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The Boundary Characteristic Orthogonal Polynomials (BCOP) method is used in this study in order to analyze
multi-span plates traversed by a moving inertia load traveling on an arbitrary path with constant velocity. The
plate is assumed to be free from any support at the longitudinal edges and the spans are made by simply supported
constraints at width, i.e. SFSF. The plate's mode shapes are generated by the BCOP method while the boundary
Multi-span thin plates condition is satisfied over all computational modes. A free vibration analysis is done in order to find natural
Moving mass frequency. The governing differential equations of motion are derived by Hamilton's principle and the solution in
BCOP the time domain is found by using the Matrix Exponential method after modeling the problem in state space. All of
the convective inertia terms are included in the acceleration derivatives and the responses are presented both for
the load moving on the plate's surface ignoring/including the mass inertia effect. A comprehensive parametric
study on the plate's mid-spans is carried out for the single, two- and three-span plates, investigating Dynamic
Amplification Factor (DAF) versus non-dimensional velocity (V). The effect of mass and aspect ratio along with
the location of reference point of calculation on the dynamic behavior of a multi-span plate is investigated and
many graphs are generated as spectra. One can easily find the critical velocity as well as the peak deflection for
each case study by introducing a corrective factor. The solution under moving mass excitation is obtained by the

Vibration analysis

factor if the same response for moving load is known.

1. Introduction

Dynamic analysis of structures under moving load excitation has been
one of the most important challenges for engineers during the last few
years. The vast application of this type of loading in many fields of industry
has intensified the importance of evaluating the dynamic response of
vibrant structures under moving loads. A comprehensive exploration of
vibration of structures under concentrated and distributed moving loads
has been presented by Fryba (1999) [1] including formulation of motion
for most types of structures such as single and multi-span beams,
single-span plates and shells. Railroad tracks and bridges, highway
bridges, deck of ships, carrying aircrafts and overhead travelling cranes are
just some practical examples of real world structures that undergo moving
load excitation. Ouyang [2] also has mentioned several engineering
application problems in the field of structural dynamics under moving
loads. Beams are often the first common structural elements for modeling
bridge decks in vibration analysis of such structures due to the simplicity of
its governing equations. Along improvements in mathematical and nu-
merical methods in the dynamic analysis area, many researchers use the

* Corresponding author.
E-mail address: ghalehnovi@um.ac.ir (M. Ghalehnovi).

https://doi.org/10.1016/j.heliyon.2019.e01919

plate element in their problem modeling since it can reflect the dynamic
behavior of vibrating decks more accurately and realistically. Moreover,
considering multi-span beams in the analysis can cause more complexities
in the equations of motion and analytical solutions encounter major lim-
itations specifically in mode shape generation. Therefore, one can find
numerical methods to be more efficient by simply surveying the past
literature. A multi-span plate actually seems to be a more appropriate
choice for reflecting the dynamic behavior of multi-span bridges. Given the
increasing magnitude and velocity of moving loads and vehicles on bridge
decks and foundation of structures, many researchers have performed
experiments to show the importance of the effects of inertia of moving
loads on the dynamic behavior of these structures. For example, an
Euler-Bernoulli beam was investigated by Akin et al. [3]. The study
investigated a beam acted upon a moving mass for various boundary
conditions utilizing the discrete element method. The results of this
research study stress the importance of the role of inertia on moving loads,
especially for high velocities. The main simplifications considered in that
study is ignoring all convective terms of acceleration except for the vertical
ones. In another study performed by Esmailzaeh et al. [4], a simply
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supported Euler-Bernoulli beam was analyzed under uniform partially
distributed moving load, where the importance of load inertia and the
length of load moving on the beam were recognized as two parameters
that had a great effect on the dynamic response of beam. Lee [5] assessed a
Timoshenko beam with simply supported boundary conditions influenced
by a moving mass. One of the contributions of his paper was to investigate
the separation of a moving load from the beam while it is traveling on the
beam through controlling and computing the contact force between them.
Once again the mass magnitude and velocity of movement of the load on
the Timoshenko beam were found as two most important parameters
determining the dynamic behavior of the beam [6]. Nikkhoo et al. [7] used
the eigenfunction expansion method to analyze an Euler-Bernoulli beam
when influenced by a moving mass. The method was employed to solve
the governing differential equations. In that study a critical velocity was
defined as the ratio of span's length and the first period of the structure.
The results of that paper shows that for velocities beyond critical value the
full acceleration terms must be considered for the dynamic equations.
Similar papers were published after applying the abovementioned results
[8, 9]. A simply supported beam acting upon a moving inertia load was
investigated by Rao [10]. He applied the mode superposition and multiple
scale methods to solve the problem and concluded that the inertia term has
a considerable effect on the dynamic response of the system. In another
study, Wu et al. [11] investigated the dynamic behavior of a multi-span
non-uniform beam influenced by a series of moving loads in the same
and opposing directions, while the speed of loads is varying. Lee [12]
studied the dynamic response of a beam excited by a moving load where
the beam has several middle point constraints generated by linear springs.
The method utilized in the paper was assumed the mode method. With a
more practical approach, Chatterjee et al. [13] modeled a multi-span
continuous bridge traversed by a moving load while the interaction be-
tween the load and the bridge is considered. In their problem, the vehicle
was modeled as sprung or un-sprung masses. Ichikawa et al. [14] in a
similar fashion to reference [7], used the method of eigenfunction
expansion but this time for the multi-span beams. Once again, they testi-
fied the effect of inertia terms in evaluating the dynamic behavior of beam
shape structures, especially when the values of mass weight and speed are
increased. The work on the dynamic analysis of multi-span beams under
moving mass were pursued by Kiani et al. [15]. They established the
formulation of Generalized Least Square Method (GLSM) to solve the
problem in the space coordinates. An interesting result was acquired,
showing the effect of span's number in the vibration response of a beam,
influenced by moving mass with a higher magnitude of velocity.

Free vibration of plates has been vastly investigated by many re-
searchers during the few past years. Recently, Civalek [16] studied the
free vibration of composite annular plates and cylindrical plates by the
method of discrete singular convolution. He investigated the non-linear
response of laminated plates with the aforementioned method [17].
The problem of vibratory plates acted upon moving loads or masses has
been scrutinized by several researchers. Using the Finite Element tech-
nique, a rectangular Kirchhoff plate was investigated under an orbiting
moving load by Cifuentes et al. [18]. In their study, the dynamic behavior
of a plate's central point was analyzed and the deflection of the plate was
shown through time history. One can easily see the importance of the
effect of inertia on the dynamic response of plates for orbiting trajectory
from that paper. The dynamic behavior of rectangular thin plates plus
Euler-Bernoulli and Rayleigh beams were considered while acting upon a
moving load by Gbadyan et al. [19]. The modified generalized finite
integral transforms and Struble were two methods applied in the paper to
solve the governing differential equations. In that work, the path of
moving load was assumed to be parallel with the edges of the plate and
the results were presented within several time histories, computed at the
plate's central point. The importance of inertia contribution in the dy-
namic response of the plate was emphasized again. In a dynamic analysis,
Shadnam et al. [20] studied the behavior of a thin simply supported plate
when it is forced to vibrate under a moving mass. The path of the load
moving on the plate was assumed to be arbitrarily chosen. They used the
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method of eigenfunction expansion to solve the equations of vibration.
One of the most important results of their work is consideration of the
effects of higher modes in the accuracy of computations and results.
However, in a fashion similar to most previous studies they confined
their formulation to apply the vertical component of acceleration.

Fryba [1] has presented the full term formulation of solids under
moving loads and has discussed about the complexities of the problem
when full term acceleration is considered. Nikkhoo et al. [21] analyzed the
parametric study of a rectangular thin plate traversed by a moving mass.
The mass traveled on an arbitrary path. They utilized the method of
eigenfunction expansion to solve the plate's equation of motion. Within
that article, having proceeded a parametric study, the effect of some pa-
rameters which could influence the dynamic behavior of the system were
assessed. The essential conclusion that was pointed out from this paper
was summarized in the necessity of inertia inclusion within the problem
formulation. This was done to catch the accurate results, especially when
the mass and velocity of the load movement is increased. Takabatake [22]
investigated the vibration of a thin rectangular plate excited by a moving
load through an analytical method. The plate has a variable thickness and
the solution procedure uses the characteristic function. Huang et al. [23]
developed a procedure for analyzing a plate resting on an elastic founda-
tion traversed by a moving mass by using the finite strip method. In
another study, Ghazvini et al. [24] presented a computational procedure
and they assessed the dynamic behavior of a rectangular plate with vari-
able thickness when it is acted upon by a moving mass using the eigen-
function expansion method. Nikkhoo et al. [25] investigated the dynamic
behavior of rectangular plate excited by series of moving masses by using a
semi-analytical method. They utilized the eigenfunction expansion
method to solve the differential equation of motion. A Mindlin plate under
distributed moving mass excitation was analyzed using finite difference
procedure by Gbadyan et al. [26]. In another paper about the Mindlin
plates, Amiri et al. [27] investigated the dynamic response of thick plates
traversed by a moving mass based on first-order shear deformation theory
using separation of variable as well as the eigenfunction expansion
method, simultaneously. Eftekhari et al. [28] investigated the vibration of
rectangular plates under accelerated moving loads. They employed several
applications of Ritz, differential quadrature and integral quadrature
methods. The Ritz method was used to separate the spatial partial de-
rivatives while the differential quadrature method and integral quadrature
method were applied to simulate the system's partial differential equations
and finally the numerical method of Newmark was employed to solve the
ordinary differential equations. Wu [29] studied a moving load traveling
on a circular trajectory on the plate's surface causing vibratory behavior for
the system. Moreover, Wu [30, 31] used the finite element method to
analyze the dynamic response of an inclined plate traversed by a moving
distributed load. The vibration analysis of a plate excited by a moving
concentrated mass using an equivalent finite element procedure was per-
formed by Esen [32].

Recently a comprehensive investigation on a thin plate vibrated by a
moving load (force and mass) with arbitrary boundary conditions was
performed by Song et al. [33]. In that study the governing differential
equations were derived using the Lagrange equation and the updated
Rayleigh-Ritz method associated with courant's penalty was employed in
order to deal with the spatial partial derivatives. The admissible functions
just satisfy a totally unconstrained condition. Then the differential quad-
rature method was used for discretization of the temporal derivatives.

Solution of multi-span plates involves complex differential equations
of motion with partial derivatives with respect to two spatial components
and another temporal variable. On the other hand, the existence of so-
lution in free and forced vibration analysis of these plates greatly depends
on boundary conditions. In the literatures, the analytical solution has
often been presented for two opposite simply supported edges of plates in
most complex conditions [34]. Because of these complexities in the
problem formulation and solution, less attention has been paid to this
important and practical problem thus far.

The free-edge boundary conditions are classified into natural types
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Fig. 1. Schematic of multi-span plate with simply supported constraints in
width and free-edge in length direction acted upon a load traveling on an
arbitrary trajectory.
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Fig. 2. A single-span plate with free-edge in longitudinal edges and simply
supported along width, SFSF.

Fig. 3. Fundamental polynomials for 2D domains in triangle arrangement
(Pascal's triangle).

(Newman) which result in more difficulties into the analytical proced-
ures. Thus, numerical methods have been utilized in most studies to
handle such plates in vibrating behavior.

Considering the aforementioned literature review, and with an
attempt to compensate for the lack of sufficient analysis of continues
plates, we investigate a thin multi-span plate under excitation of a
concentrated moving load on an arbitrary trajectory which has not been
assessed so far should.

The problem formulation is presented for moving inertia mass,

Table 1
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including the full terms of convectional acceleration components. The
middle supports are proposed to satisfy simply supported conditions and
the longitudinal edges will be free from constraints. The Hamilton's
principle is utilized to derive the governing partial differential equations
of motion, and then the Galerkin method is used to solve the problem in
general form to separate the variables into spatial and temporal ones,
within the proposed solution function. Mode shapes are generated by the
Boundary Characteristic Orthogonal Polynomials (BCOP) method in a
novel application of the method, through this article to create the
vibrational mode shapes of multi-span plates for the first time (based on
authors' literature review). A free vibration analysis is performed and the
frequency as well as the fundamental period of structure would be
derived, consequently. This is straightforwardly obtained by a standard
eigenvalue. The results of free vibration analysis for two and three-span
plates are reported in the tables which show a very good convergence for
the frequency parameter, increasing the number of computational modes
to 62. It could testify the accuracy of the procedure. The robust Matrix
Exponential Method (MEM) is employed to derive the solution in the
time domain such the complete solution is obtained.

A comprehensive parametric study is performed for investigation of
the Dynamic Amplification Factor (DAF) at the point of first and second
mid-span of single, two and three-span plates, when it is excited by a
moving mass with constant velocity travelling on a path parallel to the
longitudinal edges.

F F

y

Fig. 4. Schematic for two-span plate with simply supported constraint at the
middle of the length. Two longitudinal edges are free and the ends of the plate
are simply supported, SFSF.

Free Edge X
b s S S S
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a
y

Fig. 5. Schematic of a three-span plate with middle simply supported con-
straints and equal length of spans. Two longitudinal edges are free and both ends
are simply supported, SFSF.

Convergence evaluation of the first-five frequency parameters and corresponding period of vibration derived from the BCOP method for two-span square plate, while the

number of computational modes have increased.

Number of modes, N 20 25 35 40 50 62
J1(rad/s) 38.9719 38.9699 38.9459 38.9459 38.9449 38.9449

T (sec) 0.023840 0.023841 0.023856 0.0238564 0.023857 0.0238570
A2(rad/s) 47.1331 46.7643 46.7484 46.7388 46.7388 46.7381
Ta(sec) 0.019712 0.019867 0.019874 0.019878 0.019878 0.019879
A3(rad/s) 62.3754 62.3754 61.7092 61.7092 61.4923 61.4913
T3(sec) 0.014895 0.014895 0.015056 0.015056 0.0151094 0.0151096
A4(rad/s) 72.0533 68.9179 68.5770 67.8902 67.8351 67.5784
Ta(sec) 0.012894 0.013481 0.013548 0.0136855 0.013696 0.01374
As(rad/s) 72.0533 71.9619 70.7810 70.7806 70.7406 70.7402
Ts(sec) 0.012894 0.012911 0.013126 0.013126 0.013134 0.013134
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Convergence evaluation of the first-five frequency parameters and the corresponding period of vibration derived from BCOP method for three-span square plate, while
the number of computational modes are increased.

Number of modes, N 20 25 35 40 50 62
1 (rad/sec) 88.1918 88.1618 88.0101 88.0098 87.9881 87.9873
T, (sec) 0.010535 0.010538 0.010556 0.010556 0.010559 0.010559
Az(rad/sec) 96.8765 96.2518 96.1118 96.0602 96.0601 96.0413
Ts(sec) 0.0095906 0.009652 0.009666 0.009672 0.0096721 0.009674
A3(rad/sec) 114.4536 114.4536 114.1902 114.1902 113.869 113.849
Ts(sec) 0.008117 0.008117 0.0081365 0.0081365 0.008159 0.008160
Jq(rad/sec) 125.3994 121.9210 121.4019 121.3758 121.142 120.786
T4(sec) 0.007409 0.007620 0.007653 0.007654 0.007669 0.007692
Js(rad/sec) 125.3994 124.4541 122.3336 122.3230 122.0552 122.043
Ts(sec) 0.007409 0.007465 0.007594 0.007595 0.007612 0.007612
\
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Fig. 6. Schematic for dynamic amplitude generation in time, for the plate under moving mass at mid-span.
a=4m conditions and finding the response of the plate under moving mass,
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Fig. 7. Four edges simply supported single-span plate under moving mass with
aspect ratio 2.

Finally, considering the fact that all computational results are per-
formed for two cases with and without the effects of inertia within each
numerical studies, a conversion factor, f, is introduced to show the dif-
ference between the responses for two abovementioned loading cases. It
gives the possibility of solution for the problem in moving load

d*wo (1) Fw  Pw (dx\®  Pw [dy\* Fw (dx\ (dy Pw
=4 =3+ =) + 53 22— () (=) +25=
dr? ofr  ox? \dr o0y? \dt oxdy \dt ) \ dt 0xot

A thin rectangular multi-span plate is considered and the assumptions
for Kirchhoff plates are established here. The mass per unit area, p, and D =

#"fm is its bending stiffness in which E, h, v are the plate's modulus of

elasticity, thickness of plate and Poisson's ratio respectively which assumed
to be constant. This plate is excited by a moving inertia load rolling on the
path which could be traced at each time by the variables x, (t) and y, (t),
according to Fig. 1. Let w(x,y,t) indicates the deflection of mid-plane
points of plate with spatial coordinates x and y at any time of t. Also,
initial conditions governing on the differential equations are represented
by continues functions, H; (x,y) and Hz(x,y), where w(x,y,0) = Hi(x,y)
and W = Ha(x,Yy) . Considering the effects of inertia for moving load
and keeping the small strain assumption, the equation of motion governing
on the excited plate in the partial form using Hamilton's principle becomes:

P (= P )3 n)

D 4
Viwtp ot

Within Eq. (1), the parameters m, g, §, andwy(t) are defined as the
mass magnitude travelling on the plate, gravity acceleration, Dirac-delta

dx Fw (dy\ ow [d*x\ ow [d*y
)25 (a) 5 ()5 (@) }x—xm @
=o(t)



H. Kashani Rad et al.

Single span plate with all edges simply supported under moving mass, M=0.15 and r =2 (a=4m,b=2m)
T T T T T 1 T T T
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—A—Solution by BCOP method using 62 computational modes
3H-©-Solution by Eigenfunction expansion method, Ref]21]

25—
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Fig. 8. A comparison between analytical and numerical methods of eigenfunction expansion and BCOP, respectively. The case study is a single-span simply supported
plate, SSSS, under moving mass with mass ratio 0.15, and aspect ratio 2(a=4m, b=2m).

=y

y

Fig. 9. 3D schematic for single-span plate with SFSF boundary conditions under
moving load traveling on a rectilinear path with constant velocity. The dashed
line shows simply supported and the other sides are free from constraint.

Table 3
Fundamental period of single-span plate with SFSF boundary condition for three
values of aspect ratio 1, 2 and 3.

Aspect ratio, r 1(a=2m,b=2m) 2(a=4m,b=2m) 3(a=6m,b=2m)

Fundamental period of 0.097 0.391 0.891

plate, Ty

function and a variable which indicates the displacement of mass at any
time of t in direction of z-axis, respectively.

In addition, to comply to the condition of pure rolling between the
mass and the plate, assuming that they never loose contact, the following
expression must be satisfied, wo(t) = w(xo(t), Yo(t)).

Expanding the time derivate of wy(t) yields to:

In the exact and complete formulation, all of the convective terms in
Eq. (2) are considered. In order to solve Eq. (1), the Galerkin method in a
general form is applied, to separate the spatial and temporal functions. So
we can consider the following form of deflection function of the plate as
below:

w(x,y, t) = Z (/’j(xv y)Q/(t) (3)

In Eq. (3), the mode shape functions are indicated by ¢;(x,y), which
would be made by Boundary Characteristic Orthogonal Polynomials
(BCOP) [33] that must satisfy the geometrical boundary conditions as
well as comply with the orthogonality properties for all mode shapes. The
mode shapes are created through the BCOP method by employing the
Gram-Schmidt procedure to establish the orthogonality between terms.
Q;(t) is the time dependent modal amplitude of the plate which would
describe the time variation of any point of the plate located at the middle
surface. Solution in the time domain would be derived aided by the state
space formulation of the problem at first, and solving the temporal
equations through the Matrix Exponential Method (MEM), consequently.

2.2. Gram-Schmidt orthogonalization procedure

Let a series of functions like fi(x) is given. By the well-known Gram-
Schmidt orthogonalization procedure, one can generate a set of appro-
priate orthogonal functions following the steps below:

o= h
0= fr— aug, (4
= — w19 — a0,
In which,
<p, @ > <fs @ > <fs, @3 >
) = o> , M3 = <S> , A3 = < n > yeee )
<@ @ > <@ @1 > <@y Py >
Briefly, one can use the summation representation as below:
o =h
3 ©®
¢ =fi— Zaij(/’,/
=
where,
b '
<fo ;> [, wx)fi(x)e;(x)dx o
ij = = b
<@ ¢ > Ja W(x)(/’j(x)’Pj(x)dx

Through Egs. (4), (5), (6), and (7), ?;'s, denote the proposed
orthogonal functions generated by original set of f;’s. In addition w(x) is
the weight function in which the common shape of isotropic plates with
constant thickness could be taken as unity. This procedure could be
developed into N-dimensional spaces, where a plate could be categorized
as a special case with two-dimensional variables.

2.3. Boundary Characteristic Orthogonal Polynomials (BCOP)

Although the Rayleigh-Ritz method is an efficient and applicable
approach in dynamic analysis problems, there are some challenges in the
use of mode shape functions in the method. Using the orthogonal func-
tions specifically polynomials in the above mentioned method leads to
considerable simplifications and yields a straightforward solution. The
mode shapes are utilized in the Rayleigh-Ritz method as a linear com-
bination of functions as mentioned before and must at least meet the
geometrically boundary conditions at least. Considering this fact and
surveying the literature, it could be pointed out that many various
functions could be employed to reflect the vibrational modes of the
system. Here, we are going to apply orthogonal polynomials in vibration
analysis of multi-span plates under moving loads. These polynomial
functions in a general form could be generated by Gram-Schmidt pro-
cedure, initiated by a linear independent series of substantial poly-
nomials with single variable, such as 1, x, x2, x3, .... In addition, the
procedure could be proceeded by well-known triangle 1, x, y, x%, xy, y?,
for two-dimensional domains .... . Bhat (1978) utilized polynomials with
two variables to analyze the dynamic behavior of plates through the Ritz
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Fig. 10. Investigation of the mass ratio parameter, M, for single-span plate with SFSF boundary condition. Each graphs denotes the Dynamic Amplification Factor,
DAF, versus non-dimensional velocity, V, calculated at middle of the plate's span. (a) r =1, (b) r=2and (c) r = 3.

method. However, in Bhat's procedure the boundary conditions were met
just for the first mode and the method lacked sufficient accuracy in
higher natural frequencies at higher computational. Chakraverty et al.
[35] overcame this problem by applying a new approach for orthogonal
polynomials such that the boundary conditions were satisfied over all
mode shapes using a geometrical function pre-multiplied into the other.
So because of the existence of this function, all terms of mode shapes
satisfy the geometrical boundary conditions beyond having the orthog-
onality advantages.

2.3.1. BCOP:s for single-span plates

A rectangular plate is a special case of parallelogram domains where
the angle between each two sides are 90°. Therefore, the below trans-
formation could be applied in order to get the non-dimensional form of
coordinates

x=at+ (bcosa)y

y=(bsina)y ®

Eq. (8) includes terms which transform the original coordinates, x-y,
into a unit square, £ — 7, domain. It has to be noted that by taking the
inverse transform, one can easily generate the mode shapes in the orig-
inal coordinates.

Based on the independent linear set of functions in & — 5 coor-
dinates, f(&,n) = {1, & n,&, &, %, &, &n, 1%, ... }, we can start to
generate the mode shapes over a unit square through the transformation
x =aé,y = by, where, a and b are the length and width of the plate,
respectively. Finally, the mode shapes in original coordinates could be
derived by the above transformation in the inverse form. So, we can write
Eq. (9) for a plate as follows:

sEM{L, & n & e, 8 .} 9)

In above expression g(¢,7), is a function which satisfies the geomet-
rical boundary conditions and is defined as:

gén)=&0— 9 —n (10)
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By assigning the values 0 and 1 to fand # within Eq. (10), one can
define the edges of the transformed plate. Moreover, by giving the values
of 0, 1 and 2 to the p, g, r and s all types of boundary conditions could be
defined.

Fig. 2 shows a schematic of single-span plate with SFSF boundary

¢ =F
o =Fi= > a e, i=2,3.4, .. 12)
<Fi, ¢ >
ij = 7%)./:1727"'7 (‘171)
<@ ¢; >

conditions, denoting the simply supported and free edges alternatively.
Using the Gram-Schmidth procedure the BCOPs could be generated as
Eq. (11) up to Eq. (13):

Single Span Plate, Mass ratio 0.05

Heliyon 5 (2019) e01919

gém = ¢&1-9) an
in which,

Moreover, f;(£,1) is chosen from linear independent series of func-
tions which could be displayed as triangle scheme of Fig. 3:

Utilizing these BCOPs in the Rayleigh-Ritz method one can easily
derive the frequency parameter through a straight forward procedure,
calculated from the standard form of characteristic equation.

N
wixy) =Y Gg a4
j=1
2
W — ffk[(VZW) +2(1 - I/){Wzy — Wy }]dxdy s

ph [f ;wrdxdy

Eq. (14) proposes the general form of the solution where Cj's, are
unknown coefficients and ¢;'s represent the mode shapes of the plate. By
replacing the functions in £ — # within Eq. (15), a standard eigenvalue

Single Span Plate, Mass ratio 0.1
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Fig. 11. Dynamic Amplification Factor, DAF, for single span SFSF plate calculated at mid-span, versus non-dimensional velocity, V, under moving load and mass when

the aspect ratio changes within values 1, 2 and 3. () M = 0.05, (b) M = 0.1, (c) M

=0.15,(d) M = 0.2 and (e) M = 0.25.
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Conversion Factor for Single Span Plate, r = 1
T T T T T

T
[ [-o-Mm=0.05
—E—-M=0.1
115 H—A—M=0.15
O—M=0.2
M=0.25

Conversion Factor for Single Span Plate, r = 2
T T T T

Fig. 12. The conversion factor, f, versus non-dimensional velocity, V, for single-span plate with SFSF boundary condition. The graphs are presented for constant

aspect ratios 1, 2and 3. (@) r=1,(b)r=2and (c)r = 3.

Vv = constant

b=2m| | __ e — e S —— Kmmm——m N
—@ CI ClI

y

Fig. 13. Two-span plate under moving mass with constant velocity on the
rectilinear path. The middle constraint is simply supported like two other sup-
ports on the ends of the plate and longitudinal edges of the plate are free from
constraints.

Table 4
Fundamental period of two-span plate for three values of aspect ratios 1, 2 and 3.

Aspect ratio, r 1(a=2m,b=2m) 2(a=4m,b=2m) 3(a=6m,b=2m)

Fundamental period of
plate, T; (sec)

0.0239 0.097 0.22

equation could be derived as Eq. (16):

M=

(a; — 2’by)Ci=0 (16)

j=1

Where coefficients a; and b are defined from Eq. (17) and Eq. (18):
aj= [ [(ﬂ?gfﬂf{ + B (fﬂ,@(ﬂf: + rﬂf%f”) +B, (rﬂ?"wfg + wfgw}’”) + Bt
R‘

+B, (r/»?”rﬂf" + wf”rﬂ,””) + Bsr/»?”(p'-’”} dédn

a7
by = [[ppdidn (18)
f
,  d‘o’ph
= 3 (19)

In Eq. (17), the superscripts indicate the derivatives with respect to
the transformed variables ¢ and #. In addition, Eq. (19) represents the
square of the frequency parameter. The coefficients of B, B, ..., Bs are
defined within Eq. (20) up to Eq. (24) as below:

B,= —2rCosa (20)
B, = r*(Sin® a+ Cos’ a) (21)
By = 2r*(1 —vSin® a+ Cos® a) (22)
Bi= —r’ Cosa (23)

B5 = r4 (24)
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Moving Ma 25
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Span

Fig. 14. The effect of moving mass velocity, V, on DAF, calculated at the first two-span plate's mid-span denoted by CI. Dashed lines are for moving load without

inertia effect. (@) r=1,(b)r=2and (c) r = 3.

a
r= —

5 (25)

Eq. (25) defines the aspect ratio parameter of the plate, r, and, a,
denotes the angle between two edges of the plate where in the rectan-
gular domains is 90°. So, Bjand By would be omitted from the
expressions.

2.3.2. Free vibration analysis of two-span plates by BCOP method

One of the most important features of the BCOP method in vibration
analysis of plates is ease of use through the mode shape generation
procedure, especially for multi-span plates. For the first time in this
study, these polynomials are used for the dynamic analysis of two and
three-span plates which undergo the moving inertia mass effects. Here,
by defining the constraints in the middle of the plate and parallel to the
width, one can easily create a two-span plate considering the fact that the
BCOP method ensures satisfaction of the geometrical boundary condi-
tions. A very good convergence for the frequency parameter is achieved
as reported in Table 1 that indicates the accuracy of the method while the
computational modes increase. Fig. 4 shows a schematic of a plate with
two spans created by a simply supported constraint located at the middle
of the length of the plate.

Similar to the previous section, after mapping the whole domain of
plate into a unit square, we can define the middle support by taking the
g(&,n) function as Eq. (26):

8(&n) (26)

di-9(5- <)

which denotes a simply supported restraint on the line & = % . So, we can
continue the procedure for 40 modes as shown in Eq. (27):

Fx(é?”) :g(év’]) {1757”7 527 5’77"'7 55”3 }

In a similar fashion the frequency parameter from Eq. (17) can be
easily derived by using Eq. (10) and Eq. (12). The added constraint to the
plate would cause to increase the stiffness of the system and it may
substantially lead to the instability within the numerical computations.
Thus, preserving the precision in the calculations has a very important
role to boost the accuracy of the results and leads to prevention of nu-
merical divergence. Considering this issue, we show the accuracy of the
computations for a two-span plate in the free vibration analysis while the
number of modes are increased to 62, according to Table 1. The results
testify a very good convergence for the frequency parameter and period
of vibration when the number of modes have increased, assuming the
constant aspect ratio for plate, r =1 (a = 2m, b = 2m), and Poisson ratio,
v =0.3.

(27)

2.3.3. Free vibration analysis of three-span plates by BCOP method
Fig. 5 depicts a typical three-span plate with two simply supported
middle constraints located at equal distances from both ends of the plate.
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In a similar manner by choosing an appropriate geometrical function,
g(&,m) as Eq. (28) one can conduct the procedure as follows:

a-9(5-¢)(5-¢)

Again, after carrying out similar calculations for the frequency
parameter derived from the standard eigenvalue problem, the first-five
frequency parameters for a three-span plate with
r =1(a=2m, b= 2m) are listed in Table 2. There is a very important
issue that could be considered as a strict evident on the precision of the
procedure, which is a considerable trend of convergence as a result of
calculations during the increment of modes contribution. Considering the
fact that adding the constraints to each integrated structure such as plates
leads to notable increased stiffness, having run the numerical computa-
tions for such stiffed structure, we expect to catch some numerical di-
vergences specifically for higher computational modes. Nevertheless, not
only was no divergence seen but also the convergence trend is
interesting.

8(&n) (28)

Two-Span Plate at Second

Moving Load,M=0.05

Moving Mass,M=0.05
-8 - Moving Load M=0.1
—E— Moving Mass,M=0.1
- A- Moving Load,M=0.15
—A— Moving Mass,M=0.15
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‘%Moving Mass,M=0.2
- k- Moving Load,M=0.25

Moving Mass,M=0.25

a=2m

Ci
3

'
'
'
'

'

'
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2.4. Matrix exponential method (MEM)

The solution in the time domain and deriving the function Q(t) is
performed by a powerful iterative numerical method in the state space
formulation called the Matrix Exponential Method (MEM) [34]. By
substituting Eq. (3) into Eq. (1) and employing the orthogonality of
modes one can rearrange the differential equation of motion for the plate
in matrix form as follows:

M(1)Q(t) + C(1)Q(r) + K(1)Q(r) = E() (29)
Q(t) = Qy (30)
Q%) = Qy (3D

Eq. (29) up to Eq. (31) represent the matrix form of governing dif-
ferential equations of motion where Q, and Q, denote the initial con-
ditions of the plate's vibration as the initial modal amplitude and initial
modal velocity, respectively. All of the computations are performed for
40 computational modes. Thus, the mass, stiffness and damping matrices
would be in the order of 40 x 40. The matrices could be calculated

Mid-Span, r = 1(a=2m, b=2m)

Second
Mid-Span

1 S

Two-Span Plate at Second Mid-Span, r =2(a=4m, b=2m)
T T T T T
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< i
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ci
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-
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—&— Moving Mass, M=0.2
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Fig. 15. The effect of moving mass velocity, V, on DAF, calculated at the second two-span plate's mid-span denoted by CII.

inertia effect. () r=1,(b)r=2and (c) r = 3.
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Dashed lines are for moving load without
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through the following expressions:

M= mj;+ my; (xo (t)7y0(t)) [(p,- (x0(),y0 (t)}

D=

(32)
E

Cy = 2mep;(xo(1), yo(1)) [0 (1)), (x0 (1), 30 (1)) + Yo (£);,(x0 (), 30 (1))]  (33)

Kij= kj + mo;(x(1), o(t))[xg(t)(ﬂj‘u(xo(l)do(t)) +)}é(t)fﬂj‘yy(xo(l);yo(’))
0(1)) + ¥o(1) e, (o (1), 30 (1))

»
+ X0 (1) (xo (1), y

+2 50 (1)0 (1)) 1y (X0 (1), Y0 (1))]

Where,

my = [[phe,(x,y)e;(x,y)dxdy
R

ky = fkf{’) 2 oe b P

o, 02(/)/- <02

2
Pi a("’j

02(.0,' dz(ﬂi >

oxr dy*  0y* ox?

GI*\ (P, Po;
o <W) (ﬁy axay)]dw

'y

Two—.g'pan Plate at First Mid-Span, Mass ratio 0.05

ER
12(1 — v?)

= —mge;(xo(1),y0(1))
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37)

(38)

Egs. (32), (33), (34), (35), (36), (37), and (38) define components of

mass, stiffness and damping matrices and the plate bending stiffness, D, is
specifically presented by Eq. (37).

Having defined a state variable, X(t), according to Eq. (43), the state
(34) space representation of equation would be formulated as Egs. (39), (40),
(41), and (42).

X(t) = A()X(t) + F(t)

2Nx2N

(35)
0 I
Al = -1 -1
02(,0,- % M 'K M 'C
0y?  0y?
0
F(t) = _M'E
(36) N1
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Fig. 16. Dynamic Amplification Factor, DAF, for two-span SFSF plate, calculated at the first mid-span, CI, versus non-dimensional velocity, V, under moving load and
mass when the aspect ratio changes within values 1, 2 and 3. (a) M = 0.05, (b) M = 0.1, (c) M = 0.15, (d) M = 0.2 and (e) M = 0.25.
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i Q, (1)
Q(t) = 42)
Q0|
X - | 8 (43)

To implement the Matrix Exponential procedure [36], the following
expression would be obtained assuming Eq. (44) as a solution matrix to
Eq. (27), where U(t) is defined as a fundamental matrix:

X(1) =U(OU' (t)X(to) + / l{U(t)U’l(t) [F(r)]}dt (44)
to

U() =A)U(0)X(to), Ulto) =T (45)

X(t) = U(t)X(t) (46)

Eq. (45) and Eq. (46) denote the state space representation for U(t).
Moreover, the transfer matrix is utilized to obtain U(t), such as Eq. (47)
and Eq. (48):

$(t,7) = U(HU (1) (47)

Two-Span Plate at Second Mid-Span, Mass ratio 0.05

moving load,r=1(a=2m,b=2m)
moving mass,r=1(a=2m,b=2m)
-3 - moving load,r=2(a=4m,b=2m)
—B—moving mass,r=2(a=4m,b=2m)
- A~ moving load,r=3(a=6m,b=2m)
| [=A—moving mass,r=3(a=6m,b=2m)
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X(t) = ¢(t,7)X(1) (48)

An approximate solution can be used to obtain ®, where, ¢ (t1,t) =
et in which Aty = t., — t, that is a specific time interval.
Assuming the existence of A~'(t,), Eq. (39) would be easily solved to
yields. Egs. (49), (50), (51):

X(tesr) = Ay ()X () + Fy (t) (49)
A () 2 A (50)
Fi(t) 2 [Ay () — DA, (6 F(t) (51)

By following the abovementioned steps, the partial differential
equation is easily converted to an ordinary one in the time domain. Fig. 6
shows a diagram of dynamic amplitude in time. This Figure is actually a
time history of the dynamic response of the plate which has been
depicted for a specified point. The time interval in the numerical analysis
is selected for values less than 0.002 sec. It has to be mentioned that the
smoothness of the response curve and the precision of the result depends
on the assigned At value, accordingly. Fig. 6 clarifies the numerical
procedure which yields Q(t), by substituting it into Eq. (3), the complete
dynamic deflection would be obtained.

In Fig. 6, teq. indicates the time that the mass has left the plate.
Moreover, t,q, denotes the time for the total numerical procedure. The
free vibration phase starts just when the mass has left the plate at tjqye,

Two-Span Plate at Second Mid-Span, Mass ratio 0.1
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Two-Span Plate at Second Mid-Span, Mass ratio 0.25
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Fig. 17. Dynamic Amplification Factor, DAF, for two-span SFSF plate, calculated at the second mid-span, CII, versus non-dimensional velocity, V, under moving load
and mass when the aspect ratio changes within values 1, 2 and 3. (a) M = 0.05, (b) M = 0.1, (¢c) M = 0.15, (d) M = 0.2 and (e) M = 0.25.
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and it is proposed to take 5 sec in the numerical procedure.

The peaks of the parameter Q(t), could depend on the velocity of mass
which is traveling on the plate. We prolonged the computations into free
vibrations for 5 sec, because in some cases the maximum of Q(t) may
occur in the free vibration phase. Multiplying this parameter by the mode

Heliyon 5 (2019) e01919

functions derived from the BCOP method would yield a complete solu-
tion of partial differential equations.

The results within the next sections are presented in the non-
dimensional form. This matter provides the possibility of extending the
work to real-scale structures.
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Fig. 18. The study on reference point (CI and CII) for two-span plate. Each Figure depicts DAF versus non-dimensional velocity, V, for constant mass and aspect ratio
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3. Results & discussion

This section is dedicated to analysis of three case studies including
single-span plate, two-span and three-span plates are influenced by a
moving inertia load. An Aluminum multi-span plate in a general form
with material properties is considered as follows: modulus of elasticity
E=73.1 GPa, mass density p = 2700 kgm 3 and Poisson's ratiov = 0.33.
The length of plate a, is varied so that several aspect ratios defined asr =
a/b. It could be generated to use in parametric studies and would get
values within 1, 2 and 3. The width of the plate is assumed to be a
constant, 2m. The mass is traveling on the rectilinear path with constant
velocity. It is also assumed that the plate is originally at rest and the pure
rolling and full contact condition between the traveling mass and plate is
met. Natural frequencies and mode shapes are derived by the afore-
mentioned method in the previous sections. The magnitude of the mass
weight is introduced by non-dimensional parameter as a ratio of the
moving mass divided by total plate's mass, within 0.05, 0.1, 0.15, 0.2 and
0.25, denoted by M. For instance, a mass ratio 0.2, would be interpreted
as 20 percent of the plate's mass which are travelling on the plate and
determined as M = m/phab, where h is the plate's thickness and has a
constant value of 17 mm. The mass travels on the rectilinear path parallel
to the length of the plate with constant velocity. The magnitude of the
load's speed is presented by the non-dimensional parameter of speed and
could be defined as V = vy, - Vs is defined by v = 2a/ T, a parameter

with dimension similar to velocity. We called it reference velocity. V',
throughout this study, actually reflect the fundamental properties of

35

Conversion Factor for Two-Span Plate with r = 1 at Mid-Spanl
T T T T T
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structures, including the length and the period of the plate. Because of
this matter, v' could be appropriated to make a non-dimensional velocity,
V, varying between O to 1 [21]. The investigation on the dynamic
response of the plate's central point is carried out by Dynamic Amplifi-

Winax, dynamic

cation Factor, DAF, defined as DAF = Wone

in which Wi, dynamic i8

the maximum dynamic deflection at the central point of the plate due to
the dynamic effects of moving mass excitation, derived from a dynamic
analysis. Moreover, Wy, is the deflection of the plate's central point has
acted upon a static concentrated load at the same point. In the multi-span
plates the reference point would be located at the middle span. Through a
comprehensive parametric sensitivity study the effects of several
non-dimensional parameters such as mass ratio, aspect ratio and the
location of reference point would be investigated in the next sections. The
results are presented in several graphs which could provide the readers
with a complete behavior analysis of multi-span plates, denoting the
spectra of DAF versus V for numerous case studies.

In every cases the problem is solved for both models of loading, when
the inertia effects are included or ignored. This provides a comparison of
the possibility for both loading conditions. It would be very useful
especially for higher magnitude of velocities. In the two- and three-span
plates, the DAFs of middle-span point are presented at the same graph to
investigate the role and importance of the reference point in dynamic
behavior of plate, once the moving load reaches it. In this paper, for two-
span plates and three-span ones, CI and CII are the symbols to indicate
the reference point locations for the first mid-span and the second mid-

T
M=0.05
—B-M=0.1
—A-M=0.15
25H-6-M=0.2
M=0.25

(a)

24

M=0.05
—S—-M=0.1

[—&—M=0.15
H——M=0.2

M=0.25

Conversion Factor for Two-Span Plate with r = 2 at Mid-Spanl
T T T T T

M=0.05
—E-M=0.1
—AM=0-15
—~—M=0.2

M=0.25

Fig. 19. Conversion factor for two-span plates with SFSF boundary condition versus non-dimensional velocity calculated at the first mid-span, CI, with specified mass

and aspect ratios. () r=1,(b) r=2and (c) r = 3.
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Fig. 20. Conversion factor for two-span plates with SFSF boundary condition versus non-dimensional velocity calculated at the second mid-span CII with specified

mass and aspect ratio. (@) r =1, (b)) r =2 and (c) r = 3.

span, respectively. The plate before arrival of the moving load is assumed

to be at rest, so the initial conditions is considered to be zero, Qy = Qy =
0.

3.1. Verification

Dynamic analysis of a single-span simply supported plate under
moving mass traveling on a rectilinear path was performed by Nikkhoo-
Rofooei et al [21]. Several results were presented there using the
eigenfunction expansion method in which the Dynamic Amplification
Factor, DAF, was investigated for mass ratios versus the speed parameter,
V. To perform a verification study a special case is selected here and
solved by BCOP method to testify the accuracy of the procedure. The
considered problem is a single-span plate with simply supported condi-
tions over all the edges with aspect ratio 2 (a=4m, b=2m), and the mass
ratio 0.15, the velocity of moving load is assumed to be constant when it
is traveling on a rectilinear path. According to the aforementioned sec-
tions, the importance of analysis of plates under moving inertia mass
would emerge more and more when the velocity of moving load is
increased because the accuracy of numerical procedure would play an
important role to capture the precise results in this situation. Based on
these comments a very good and interesting result has been achieved that
shows a satisfactory adaptation between the two methods of eigenfunc-
tion and BCOP, specifically at high speeds of moving load according to
Fig. 7.

Fig. 8 shows a good agreement between the results derived from the
methods of eigenfunction expansion and BCOP, specifically in the ve-
locity parameters within 0.5 to 1. The results strictly testify the numerical

procedure's precision when the inertia effects of loading are involved and
the full terms of acceleration considered into the formulation. Therefore,
based on the acceptable verification presented, a comprehensive para-
metric study for single-span up to three-span plates can be established in
subsequent sections, where for each one of the cases sensitivity analysis is
carried out and the results are presented through corresponding graphs.

v = constant

b=2m| i __

y

Fig. 21. A three-span plate under moving mass with constant velocity on the
rectilinear path. The spans are generated by two middle simply supported
constraints.

One can deduce useful information about every parameter which is

Table 5
Fundamental period of three-span plate for three values of aspect ratios 1, 2 and
3.

Aspect ratio, r 1(a=2m,b=2m) 2(a=4m,b=2m) 3(a=6m,b=2m)

Fundamental period of 0.0106 0.0428

plate, Ty

0.097
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scrutinized within next sections through Tables and Figures. The
boundary conditions assumed in the paper is simply supported, (S), to
generate the spans, and free from constraint, (F), on the longitudinal
sides.

3.2. Single-span plates

A thin rectangular single-span plate with the above mentioned con-
ditions is considered. The moving load travels on the plate with constant
velocity on a straight line parallel to the length of the plate according to
Fig. 9. In addition, we can see the changes of the fundamental period of
single-span plate derived from a free vibration analysis depending on
aspect ratio value in Table 3.

3.2.1. The study on mass ratio parameter

The magnitude of mass ratio is investigated in this section for three
values of aspect ratio. The presented graphs reflect the effect of mass
magnitude on the Dynamic Amplification Factor of the plate's central
point. For each constant aspect and mass ratio, it is seen that by
increasing the speed of moving load the difference between load and
mass plate's response would be increased. On the other hand, by
increasing the mass weight in the constant aspect and speed ratio both
the parameter DAF and difference between moving load and mass is
increased. It is pointed out that the inertia effect must be considered in
the analysis while the velocity is increased. Each one of the graphs of
Fig. 9 consist of the curves of DAF versus non-dimensional velocity, V, for
five mass ratios from 0.05 up to 0.25, assuming the aspect ratio to be
constant. On the other hand, the solution of the problem ignoring the

Three-Span Plate at First Mid-Span, r =1 (a=2m,b=2m)
T T T T T

Heliyon 5 (2019) e01919

inertia effect for the aforementioned mass ratios are depicted in the
graphs at the same time. This provides the other assessment of the results
for the case of moving load. The dashed line through these graphs de-
notes the response of the plate acting upon a moving load, which means
that the inertia effect has not been considered in the problem.

As it is shown in Fig. 10, the moving load condition can be used to
predict the dynamic response of the system for moving mass velocities
below = 0.2 v'and there is no need to consider the moving mass with the
complexities that arise from the inertia terms. On the other hand, in
velocities abovex 0.2V' the difference between the plate's response
under moving load and mass has emerged. Then, the mass inertia effect
must be considered. Moreover, studying mass ratio for the plate with a
specific aspect ratio, it could be seen that the difference between the
moving load and mass response of the system is increased at any velocity
above~ 0.2 V. Increasing the magnitude of mass weight traveling on the
plate leads to the fact that inertia terms should be considered in the
problem. Finally, upon evaluating the effect of aspect ratio we can
deduce the difference between the response of the system under moving
load and mass is decreased while the aspect ratio is increased. Therefore,
the inertia effect of mass would be considered to be of less degree than
the case with lower aspect ratio, specifically in the velocities near
tox 0.2V

3.2.2. The study on aspect ratio parameter

Here, the effect of variation of aspect ratio parameter on the plate's
response is investigated. So, the Figures show the DAF of plate's reference
point versus non-dimensional velocity, V, including two cases of loading
with and without the inertia effects of traveling mass at specific mass
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Fig. 22. The effect of moving mass velocity, V, on DAF, calculated at the first three-span plate's mid-span denoted by CI. Dashed lines are for moving load without

inertia effect. () r=1,(b)r=2and (c) r = 3.
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ratio.

It is pointed out that for each specified mass ratio, specifically at
velocities above = 0.2 v'and lower magnitude of mass weights, the dif-
ference between the response of the plate in load and mass moving on the
plate shows a decreasing trend while the aspect ratio is increased. In
other words, if one scrutinizes each Figure could easily find out that the
most difference between the two cases of loading happens for square
plates (r =1), by increasing the aspect ratio by 2 and 3, this difference
would be mitigated consequently. As an example, if we trace the behavior
of DAF for a square plate with mass ratio 0.05, an interesting trend is
seen. Such that, at this specified mass ratio the trend of curve is
increasing when the velocity parameter comes to~ 0.5 V' at first, and
starts to decrease by approaching~: 0.78 v'. Then the trend of the function
suddenly changes to an increasing one from this velocity on. Thus, it
could be seen that the highest effect of inertia occurs within the interval
of~ 0.78 v' up to the end. Following this manner, for square plates per-
taining to the other mass ratios, it could be seen that while the mass ratio
increases the velocity corresponding to the DAF's peak ~ 0.6 V'increased
to ~ 0.68 V', keeping the aspect ratio 3. As shown above, the gibes on the
curves would happen in the lower speeds when the mass weight has
increased. It means that the difference between the two curves starts to
rise from the lower speed which emphasizes again on the importance of
inertia effects for lager mass magnitude. Therefore, the interval of dif-
ference between the plate's response for the loading with and without
inertia effects have remarkably increased. Therefore, in square plates one
can conclude that the analysis of dynamic response must carry out
considering the inertia mass, specifically for higher mass weights and

Heliyon 5 (2019) e01919
velocities (see. Fig. 11).

3.2.3. Conversion factor

One of the other investigations which has been carried out in this
paper is dedicated to deriving and proposing a coefficient that assesses
the trend of differences between both cases of loading, with and without
the inertia effect of moving mass. Paying enough attention to this factor,
one can easily find out that the problem must be solved for the inertia
loading condition or not. For the simple cases in which the conversion
factors, f is near to 1, the problem could be solved without the inertia
mass with a good accuracy. Thus, engineers have no need for enduring
the complexities of mass inertia contribution to the differential equa-
tions. Moreover, in the cases that the coefficient goes far away from
unity, it is possible to solve the problem in simple moving loads without
considering the inertia effect. By multiplying the appropriate conversion
factor into the response, the solution of moving mass is easily obtained.

Fig. 12 shows this factor for single-span plate versus non-dimensional
velocity where a good and predictable trend is seen. Thus, one can apply
a simple interpolation to derive a corresponding factor pertaining to the
mass ratios which have values between the proposed quantities in the
graphs.

The factor, g, is defined as = %ﬂljﬂm . Fig. 12 contains three

graphs, in which each one is presented for a specified aspect ratio.
Having acquired accurate results for single-span plates, we consider
two and three-span plates and present the above mentioned studies with
the same assumptions for material properties and boundary conditions in
the following sections of the paper. All of the calculations are carried out
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Fig. 23. The effect of moving mass velocity, V, on DAF, calculated at the second two-span plate's mid-span denoted by CII. Dashed lines are for moving load without
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similar to the aforementioned procedure, so they are not repeated again.
The main idea behind the factor f is to investigate the difference between
responses under moving inertia mass and load. The values around unity
for this factor may be interpreted as implying that the inertia effect has no
significant influence on the DAF and the problem can be analyzed
neglecting the inertia terms. On the other hand, when the factor takes on
value greater than unity it means that the inertia terms would affect the
response and must be highlighted in the calculations. By assessment of
these three graphs, many useful results are obtained. At a glance at each
graph with a specific aspect ratio, one can see that increasing the mass
ratio would heighten the curves which means the difference between
responses for both loading cases would no longer be negligible. On the
other hand, surveying three graphs while the aspect ratio is enlarged, the
maximum value for specified mass ratio, has a descending trend. For
example, following the points on the curves for M = 0.25 at the V= 0.8,
while we move from aspect ratio 1 to 3, the corresponding values for f,
takes values 1.3 down to 1.17 and 1.16, respectively. It means that, by
increasing the aspect ratio, the inertia property of moving mass has a less
effect on the dynamic response of the plate.

3.3. Two-span plates

Fig. 13 shows a schematic of thin rectangular two-span plates under
moving load excitation traveling on a rectilinear path with constant
velocity.

In the plate, the spans are generated by a middle simply supported
constraint and length of the plate is assumed to be free from support.
Again we note that this boundary condition for two-span plate, SFSF, is
similar to the single-span one. Also, DAF is calculated at the CI and CII

Three-Span Plate at First Mid-Span, Mass ratio 0.05

moving load,r=1(a=2m,b=2m)

moving mass,r=1(a=2m,b=2m)
- 3 - moving load,r=2(a=4m,b=2m)
—E—moving mass,r=2(a=4m,b=2m)
- A~ moving load,r=3(a=6m,b=2m)
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denoting the first and second mid-span points of the plate which are
called reference points, respectively. Before analyzing the plate under
moving load or mass, a free vibration analysis is carried out and the
fundamental period of plate's vibration is derived and presented in
Table 4. The results are reported based on using the BCOP method where
62 computational modes are considered into the analysis. Enlarging the
aspect ratio would cause decrease of the natural frequency and lead to
increase of the fundamental period of structure. This issue can be inter-
preted as decreasing trend of plate's stiffness.

3.3.1. The study on mass ratio parameter

The dynamic response of the plate at reference points for the first and
second mid-span are studied here, while the mass ratio magnitude is
varying and the aspect ratio of the plate is kept constant for each case.

Similar to the comments that were given in Sec. 3.2.1, here an anal-
ysis is performed for two-span plate with SFSF boundary condition,
focusing on the effect of mass magnitude on the dynamic response of the
plate. Figs. 14 and 15 show that by increasing the velocity of moving
mass the difference between responses with and without inertia consid-
eration is increased for both CI and CII reference points. By tracing the
responses calculated at CI and CII, it is pointed out that in velocities
below~ 0.2 V', the mass inertia could be neglected from calculations and
the problem could be solved in moving the load case. While the magni-
tude of velocity goes far from this value, the difference between a moving
load and inertia mass is increased and the effect of inertia mass in cal-
culations has to be accounted for. This issue would be located at the
higher degree of importance when the mass weight is increased. On the
other hand, the effect of aspect ratio can play a significant role in miti-
gating the difference between moving inertia mass and load. Therefore,

Three-Span Plate at First Mid-Span, Mass ratio 0.1
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Fig. 24. Dynamic Amplification Factor, DAF, for the three-span SFSF plate, calculated at the first mid-span, CI, against non-dimensional velocity, V, under moving
load and mass when the aspect ratio changes within values 1, 2 and 3. (a) M = 0.05, (b) M = 0.1, (¢) M = 0.15, (d) M = 0.2 and (e) M = 0.25.
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by increasing the aspect ratio the aforementioned difference follows a
decreasing trend.

3.3.2. The study on aspect ratio parameter

Completely similar to the parametric analysis performed before, here
the aspect ratio effect on the plate's response under both cases of loading
is investigated. The results are presented through several figures which
contain graphs assigned for the constant value of mass weight. This time,
the aspect ratio is put under assessment while the other parameters are
taken to be constant. DAF for a two-span plate at both CI and CII points
versus the velocity parameter, V, is studied with the aim of showing the
effect of aspect ratio on the dynamic behavior of plate, with assumed
boundary condition SFSF.

Figs. 16 and 17 reflect the fact that by increasing the aspect ratio of
the plate in both reference points, the effect of inertia mass decreases and
one can capture the solution in moving load conditions, improving ac-
curacy and run time.

It would be useful if another parametric study is carried out here to
evaluate the plate's response at two middle points of each span. Actually,
the main idea behind this investigation is an assessment on the role of the
location of the reference point of calculation. In other words, engineers
and designers must have a prospective with the dynamic behavior of a
multi-span plate, such that it could help them make an important deci-
sion in selecting the critical point of the structure under dynamic exci-
tation and proceeding their design procedure based on it.

Here, a comprehensive parametric study has been carried out and the
results have been presented through several graphs in Fig. 18. Within

Three-Span Plate at Second Mid-Span, Mass ratio 0.05
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these graphs, the main attention has been paid to the comparison be-
tween the results for DAF calculated at first and second plate's mid-span,
while two other parameters of mass and aspect ratio has been kept
constant.

An interesting result is obtained by tracing the manner of curves in
Fig. 18. Generally, if the mass travels with velocities within ~ 0.5V'
tox 0.8 v, the DAF for the second mid-span has a larger magnitude. Thus,
it deserves to pay enough attention to it as a critical point in design. This
trend is intensified when the aspect ratio of the plate is increased and in
the plate with higher aspect ratios. As a general conclusion, the second
mid-span point would have a larger DAF. Thus, it may be concluded that
the design procedure must be carried out based on it.

3.3.3. Conversion factor

Similar to single-span plates and according to the aforementioned
comments, here the conversion factor f is presented in Fig. 17 for both CI
and CII points.

Fig. 19 shows that the most difference between responses for load and
inertia mass at the first mid-span occurs at~ 0.68 V', and by increasing the
aspect ratio of the plate this speed moves left to ~ 0.62 v'. Therefore, this
velocity approaches the lower value while the aspect ratio is increased. A
different behavior is seen in Fig. 20 for the second reference point, CIL,
specifically at aspect ratio 1, where the critical speed occurs in the
velocity~ 0.9 v'. This phenomenon can be interpreted by the fact that due
to an almost high plate's stiffness, the maximum deflection is achieved at
the higher velocity of moving mass. By increasing the aspect ratio we see
a decreasing trend in the critical velocity which approaches 0.47 v/,

Three-Span Plate at Second Mid-Span, Mass ratio 0.1

moving load,r=1(a=2m,b=2m)
moving mass,r=1I(a=2m,b=2m)
-3 - moving load,r=2(a=4m,b=2m)
(a=4m,b=2m)
(a=6m,b=2m)
(a=6m,b=2m)

DAF
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moving mass,r=1(a=2m,b=2m)
-3 - moving mass,r=1(a=4m,b=2m)
—B—moving mass,r=2(a=4m,b=2m)
- /A~ moving load,r=3(a=6m,b=2m)
—A—moving mass,r=3(a=6m,b=2m)

$
(@

Three-Span Plate at Second Mid-Span, Mass ratio 0.15

moving load,r=1(a=2m,b=2m) 4

moving mass,r=1(a=2m,b=2m)

- -3 - moving load,r=2(a=4m,b=2m)
X - B

(b

Three-Span Plate at Second Mid-Span, Mass ratio 0.2

moving load,r=1(a=2m,b
moving mas:
-3~ moving load,

=2m)

B

Three-Span Plate at Second Mid-Span, Mass ratio 0.25

moving load,r=1(a=2m,b=2m)
moving mass,r=1(a=2m,b=2m)
-3 - moving load,r=2(a=4m,b=2m)
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- A~ moving load,r=3(a=4m,b=2m)
—A—moving mass,r=3(a=4m,b=2m)

DAF

Fig. 25. Dynamic Amplification Factor, DAF, for the three-span SFSF plate, calculated at the second mid-span, CII, against non-dimensional velocity, V, under moving
load and mass when the aspect ratio changes within values 1, 2 and 3. (a) M = 0.05, (b) M = 0.1, (¢) M = 0.15, (d) M = 0.2 and (e) M = 0.25.
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Fig. 26. The study on reference point (CI and CII) for a three-span plate. Each figure depicts DAF versus non-dimensional velocity, V, for constant mass and aspect ratio
parameter. @ M =0.05&r=1, D) M=005&r=2,(c)M=0.05&r=3,(dM=01&r=1,(e)M=01&r=2,(OM=01&r=3,(gyM=015&r=1,(h)M=
015&r=2{(M=015&r=3, ()M=02&r=10KM=02&r=2,(DM=02&r=3, (mM)M=025&r=1,(M)M=025&r=2,(0)M=025&r=3.
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when the calculations are carried out at the second mid-span of the plate.

3.4. Three-span plates

In the last part of the paper and similar to the previous section, Fig. 21
shows a schematic for a three-span plate under moving mass excitation
with constant velocity traveling on the rectilinear path. Using the same
method and steps for two-span plates, numerical study is performed for
three cases of aspect ratios and the results would be derived for the first
and second mid-span, CI and CII, consequently. Finally, with the aim of
showing the importance of inertia term contribution in the dynamic
behavior of the plate, the conversion factor f is defined and presented in
several graphs. One can easily find the critical velocity for such dynamic
analysis and investigate its shifting, while some parameters are kept
constant and the other is varying. Like two-span plates, the middle
constraints is constructed by two simply supported staffs which divide
the length of the plate into three parts with the same length. On two
opposing edges, the plate would be assumed to be free from constraints.
Again, we call this boundary condition, SFSF.

To derive the natural characteristics of plate's vibration, a free vi-
bration analysis is run and similar to Sec 3.3, the fundamental period of
three-span plate is reported in Table 5. Adding the middle constraints
would lead to increased stiffness of three-span plates in comparison with
two-span ones, at the same aspect ratio. According to Table 5, we can see
the decreasing trend of natural frequency for a three-span plate by
enlarging the aspect ratio (or increasing the trend of fundamental period
of structure, conversely).

C ion Fact Three-: Plate with r = 1 at Mid-Spanl
onversion Faci 0rf‘0r ree &“L” ate wi ‘r at Mid-Span
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3.4.1. The study on mass ratio parameter

The influence of mass weight on the dynamic response of structure at
first and second mid-span of a three-span plate is investigated here,
which yields the spectrum of dynamic amplification factor versus non-
dimensional velocity while the aspect ratio and the reference point are
specified.

Adding middle constraints to the plate would cause an increased
system stiffness, Thus, we can predict that we have vibrations with larger
frequencies calculated at reference point. This behavior is seen in the first
graphs of Figs. 22 and 23. Accordingly, the response of the plate for
aspect ratio 1 at both CI and CII points were reported. In these Figures,
specifically when the mass weight has increased, the curves could reach
their peaks, so one can conclude that the critical speed must be consid-
ered within ~ 0.6 V' up to ~ 0.8 v'. By increasing the aspect ratio of the
plate, the curves in Figs. 21 and 22 become more smooth such than both
the maximum DAF accompanied with decreased critical velocity. It can
be seen that in Figs. 22 and 23, for aspect ratios 1 and 2 in velocities
below~ 0.2v'. The problem could be solved without considering the
inertia effect of a moving mass, preserving the acceptable accuracy. For
aspect ratio 3, this velocity has increased to=x 0.4 v'. This behavior ex-
plains the fact that by decreasing the stiffness of the plate, the role of the
inertia of the mass moving on a three-span plate has decreased. Hence,
the solution of equations of motion in moving load would be adopted.

3.4.2. The study on aspect ratio parameter
The role of aspect ratio on the response of the plate is very important
as shown in the previous section. For that reason, the effect of aspect ratio

P— T
M=0.05

(a)

T

Conversion Factor for Three-Span Plate with r = 2 at Mid-Spanl
T T T T T
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(b)

T
M=0.05
—=-M=0.1
—A—M=0.15
—-M=0.2
M=0.25

18

17

16

T T

15
Q4

13

12

AN
e

Conversion Factor for Three-Span Plate with r =3 at Mid-Spanl
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e

0 01 02 0.3

Fig. 27. Conversion factor for a three-span plate with SFSF boundary condition versus non-dimensional velocity calculated at the first mid-span CI with specified mass

and aspect ratio. (@) r=1, (b) r=2and (¢) r = 3.
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Fig. 28. Conversion factor for three-span plates with SFSF boundary conditions versus non-dimensional velocity calculated at the second mid-span CII with specified

mass and aspect ratio. (@) r = 1, (b)) r =2 and (c) r = 3.

is investigated exclusively in this section. The DAF of mid-span points
versus non-dimensional velocity with constant mass ratio is shown in
Figs. 24 and 25.

Investigating on the aspect ratio effect of the plate's DAF shows that
increasing of this parameter could mitigate the DAF of plate's central
point remarkably.

Similar to the procedure that was carried out for a two-span plate, the
investigations could be performed for two reference points CI and CII.
Therefore, the response of the plate's central point for both CI and CII are
depicted into the same graphs versus non-dimensional velocity. In each
Figure the mass and aspect ratio are assumed to be constant and the
curves show both loading cases, including and ignoring the inertia
effects.

Fig. 26 shows the five series of graphs including the effects of first and
second mid span points of a three-span plate it is acted upon by a moving
load and mass, where the magnitude of mass and aspect ratio are
considered to be constant. Clearly, these Figures reflect that almost in all
velocity parameters the DAF of the first mid span has a greater value than
that of the second one. However, this trend has become quiet by
increasing the aspect ratio, while mass ratio is considered to be constant.

3.4.3. Conversion factor

The conversion factor for a three-span plate is presented in Figs. 27
and 28, from which one can derive the velocity at which there is the most
difference between the load and inertia mass cases. Therefore, the fact is
noted that in such velocities the analysis has to be carried out considering
the formulation when the inertia terms are accounted for.

22

When the values of # have a small deviation from unity, one may
conclude that the problem can be solved without mass inertia effects.
Thus, it would be acceptable to assume that the load moving on the
plate's surface is a concentrated force. This margin is extended when the
aspect ratio is increased. However, as a general conclusion for the first
mid-span reference point it could be said that most deviation from unity is
occurred within = 0.6 v' up to~ 0.8 v'. In addition, the factor would be
strictly affected when the mass weight moving on the plate is increased
For instance, if we follow the curve pertaining to three-span plate with
aspect ratio 2 pertaining to the second mid-span, it could be interpreted
that the maximum value of the corrective factor increases while the
magnitude of mass ratio parameter is increased, within the values of 1.7
up to 3.2. This behavior shown in the curves could point out the fact that
by increasing the mass, the difference between the plate's response under
moving load and inertia mass cannot be ignored and the problem must be
solved with full terms of mass inertia. On the other hand, the peaks occur
at ~ 0.8 v'which indicates the critical velocity for this case.

4. Conclusion

In this study, a thin rectangular multi-span plate under moving
concentrated inertia mass excitation traveling on an arbitrary path is
considered. The spans generated by the middle constraints comply with
simply supported conditions. The partial differential equations of motion
were derived and solved by the Galerkin method in a general form where
the mode shapes were generated by the Boundary Characteristic
Orthogonal Polynomials (BCOP) as spatial functions. The powerful
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method of Matrix Exponential was employed to solve the problem in the
time domain. The plate with single, two and three spans with simply
supported constraints at width and free condition along the length were
investigated. The results were presented within numerous Figures of
Dynamic Amplification Factor, DAF, versus non-dimensional velocity, V,
of moving mass.

As a joint result, for single, two and three-span plates the investiga-
tion showed that increasing the magnitude of the mass ratio, traveling on
the plate, DAF of plate's mid-span remarkably increases. Moreover, the
difference between a plate's response in both cases of moving load and
mass have increased so the inertia effects of moving mass have to be
considered. The increasing trend of aspect ratio could mitigate the DAF
of plate specifically in high velocities of moving loads.

About two-span plates, the following conclusions can be drawn.
Generally the first mid-span shows a more critical behavior under moving
mass excitation, except for the velocity parameter between 0.4 and 0.6,
where the second mid-span must be consider crucial. This manner is
intensified when the aspect ratio of the plate is increased. Decreasing the
aspect ratio, the responses of two reference points much closer to each
other. In addition, the critical velocity is decreased while the aspect ratio
is increased. For all cases, the magnitude of the mass would cause more
deflection and it magnifies the dynamic effect of moving mass.

Similarly for thee-span plates, increasing the mass magnitude results
in increased dynamic deflection and the critical velocity is mitigated.
That is, the plate undergoes a more critical condition. Clearly, the inertia
effect is mitigated when the length of the plate is increased and actually
the first mid-span plays a more critical role than the second one. The
critical velocity of the second mid span as a reference point, has a higher
value and it means that it could be reached to a maximum deflection later
than the first mid span.

As a general achievement, adding the constraint to the plate and
changing the plate from one to two and then to three spans increases the
plate stiffness and yields to more deflection. In the same case, the first
mid span of three-span plates shows a more important behavior under
moving inertia load. In addition, the critical velocity for three-span plates
is higher than that of the two-span ones keeping the other parameters
constant.

This means that given a fixed length while adding spans to the plate
would result in higher plate deflection of the plate supporting a moving
mass with higher speeds.
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