.2. Ethylene Treatment Leads to Degeneration of the Tapetum and Microspores

To further determine the effects of ethylene on each cell layer of the anther, we made
semi-thin sections to observe the cytological phenotypes of anthers at different stages
after ethylene treatment. According to the time course of anther and pollen development
(Figure S2) [28], after 24 h, anthers may develop into the next developmental stage. At
stage 5, the four cell layers and the microsporocytes are differentiated and can be iden-
tified (Figure 3A). After ethylene treatment for 24 h, all the cell layers at this stage were
normal (Figure 3A), and the microsporocytes seemed to normally enter meiosis as that
of stage 6 (Figure 3B). The phenotype at this stage is consistent with the normal pollen
activity observed after ethylene treatment (Figure 2). For the anther at stage 6, the tapetum
disappeared after treatment, and partially degenerated microsporocytes or tetrads were
observed in the locule (Figure 3B). After meiosis, tetrads composed of four haploid mi-
crospores are normally formed in the anther locule at stage 7 (Figure 3C). After treatment,
the tapetal cells became severely vacuolated, and the microspores were released from the
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tetrad (Figure 3C). The tapetum undergoes programmed cell death (PCD) in the following
stages to provide the material for pollen development and pollen wall formation, and the
microspore undergoes two rounds of mitosis (Figure 3D–G). In contrast, ethylene-treated
anthers from stage 8 to stage 10 also showed premature degeneration of the tapetal layer,
and the microspores were gradually degraded (Figure 3D–F). At stage 11, the tapetum
degenerate into a very thin layer in Col (Figure 3G). After ethylene treatment, the tapetum
disappeared at stage 11, while most of the microspores at this stage appeared normal
(Figure 3G), which was consistent with the Alexander staining results. From these results,
we concluded that ethylene treatment induced the severe degeneration of the tapetum layer
and microsporocytes or microspores from stage 6 to stage 10.
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Figure 3. Ethylene treatment resulted in the degeneration of tapetum and microspores. (A–G) Semi-
thin sections of Col anther before and after ethylene treatment (100 µL L−1 for 24 h). Note for the
degeneration of tapetal layer and microspores. Bars = 20 µm. Ms: microsporocyte; Tds: tetrad; Msp:
microspores; Ep: epidermis; En: endothecium; ML: middle layer; T: tapetum; Vt: Vacuolated tapetum;
Dmsp: degenerated microspores.
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In the ethylene signaling pathway, ETR1 and ERS1 are two major receptors. We also
made semi-thin sections of the ethylene receptor double mutant etr1-7 ers1-2, which exhib-
ited some constitutive ethylene responsiveness and leads to male sterility [19]. Compared
with normal anther development (Figure 3A–G), etr1-7 ers1-2 showed overall expansion
of the tapetal layer at stage 5 and stage 6 (Figure 4A,B). At stage 7, the regular shape of
the tetrad was not observed in the locule and the tapetum became fragmentary, implying
the abnormal degradation of the tapetal cells (Figure 4C). In the following stages, the
microspores gradually degenerated into irregular shapes (Figure 4D–F). Consequently,
the defects in the anther of etr1-7 ers1-2 are similar to that of ethylene-treated wild type,
although the phenotypes are much weaker. These results indicate that the ethylene content
and its signaling pathway should be strictly controlled for normal anther development.
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3.3. The Anther Defects Induced by Ethylene Treatment Are EIN2- and EIN3/EIL1-Dependent

To further identify components of the ethylene signaling pathway that mediate the
anther’s repression, we treated ein2-1, ein3-1, eil1-1 single mutants and ein3-1 eil1-1 double
mutants with ethylene (100 µL L−1) for 24 h and observed the fertility of these plants.
We found that ein2-1 and ein3-1 eil1-1 exhibited ethylene-insensitive phenotypes with
commonly elongated siliques (Figure 5A,B), whereas ein3-1 and eil1-1 single mutant plants
showed different degrees of ethylene-sensitive phenotypes with fewer seeds or no seeds in
siliques (Figure 5C,D). ein3-1 showed less sensitivity to ethylene than eil1-1, indicating that
EIN3 plays a more important role than EIL1 in anther repression. We thus determined that
the anther defects induced by ethylene are mediated by EIN2 and EIN3/EIL1.
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Figure 5. The inflorescence of ein2-1 and ein3-1 eil1-1 is insensitive to exogenous ethylene treatment.
(A–D) The inflorescence of ein2-1 (A), ein3-1eil1-1 (B), ein3-1 (C) and eil1-1 (D) after treated with
ethylene (100 µL L−1) for 24 h. After ethylene treatment, these plants were transferred to normal
growth condition for 14 days. Bars = 2 cm.
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3.4. Exogenous Ethylene Treatment Activates EIN2 and EIN3 Transcription in Tapetum

The temporal and spatial expression of EIN2 and EIN3 during anther development
was investigated involving the pEIN2:VENUS and pEIN3:VENUS transgenic plants. The
VENUS signal for pEIN2:VENUS and pEIN3:VENUS was observed in both the anther wall
and filaments (Figures 6A,B and S3). The expression peak of VENUS was observed at
stage 6 and stage 7, and the fluorescence intensity is gradually decreased in the following
stages (Figure 6A,B). Both EIN2 and EIN3 showed similar expression patterns during
anther development. Such transcriptional patterns are correlated well with their function
in anther repression and filament inhibition. We noticed that the VENUS signal in both
pEIN2:VENUS and pEIN3:VENUS accumulated in the outer layers of the anther wall such
as the epidermis and endothecium, but not in the tapetum and microspores (Figure 6A,B).
As results had shown that the tapetal cells severely degenerated after ethylene treatment
(Figure 3),this prompted us to investigate whether the EIN2 and EIN3 expression are
activated in the tapetum by ethylene treatment. Therefore, we observed the VENUS
fluorescence of the transgenic plants after ethylene treatment for 24 h. In both kinds of
transgenic plants, the VENUS signal intensity was significantly increased in the anther wall
after treatment (Figure 6A,B). More importantly, the VENUS fluorescence was detected in
the tapetum (Figure 6A,B) but not in microspores. These results indicated that the induction
of EIN2 and EIN3 are activated in the tapetal cell after ethylene treatment.
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Figure 6. The expression patterns of pEIN2:VENUS and pEIN3:VENUS reporters during anther
development. (A,B) Fluorescence images of the pEIN2:VENUS (A) and pEIN3:VENUS (B) before and
after ethylene treatment. The dashed box in the close-up region indicate the tapetum layer in both
(A,B). Note for the VENUS signals were appeared in tapetum and were enhanced in epidermis and
endothecium after ethylene treatment. The green channel showed the VENUS signals and the red
fluorescence channel showed auto-fluorescence of chlorophyll in epidermis (Ep) and endothecium
(En). T: tapetum. Bars = 30 µm.

Because ethylene can activate the transcriptions of EIN2 and EIN3 in the tapetum and in-
duce tapetum degradation, we wondered whether artificially overexpressing these two genes
in the tapetum can cause anther defects similar to ethylene treatment. We used a tapetum-
specific promoter, DYT1, to ectopically express EIN2 and EIN3 in the tapetal layer around stage
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6 [27]. We obtained 17 and 15 independent T1 lines of pDYT1:EIN2/Col and pDYT1:EIN3/Col
transgenic plants, respectively, and most of these lines (12/17 of pDYT1:EIN2/Col and 11/15
of pDYT1:EIN3/Col) showed normal fertility with anthers full of pollen grains (Figure 7).
The few remaining plants showed a partial pollen lethality phenotype (Figure 7A). We found
that the percentage of plants showing the partial pollen defects in the pDYT1:EIN3/Col
and pDYT1:EIN2/Col transgenic population was not significantly different from that of the
transgenic control pDYT1/Col (4/11) (χ2 < χ2

0.05,1 = 3.84 p > 0.05) (Figure 7B), implying that
the pollen defect phenotype is independent of the construct used for transformation, which
is a common feature occurring in transgenic populations reported previously [29]. We next
detected the transcripts level of EIN2 or EIN3 in the transgenic plants and found three to
six-fold increased transcripts of EIN2 or EIN3 in each T1 line (Figure 7B), confirming the
activity of the DYT1 promoter. These results showed that only increasing the transcriptions
of EIN2 and EIN3 did not influence the anther development, indicating that the expression
pattern and function of these two factors are also regulated from other levels.
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Figure 7. Ectopic transcription of EIN2 and EIN3 in tapetum did not influence pollen formation.
(A) Alexander staining of pollens of pDYT1/Col, pDYT1:EIN2/Col, and pDYT1:EIN3/Col transgenic
plants. Note, all of the three transgenic populations showed two phenotypes: plants showed normal
pollens and plants showed partial pollen lethality phenotype. Bars = 50 µm. (B) Left panel: The
percentage of plants with abnormal anthers in each group of the transgenic population. Middle
panel: Real-time quantitative RT-PCR analysis of EIN2 transcript levels in three independent lines of
pDYT1:EIN2/Col transgenic plants. Right panel: Real-time quantitative RT-PCR analysis of EIN3
transcript levels in three independent lines of pDYT1:EIN3/Col transgenic plants. β-tubulin was
used as an internal control for normalization. Data are mean ± SEM of three biological replicates
with technical duplicates for each.
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3.5. Exogenous Ethylene Treatment Can Stabilize the Accumulation of EIN3 in Tapetum

It has been reported that EIN3 is regulated at the post-translational level. In the absence
of ethylene, EIN3 is degraded by two F-box proteins, EBF1 and EBF2 [30–32]. To investigate
the expression pattern of EIN3 during anther development, we observed the GFP signal
of the pEIN3:EIN3-GFP/Col transgenic plants before and after ethylene treatment. Under
normal growth conditions, no significant GFP signal could be detected in the anther from
stage 5 to stage 12 of pEIN3:EIN3-GFP/Col transgenic plants (Figure S4). After ethylene
treatment, EIN3 proteins were detected in the anther (Figure 8). At stage 6, a weak GFP
signal was detected in a few cells of tapetum. At stage 7 and 8, a strong GFP signal was
detected in most of the tapetal cells. In addition to its accumulation in the nuclei of tapetal
cells, EIN3-GFP was also observed in the nuclei of the epidermis and endothecium, and in
the nuclei of filaments (Figure 8). These results indicated that ethylene not only activates
the transcription of EIN3, but also stabilized EIN3 in the tapetum.
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Figure 8. The expression pattern of EIN3 in anthers after ethylene treatment. Fluorescence images of
the pEIN3:EIN3-GFP in anthers. The green channel showed the GFP signal and the red fluorescence
channel showed auto-fluorescence of chlorophyll in epidermal and endothecium. The blue, white, and
red arrows indicate the GFP signal in the nuclei of tapetum, epidermis and endothecium, respectively.
The green arrow indicate the GFP signal in the nuclei of filament. Ep: epidermis; En: endothecium;
ML: middle layer; T: tapetum. Bars = 30 µm.

3.6. The Expression of Several ERFs and SAGs Genes Are Induced by Ethylene and the
Expression of the Five Key Transcription Factor Genes in Tapetum Development Is Reduced
after Ethylene Treatment

It has been proposed that an ethylene inducible calcium dependent nuclease CsCaN
may be required for the DNA damage of anther primodia in the female flower in cucum-
ber [20]. There are two homologs of CsCaN in Arabidopsis, CaN1 and CaN2. To verify
whether the CaN genes are also involved in anther repression in Arabidopsis after ethy-
lene treatment, we first obtained mutants with T-DNA insertion at CaN1 or CaN2 locus,
named can1-1 and can2-1, in which the expression level of the corresponding genes de-
creased sharply (Figure S5). We then generated can1-1 can2-1 double mutant by crossing
the two single mutants. can1-1, can2-1 and can1-1 can2-1 mutants do not cause a notice-
able defect during growth. We applied ethylene (100 µL L−1) to treat the can1-1, can2-1
single mutants and can1-1can2-1 double mutants for 24 h. We found that they all showed
the ethylene responsive phenotype reminiscent of the ethylene-treated wild type (Col-0)
(Figure S5). Therefore, we proposed that the function of CaNs may not be conserved in
ethylene-induced anther repression in Arabidopsis and cucumber. Alternatively, other genes
that play redundant roles with CaNs may also be required during this process in Arabidopsis.

Ethylene-responsive element binding factors (ERF) family of transcription factors
were originally identified in tobacco by their ability to recognize a conserved ethylene
response element (GCC) box [33]. ERF1 can regulate the expression of a large number of
genes responsive to both ethylene and jasmonate [34]. The expression of several ERFs has
been proven to be increased after ethylene treatment [34,35]. SENESCENCE-ASSOCIATED
GENEs (SAGs) are up-regulated in senescing leaves and expression of several SAGs can
be induced by exogenous ethylene in leaves [36,37]. The expression of SAG20 is increased
during the flower senescence in Camellia lutchuensis [38]. The transcripts of several ERFs
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and SAGs genes such as ERF3, ERF7, ERF109, SAG2, and SAG20, have been detected in
the tapetal cells (Table S2) [39]. We analyzed the transcript level of these five genes, ERF1,
EIN2, and EIN3 before and after ethylene treatment to confirm whether the expression of
these genes respond to ethylene treatment in inflorescence. Consistent with the increased
expression of VENUS in pEIN2:VENUS and pEIN3:VENUS plants after ethylene treatment
(Figure 6), the transcription of EIN2 and EIN3 was increased with ethylene treatment
(Figure 9A). As shown in Figure 9, expression of ERF1, and to a lesser extent of, ERF7
and SAG20, was significantly increased, whereas the expression of ERF3, ERF109 and
SAG2 was unchanged after ethylene treatment. In Arabidopsis, five tapetum specifically
expressed transcription factors, DYSFUNCTIONAL TAPETUM 1 (DYT1), DEFECTIVE
IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1), ABORTED MICROSPORE
(AMS), MS188/MYB103/MYB80, and MALE STERILITY 1 (MS1), are essential for tapetum
development and pollen formation [40]. Mutations in each of these five genes lead to
tapetum defects and pollen abortion. Consistent with the observed tapetum defects, the
expression of these five genes were decreased to a different extent after ethylene treatment
(Figure 9).
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Figure 9. Quantitative RT-PCR analysis of ERFs, SAGs and tapetum development-related key tran-
scription factors after ethylene treatment. (A) Relative expression of EIN2, EIN3, ERFs and SAGs
genes in the inflorescence of Col after ethylene treatment for 24 h. (B) The expression of the five key
transcription factor genes in tapetum development is reduced after ethylene treatment. Relative ex-
pression of AMS, DYT1, TDF1, MS188, and MS1 in the inflorescence of Col-0 after ethylene treatment
for 24 h. Col treated with air for 24 h was used as a mock. Gene expression was relative to that of
the mock. β-tubulin was used as an internal control for normalization. Data are mean ± SEM of
3 biological replicates with technical duplicates for each. * p < 0.05, ** p < 0.01 (t-test).
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4. Discussion

Under the ethylene treatment condition used in this study, stamens but not pistils
displayed obvious developmental defects. This is similar to the performance of cucumber
to produce female flowers in the agricultural application of ethylene. We can know from
previous reports that female fertility defects also appeared in the etr1 ers1 double mutants
in Arabidopsis [19]. Ethylene is a gaseous hormone and can diffuse from cells to cells. We
speculate that it may be much easier for ethylene to diffuse into anthers than ovules as they
are contained within two fused carpels in Arabidopsis. Compared with pistils, stamens are
much more sensitive to ethylene. Regardless of the short-termed or long-termed ethylene
treatment, filaments became significantly shortened (Figure 1). EIN2 and EIN3 expression
was consistently significantly higher in filaments (Figure S3). The classic ethylene triple-
response phenotype for etiolated seedling includes the inhibition of root and hypocotyl
elongation, swelling of the hypocotyl and exaggeration of the curvature of apical hooks in
Arabidopsis [41]. Filament shortening is similar to that of hypocotyl, although the underlying
mechanism remains to be explored.

By detailed phenotype analysis, we also observed that anthers at different develop-
mental stages have different responses to ethylene. For the anthers from stage 6 to 10,
the tapetum and microspores are almost degenerated (Figure 3). During this period, the
development of pollen depends on various nutrient, pollen wall materials and kinds of
enzymes provided from the tapetum [42–45]. Premature or delayed PCD will lead to
pollen defects [46,47]. In addition to exogenous ethylene application, defects in tapetal and
pollen development are also observed in the etr1 ers1 mutants (Figure 4), indicating that
the ethylene content and its signaling pathway need to be precisely regulated to ensure the
normal development of tapetum and pollen. Interestingly, the pollen activity of the anthers
older than stage 11 was not disturbed after ethylene treatment. Several critical biological
processes have been finished or almost completed at these stages. For example, the nuclear
divisions of pollens are finished at stage 11, so the pollens enter the three-celled stage
after this stage [21]. At the meantime, the exine and intine layers of the pollen wall have
been established, and the pollen coat has appeared in the sculpture cavities of exine from
stage 11 [42,48]. In addition, the tapetum has largely degenerated at stage 11 under normal
growth conditions [21]. It is reasonable to believe that the pollen activity at these stages
may not strongly be dependent on the function of the surrounded sporophytic cell layers
such as tapetum. Therefore, the degeneration of tapetal cells cannot significantly affect the
maturation and activity of pollens after stage 11. In conclusion, the sensitivity of anther
response to exogenous ethylene is dependent on specific developmental stages. In the
female flower of cucumber, the anther repression is initiated from the anther primordium
stage [9,10]. This stage is much earlier than the anther development period (stage6-stage10)
sensitive to ethylene in Arabidopsis, indicating that the time point of ethylene inhibiting the
stamen development is different in cucumber and in Arabidopsis.

Our experimental results proved that the stamen developmental defects caused by
exogenous ethylene are dependent on the function of EIN2 and EIN3/EIL1. Consistently,
the expression of EIN2 and EIN3/EIL1 was detected in the stamen (Figures 6 and 8). After
ethylene treatment, the expression of EIN2 and EIN3 was detected in the tapetum, but not
in microsporocytes or microspores, indicating that ethylene inhibits anther development
mainly by activating the EIN2-EIN3/EIL1 signaling pathway in the tapetum. The tapetum
layer is particularly sensitive to ethylene treatment. After ethylene treatment, filaments
and other cell layers in the anther wall such as the epidermis and endothecium can still
maintain the basic cell structure, while the tapetum is almost degraded. Under normal
growth conditions, the tapetal cell undergoes degradation by PCD. Although the detailed
mechanism is unclear, we speculate that the hypersensitivity of the tapetum to ethylene may
be related to the destined PCD event. Our results demonstrated that ethylene can regulate
the expression of EIN3 in the tapetum from two aspects: transcriptional activation and
protein stability maintenance (Figures 6 and 8). The activated EIN2-EIN3/EIN1 signaling
pathway may then lead to premature PCD and induces the degeneration of the tapetum.
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Here, we showed that the expression of the five key transcription factors that play essential
roles for tapetum development was reduced after ethylene treatment (Figure 9). We
also demonstrated that the expression of ERF1, ERF7, and SAG20 was induced in the
inflorescence after ethylene treatment (Figure 9). The changed expression of these genes is
consistent with the anther defects induced by ethylene.

It has been reported that EIN2, EIN3, and EIL1 are required for the normal degeneration
of synergid cells in the embryo sac during fertilization [6–8]. Since the tapetal cell undergoes
PCD under normal growth conditions, and exogenous ethylene can induce the premature of
PCD, we wondered whether the ethylene signaling pathway is also required for the normal
PCD of tapetum. In the ein3-1 and eil1-1, pollens can be normally formed (Figure S6), implying
that the function as well as the PCD program of tapetum are not disturbed in the mutants,
indicating that EIN3 and EIL1 may not be essential for the PCD of tapetum under normal
conditions. Consistently, neither the transcripts nor the protein of EIN3 could be detected in
this cell layer under normal growth conditions (Figures 6 and 8). What then is the function
of preparing transcripts of the key factors of the ethylene signaling pathway such as EIN2,
and EIN3 in the outer layers (epidermis and endothecium) of the anther wall (Figure 6)?
We speculate that such preparation may be required for the anther to respond to kinds
of stresses quickly. Previous articles supported that environmental stresses such as heat,
shade, flooding, and water deficiency can trigger ethylene production [49–51]. In the
meantime, SAG20 was reported to respond to ozone treatment or the treatment of Nep1,
a fungal protein that causes necrosis [52,53]. When plants encounter stress or exogenous
ethylene treatment as in this paper, ethylene may activate the EIN2-EIN3/EIN1 signaling
pathway to quickly disturb or block stamen development, and may transfer more energy
from the reproductive process to stress resistance.

In conclusion, (1) we found that the sensitivity of anther and pollen response to
exogenous ethylene is dependent on specific developmental stages. Ethylene treatment
leads to shortened filaments and severe degeneration of the middle layer, tapetum and
microspores from anther stage 6 to stage 10. (2) We provide evidence that all the defects
induced by ethylene are dependent on the canonical ethylene signal pathway mediated by
EIN2 and EIN3/EIL1 in vivo. Consistently, ethylene not only activates the transcription of
EIN2 and EIN3, but also induces the stabilization of EIN3 in the tapetum. (3) This work
clarifies that the ethylene signaling pathway is not required for normal PCD of tapetum
but it should be strictly blocked during anther development, especially in the tapetum.
Whether this signaling pathway in anther can respond to various stresses and is necessary
for stress resistance requires further study.
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and EIN3 are transcribed in filaments; Figure S4: Expression pattern of EIN3 in anthers; Figure S5: The
fertility of the can mutants is disturbed after exogenously ethylene treatment; Figure S6: Alexander
staining of pollens of eil1-1 and ein3-1; Table S1: Primers used in the study; Table S2: The transcripts of
ERFs and SAGs were detected in the tapetum.
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