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Abstract

Objective: This study assesses the application of interpretable machine learning modeling using electronic medical record
data for the prediction of conversion to neurological disease.

Methods: A retrospective dataset of Cleveland Clinic patients diagnosed with Alzheimer’s disease, amyotrophic lateral scler-
osis, multiple sclerosis, or Parkinson’s disease, and matched controls based on age, sex, race, and ethnicity was compiled.
Individualized risk prediction models were created using eXtreme Gradient Boosting for each neurological disease at four
timepoints in patient history. The prediction models were assessed for transparency and fairness.

Results: At timepoints 0-months, 12-months, 24-months, and 60-months prior to diagnosis, Alzheimer’s disease models
achieved the area under the receiver operating characteristic curve on a holdout test dataset of 0.794, 0.742, 0.709, and
0.645; amyotrophic lateral sclerosis of 0.883, 0.710, 0.658, and 0.620; multiple sclerosis of 0.922, 0.877, 0.849, and 0.781;
and Parkinson’s disease of 0.809, 0.738, 0.700, and 0.651, respectively.

Conclusions: The results demonstrate that electronic medical records contain latent information that can be used for risk
stratification for neurological disorders. In particular, patient-reported outcomes, sleep assessments, falls data, additional
disease diagnoses, and longitudinal changes in patient health, such as weight change, are important predictors.
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Introduction
The burden of neurological disease in the United States is
large and increasing, with incident cases of Alzheimer’s
disease (AD) and other dementias increasing by 48.4%,
Parkinson’s disease (PD) increasing by 98.3%, multiple
sclerosis (MS) increasing by 23.9%, and motor neuron dis-
eases, including amyotrophic lateral sclerosis (ALS),
increasing by 86.8% from 1990 to 2017.1 While these dis-
eases are currently incurable, interventions have the poten-
tial to delay the onset of disease, slow disease progression,
and manage symptoms.2–8 Quantitatively determining an
individual’s risk for neurological disease could better
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inform patients and clinicians about opportunities for early
interventions, test candidate therapies earlier in the disease
process, and provide insight into disparities of disease risk
for subpopulations.

Diagnostic and prognostic predictions of neurological
disease risk in the literature commonly rely on data ele-
ments gathered beyond the current clinical standard prac-
tice, including questionnaires, imaging, voice recordings,
genetic testing, and combinations of these techniques with
other biomarker samples.9–23 While these approaches
have tremendous value from a research perspective, they
have not yet been adopted widely or integrated into
routine clinical care. A risk prediction tool using existing
data gathered as part of routine clinical care may provide
an automated screening for neurological disease with little
to no additional time for the provider.

Records within the electronic medical record (EMR)
system contain longitudinal histories of medical data for
large and diverse cohorts of patients, including those who
do and do not develop neurological disease. Retrospective
data analysis allows for larger datasets, both in the
number of patients and duration of the study, than is often
feasible in randomized clinical trials.24 Since EMR data
are structured for clinical use, substantial effort is necessary
for parsing, cleaning, and transformation for use in predict-
ive modeling. These initial data verification and validation
steps have served as a barrier to its use in the development
of informative disease prediction models. The quality and
completeness of EMR data vary dramatically within and
across healthcare systems and clinical practices and can
affect the performance and generalization of EMR-based
models.25

Machine learning (ML) is an effective tool for modeling
EMR data, as it can work with high-dimensional data to
produce complex, nonlinear models.26 A clinical decision
support tool using ML algorithms trained on EMR data
has the potential to guide and prioritize preventive interven-
tion at little to no extra cost or could be used as a screening
tool for appropriate further testing. Historically ML has
been slow to be adopted in the healthcare setting due to a
“black-box” methodology which results in a lack of trust
in the algorithm by clinicians.27 Explainable Artificial
Intelligence (XAI) is an emerging modeling approach that
aims to provide transparency and evaluate fairness of
even the most complex predictive models, but to date it
has been underutilized in medicine.28 Explainable
Artificial Intelligence provides context and transparency
for clinicians to understand each prediction and apply
their own medical expertise to the unique circumstances
of each patient.

Electronic medical record-based prediction models are
an active area of research in neurological care. In their
2023 scoping review of dementia phenotypes in electronic
health records, Walling and colleagues noted the significant
role EMR data can play in identifying patient cohorts for

dementia care and research and reviewed two categories
of algorithms. In the first category, algorithms identifying
patients already diagnosed with dementia, each algorithm
minimally includes International Classification of Disease
(ICD) codes as predictors, with the most specific
approaches incorporating multiple ICD codes, natural lan-
guage processing (NLP), or keyword searches. In the
second category, algorithms identifying patients at high
risk for dementia, the goal is a more sensitive algorithm.29

While many of these models are derived from restricted
clinical settings such as the ICU or focus only on a diagnos-
tic timepoint, several studies use a large EMR dataset for
earlier prediction of AD or other dementia.30–32 Li et al.
published a systematic comparison of EMR-based models
for early prediction of AD and related dementias and
demonstrated the effectiveness of ML and XAI techni-
ques.32 In their models, variables which could change
over time were binned according to their most recent
value, though there is research supporting using trajectories
of patient vitals for prediction of AD.33 Electronic medical
record data augmented with knowledge graphs have also
shown success in early detection of PD and MS.34,35

More research is needed for the use of EMR data and ML
for early detection of ALS, but the disease has been charac-
terized in a large cohort of military Veterans’ EMR data.36

Further, there are examples of EMR-based models for treat-
ment and prognosis of these diseases, not all of which are
included here.23,37,38 While Simonet et al. address the
importance of fair representation in research datasets,39

few EMR-based prediction studies report on equitability,
despite the known existence of health disparities in neuro-
logical care.40,41

This retrospective study assesses an application of ML in
developing predictive models for conversion to one of mul-
tiple neurological diseases using EMR data. The study
leverages the Cleveland Clinic Health System (CCHS)
medical records of patients diagnosed with PD, AD, MS,
and ALS, along with control patients from Internal
Medicine and Geriatrics. The performance of EMR-based
ML risk stratification for neurological disease is assessed
at different timepoints in a patient’s history, from prognos-
tic risk predictions to early detection of disease. Explainable
Artificial Intelligence methods enable the examination of
individual variable importance and interactions between
variables. Additional analyses by sex and by race add to
the transparency and fairness of the model evaluation.
Previous work indicates that predictions derived from high-
quality and highly curated EMR data can generalize well
across disease categories, racial subgroups, future years,
and individual sites within the same hospital system.42

This is the first systematic study to compare the same
powerful ML algorithm on the same clinical dataset for
four neurological diseases, which vary in pathology and
prevalence. It is the first ML risk stratification study of
this breadth for predicting conversion to neurological
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disease using routine EMR data. The full available patient
history is considered, including how patient-reported out-
comes, lab values, vitals, and other metrics have changed
and varied, in contrast to studies which only consider a
most recent snapshot. We also address a gap in the literature
for evaluation of fairness in neurological disease predictors.
Generalizability of the models will be strengthened when
validated across other healthcare systems, however, the
interpretable results provide new generalizable knowledge
about data elements that have predictive power and how
far in advance of disease diagnosis they may be used. The
results may be used by other healthcare systems to guide
investment in their own EMR prediction models and data
collection practices, and by clinicians to evaluate existing
signs and symptoms in their daily practice. This study
was approved by the Cleveland Clinic Institutional Review
Board as a minimal risk study with a waiver of individual
informed consent.

Methods

Data collection

Data were collected from CCHS internal databases which
combine EMR data, billing data, geocoding, national and
Ohio death index datasets, and surveys into a research-
ready format.43 The data pipeline includes standardized
filters, NLP for keyword extraction, and a mapping of
terms to Unified Medical Language System (UMLS) con-
cepts.44 The CCHS is a large, integrated health system
with national and international locations. In-person encoun-
ters were included for 10 acute care hospital sites in
Northeast Ohio, the Lou Ruvo Center for Brain Health in
Nevada, and over 200 outpatient facilities throughout the
healthcare system.

Patients included in the neurological disease cohort have
two or more instances, at least 30 days apart, of an ICD
code for one of the four neurological conditions, the first
of which could be sourced from medical history. This def-
inition yields a high sensitivity of the algorithms to prob-
able disease cases, at the expense of a potentially higher
rate of false positive misclassification. The EMR contains
two date fields for a diagnosis. One is an optional field
for the date the diagnosis was made and can be a historical
date from another institution. The second is the date of the
associated patient encounter. The earlier of the two date
fields is taken as the diagnosis date, and the earliest diagnosis
date of neurological disease or a preceding dementia is taken
as the index date for this study. This definition of index date
is designed to capture the earliest probable clinical onset of
the disease, whether it was diagnosed outside of our health-
care system, or whether it was preceded by a more general
dementia diagnosis, as is common in AD. Index dates were
selected from the years 2001–2020, with patient history

spanning from 2000–2020. There is no restriction on the clin-
ical setting of the associated encounter.

Control patients were matched to the neurological
disease patients based on age, sex, race, and ethnicity. To
be eligible for the control group, patients must have com-
pleted a visit with a Geriatrics or Internal Medicine provider
in the same calendar year as a neurological disease patient’s
index diagnosis. They must be at least 19 years old and have
another visit at least one year prior. Patients are ineligible if
they have any ICD code for one of the four listed neuro-
logical conditions at any time, or a diagnosis of dementia
prior to or within 30 days of the encounter date. The
index date for each control is the date of the encounter
that made them eligible for inclusion. If an exact match
was not available, the algorithm expanded the age range
matching criterion up to 10 years and less often, removed
demographic matching criterion.

Candidate variables were selected based on clinical
review, literature review, experience from previous EMR
calculators, and availability in the EMR system. A wide
selection of candidate variables was desired, regardless of
mutual information, to allow the data-driven selection
of variables by the ML algorithms. The following types
of data were collected: Patient demographics, diagnoses,
symptoms, lab values, and patient reported outcomes, includ-
ing self-reported falls data, the Patient-Reported Health
Questionnaire nine item depression module (PHQ-9),45 and
the Patient-Reported Outcomes Measurement Information
System mental and physical health scores.46 Cleveland
Clinic holds copyright permissions for all tools and question-
naires used in the analysis. Diagnosis categories were created
according to the Charlson Comorbidity Index,47 cardiovas-
cular outcomes from models by Young et al.,48 and UMLS
concepts. Additional definitions and a full variable list are
included in Supplementary Tables 1 and 2.

Longitudinal data were cleaned for inconsistencies, such
as removing outliers in a series of height measurements.
Additional statistical variables including min, mean, max,
standard deviation, slope, and most recent value were
derived for longitudinal lab values, vitals, and surveys.

Missing data are common in EMR data and are often not
missing at random. Missing data could demonstrate a low
utilization of healthcare services, healthcare services that
were received at other institutions, or a lack of an indication
for certain tests or diagnoses. For example, a patient with
no risk factors or symptoms of Diabetes is unlikely to have
HgbA1c tests, and these missing data are more likely to be
in the normal range. Diagnoses are only included on patient
problem lists when positive; that is, there is not a list of diag-
noses the patient is confirmed not to have. Therefore, all diag-
nosis variables in this analysis are either positive or negative
with no missing data. Any remaining missing data were not
imputed and were handled natively by the ML algorithm.

All patient identifiers were replaced with a random
10-digit Subject ID. Each patient was assigned a random
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Table 2. Area under the receiver operating characteristic curve (AUC) and 95% CI for each model overall on test dataset, followed by AUC
and 95% CI by sex and by race on test dataset.

Neurological disease Subgroup N AUC (95% CI)

0 months prior 12 months prior 24 months prior 60 months prior

AD 5620 0.794 (0.769–0.817) 0.742 (0.716–0.767) 0.709 (0.683–0.736) 0.645 (0.615–0.675)

ALS 4076 0.883 (0.826–0.935) 0.710 (0.631–0.789) 0.658 (0.576–0.738) 0.620 (0.533–0.703)

MS 4772 0.922 (0.903–0.938) 0.877 (0.856–0.896) 0.849 (0.826–0.871) 0.781 (0.754–0.809)

PD 5285 0.809 (0.783–0.834) 0.738 (0.707–0.765) 0.700 (0.669–0.728) 0.651 (0.616–0.682)

Sex

AD Female 3423 0.800 (0.776–0.824) 0.753 (0.727–0.779) 0.723 (0.695–0.750) 0.656 (0.627–0.685)

AD Male 2197 0.777 (0.752–0.803) 0.715 (0.687–0.743) 0.672 (0.643–0.703) 0.611 (0.581–0.643)

ALS Female 2399 0.894 (0.833–0.945) 0.704 (0.607–0.795) 0.655 (0.564–0.748) 0.603 (0.519–0.687)

ALS Male 1677 0.866 (0.808–0.921) 0.706 (0.634–0.768) 0.652 (0.577–0.722) 0.631 (0.560–0.705)

MS Female 2943 0.912 (0.892–0.928) 0.870 (0.848–0.890) 0.836 (0.812–0.857) 0.762 (0.735–0.789)

MS Male 1829 0.933 (0.915–0.949) 0.876 (0.852–0.899) 0.857 (0.831–0.881) 0.774 (0.742–0.805)

PD Female 2894 0.813 (0.787–0.841) 0.725 (0.695–0.758) 0.677 (0.643–0.713) 0.627 (0.593–0.663)

PD Male 2391 0.788 (0.762–0.813) 0.714 (0.686–0.742) 0.678 (0.648–0.706) 0.608 (0.578–0.640)

Race

AD Black 749 0.791 (0.768–0.814) 0.740 (0.713–0.767) 0.699 (0.670–0.725) 0.649 (0.619–0.677)

AD White 4579 0.791 (0.765–0.815) 0.736 (0.705–0.763) 0.705 (0.676–0.734) 0.639 (0.608–0.669)

AD Other 292 0.819 (0.795–0.840) 0.800 (0.777–0.822) 0.761 (0.734–0.786) 0.678 (0.649–0.710)

ALS Black 491 0.879 (0.794–0.947) 0.781 (0.665–0.877) 0.765 (0.636–0.868) 0.755 (0.664–0.844)

ALS White 3375 0.881 (0.821–0.933) 0.694 (0.615–0.777) 0.645 (0.564–0.730) 0.603 (0.522–0.678)

ALS Other 210 0.908 (0.863–0.948) 0.775 (0.722–0.827) 0.679 (0.614–0.736) 0.676 (0.630–0.720)

MS Black 605 0.895 (0.877–0.914) 0.864 (0.845–0.884) 0.840 (0.818–0.862) 0.737 (0.709–0.768)

MS White 3932 0.925 (0.907–0.941) 0.878 (0.856–0.899) 0.851 (0.827–0.873) 0.787 (0.759–0.813)

MS Other 235 0.943 (0.926–0.956) 0.894 (0.873–0.912) 0.853 (0.828–0.875) 0.803 (0.776–0.829)

PD Black 579 0.803 (0.771–0.829) 0.738 (0.707–0.768) 0.693 (0.655–0.730) 0.667 (0.630–0.706)

PD White 4443 0.805 (0.778–0.830) 0.732 (0.702–0.763) 0.694 (0.660–0.725) 0.647 (0.615–0.681)

PD Other 263 0.850 (0.829–0.872) 0.750 (0.721–0.779) 0.692 (0.661–0.723) 0.581 (0.547–0.615)
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offset from 0 to 364 days, and all treatment dates were
adjusted back in time by this offset. This kept all timeline
intervals intact while masking the actual treatment dates.
Any patient history prior to their 18th birthday was
excluded.

Statistical analysis and model development
The Positive Predictive Value (PPV) and Negative Predictive
Value (NPV) of neurological disease by the cohort defini-
tions were measured through manual chart review of
50 patients randomly subsampled from each of the four
neurological disease cohorts and the controls group.

The dataset was randomly split so that 60% of patients
were part of a training set, 25% of patients were part of a
validation set, and 15% of patients comprised the test set.
The training set was used to train multiple candidate algo-
rithms. The validation set was used to evaluate the perform-
ance of each candidate and select the final models. The test
set was reserved to evaluate the performance of the selected

models, mitigating any bias in the performance estimates
resulting from the selection process.

A diagram of the model development is provided in
Figure 1. For each of the 16 models estimating the risk of
diagnosis of one of four neurological diseases at four time-
points, two candidate models were developed, which varied
in whether sensitive racial variables were included. Each
candidate model was evaluated on the validation data set
by the area under the receiver operating characteristic
curve (AUC), visual assessment of calibration, and equit-
ability of AUC and calibration between patient subgroups.
Confidence intervals (CIs) for AUCs were derived from
1000 bootstrap samples. Based on these results, desirable
models were selected and evaluated on the test data set by
the same metrics, presented here.

Prior research and testing on a preliminary dataset high-
lighted eXtreme Gradient Boosting (XGBoost) as an appro-
priate algorithm for the models. XGBoost is an ensemble
learner of gradient-boosted trees that has been shown
to outperform other algorithms in many contexts.49 The

Figure 1. Model development diagram. Summary of the model development process from the initial matched patient cohort to the 32
models evaluated. * Nine duplicate control patients were removed from the aggregated control set.
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algorithm is data-adaptive, allowing complex, nonlinear
relationships to emerge. Other desirable features of the
algorithm include native feature selection and reporting of
variable importance, native handling of missing data,
robust integration of data on differing scales, computational
efficiency, and seamless integration with model explain-
ability techniques.

All collected predictors were eligible for inclusion,
allowing the XGBoost algorithm to select only the variables
that contributed to prediction accuracy. XGBoost hyper-
parameters were selected using 5-fold cross-validation on
the training set. Maximum tree depth, number of trees,
and learning rate were selected for each model via an itera-
tive algorithm, which first established the global maximum
for the AUC on the validation data. The algorithm then suc-
cessively subsampled combinations of the hyperparameters
which yielded AUC values within 0.01 of the global
maximum. The algorithm ran until the unique combination
of parameters was found that satisfied the global maximum
criterion with the fewest number of trees required.

Python (versions 3.6 and 3.7)50 was used for all ana-
lyses, including freely available packages Scikit-Learn,51

XGBoost,49 and SHAP.52 We adhered to the TRIPOD
(Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis) checklist
for prediction model development.53

Results

Study cohort

The study includes 52,939 patients, of which 26,463 are in
the control group. There are 11,352 patients diagnosed with
AD, 5,239 with MS, 825 with ALS, and 9,060 with PD. The
average age is 70.0 (SD 16.2) with 58.4% of the cohort
being female. The majority of patients are White (82.2%)
followed by a sizable minority of Black patients (12.8%).
Demographics and key variables in the population are pro-
vided in Table 1.

A total of 250 charts were reviewed for clinically con-
firmed diagnoses in histories, problem lists, and notes.
The PPV for AD was 98%, for ALS was 84%, for MS
was 94%, and for PD was 86%. Common reasons for mis-
classification included differential diagnoses resulting in an
inconclusive diagnosis or a diagnosis for a related condition
such as drug-induced Parkinsonism, bulbar-onset motor
neuron disease, or transverse myelitis. All 50 control
group patients were confirmed not to have one of the four
neurological diseases for a NPV of 100%.

Model performance

The predictive performance of the models decreases as the
number of months prior to the index date increases (see
Table 2). At timepoints 0-months, 12-months, 24-months,

and 60-months prior to diagnosis, AD models achieved
AUCs of 0.794 (95% CI: 0.769–0.817), 0.742
(CI: 0.716–0.767), 0.709 (CI: 0.683–0.736), and 0.645
(CI: 0.615–0.675); ALS of 0.883 (CI: 0.826–0.935),
0.710 (CI: 0.631–0.789), 0.658 (CI: 0.576–0.738), and
0.620 (CI: 0.533–0.703); MS of 0.922 (CI: 0.903–0.938),
0.877 (CI: 0.856–0.896), 0.849 (CI: 0.826–0.871), and
0.781 (CI: 0.754–0.809); and PD of 0.809 (CI: 0.783–
0.834), 0.738 (CI: 0.707–0.765), 0.700 (CI: 0.669–0.728),
and 0.651 (CI: 0.616–0.682), respectively. MS models
had the highest AUC across all timepoints. Models for
ALS and models at 60-months prior to diagnosis had
notably lower AUCs. Alzheimer’s disease and PD models
reached acceptable performance at 24-months prior to diag-
nosis with increasing performance at timepoints nearer to
diagnosis. All models perform well at the baseline of
0-months prior and at 12-months prior.

Calibration of the models is presented in plots of pre-
dicted risk against observed proportions of disease occur-
rence (Figure 2). All models demonstrated excellent
calibration through their close adherence to the 45-degree
line that represents perfect calibration. The models
display comparable ranges of predictions, except ALS
models which were much more conservative. Models for
the same neurological disease displayed smaller prediction
ranges for timepoints earlier in a patient’s history, with the
60-month models demonstrating the smallest prediction
ranges. The 60-month AD model shows a spike in under-
prediction just below the mean predicted risk of 0.3,
which corresponds to the largest bin of predictions for the
model.

To use a model in clinical practice, it is usually necessary
to choose a threshold for a planned intervention by consid-
ering the sensitivity and specificity of the model at the
chosen threshold as well as the risks and benefits of the
intervention. A specific intervention proposal is not part
of this study; however, the sensitivity and specificity
across a range of thresholds for each model on the test
dataset is provided in Supplementary Figure 1.

Explainability

This analysis uses SHAP (SHapley Additive exPlanations),52

a computationally efficient Python package based on
Shapley values,54 to estimate the marginal contributions
of each predictive variable to the prediction. This is a
model-agnostic XAI technique that provides global inter-
pretability of the models, but can also be used to interpret
an individual patient’s unique predictive factors.
Variables with SHAP values of greater magnitude are con-
sidered more important to the model. SHAP values are
expressed in the same units as the model output, which
are log odds for XGBoost. To examine the model as a
whole, the SHAP absolute values are averaged across
patients in the test dataset. The resulting mean value is
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referred to as the global feature importance. The values
indicate a magnitude, but not a direction, of correlation.
As the model is nonlinear, it is possible that a variable’s
value is not linearly correlated with the prediction and
could also be dependent on interactions with other
variables.

Summary plots of the top five variables, or “features,”
for each of the 0-months prior (Figure 3) and 12-months
prior (Figure 4) timepoints display the relationship between
the feature’s data values (e.g., years of education= 12) and
its SHAP values (e.g., 0.2 increase in log odds). Summary
plots for the additional timepoints are available in
Supplementary Figures 2 and 3. The models use a large
number of variables and the top five represent a fraction of

the cumulative importance of all variables, indicated in par-
entheses in the plots. In each figure, the top five predictive
variables are displayed in descending order of importance
along with the vertical axis. Each variable has a beeswarm
plot where each dot represents a record in the test dataset,
colored according to the record’s data value and positioned
along with the x-axis according to its SHAP value. The ver-
tical spread of the beeswarm indicates the distribution of the
SHAP values. The color indicates whether the feature value
is missing (gray), high (yellow), low (purple), or somewhere
in between as referenced by the color bar. The vertical gray
line represents the model’s mean prediction. Positive SHAP
values are on the right side of the vertical line and indicate
that the variable increases the predicted probability of

Figure 2. Calibration and prediction histograms. The mean predicted risk of disease is compared to the observed proportion of disease in
eight quantiles. Bars indicate numbers of patients in evenly spaced bins of predicted risk and utilize the secondary y-axis. All models
demonstrate excellent calibration, as measured by their adherence to the 45-degree line that represents perfect calibration. The models
display comparable ranges of predictions, except for ALS models which were much more conservative in range. Models for the same
neurological disease generally displayed smaller prediction ranges for timepoints earlier in a patient’s history, with the 60-month models
demonstrating the smallest prediction ranges.
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neurological disease. In a variable with a simple direct rela-
tionship between the data values and the probability of con-
version to neurological disease, the beeswarm will progress
from dark purple on the left to bright yellow on the right.
When the coloring is mixed along with the horizontal axis,
the relationship is nonlinear and might include interactions
with other variables. Binary variables are coded with No=
0 which will display as dark purple and Yes= 1 which will
display as bright yellow.

Alzheimer’s disease: Several weight variables, the binary
variable alcohol use, and years of education were the main
variables for prediction in all models. Patients who report
using alcohol have reduced probability of classification of
AD in all models. Weight variables, discrete and derived,
appear across all models, with a trend of weight loss or
low weight leading to the classification of neurological
disease. If a patient is diagnosed with a pulmonary disease,
for the baseline model, they are more likely to be classified
as not having AD, while in the 12-month model, a cardiovas-
cular diagnosis is more likely to result in an AD diagnosis.
The top five variables represent between 12.9% and 24.3%
of the cumulative SHAP values for the four timepoint
models.

Amyotrophic lateral sclerosis: In all models, male
patients are more likely to convert to disease. PHQ-9
mean and max are influential variables in the baseline

model, having higher values associated with disease, but
do not appear in the top five for any of the other timepoints.
Symptoms such as dysarthria and falls last year injury,
which summarizes self-reported answers to whether two
falls have occurred in the previous year or a fall resulting
in injury, are prominent in the baseline model, implying
that several characteristics of disease are present when
the diagnosis is first made. Predictions at earlier timepoints,
which did not perform well by AUC, rely heavily on lab
values. Lab values for Triglycerides, LDL, creatinine,
and hemoglobin appear in the baseline model as well.
The top five variables represent between 22.7% and
43.6% of the cumulative SHAP values for the four time-
point models.

Multiple sclerosis:All MSmodels associate a lower value
of urea nitrogen with probability of disease, using both the
most recent value and the average value in the patient
history. Cholesterol and systolic max variables appear in all
models, and across the board females are more likely to be
diagnosed with the disease. The baseline model includes
symptoms of numbness and falls last year injury. The top
five variables represent between 13.8% and 28.4% of the
cumulative SHAP values for the four timepoint models.

Parkinson’s disease: Across all models, males are more
likely to be categorized as PD patients. Alcohol use or a
diagnosis of pulmonary disease were associated with a

Figure 3. Top five variables for 0-month models by SHAP mean absolute value. The top five predictive variables for each baseline model are
displayed in descending order of importance along with the vertical axis according to SHAP mean absolute value. The SHAP mean absolute
value divided by the cumulative sum of all variables’ SHAP mean absolute values is indicated in parentheses. The most important model
variables are minimum patient weight in AD, mean PHQ-9 score in PD, numbness in MS, and male sex in ALS.
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decreased risk of PD. PHQ-9, mood disorders, and falls
last year injury were also represented. Black race was in
the top five variables for the 24-month and 60-month
models. The top five variables represent between 20.8%
and 31.2% of the cumulative SHAP values for the four
timepoint models.

The global feature importance metrics discussed so far
represent an average effect across all patients in the model.
There are some variables that may not have a strong
average effect, but still have a substantial impact on a
subset of patients. To evaluate those variables, similar
plots are generated using a maximum absolute value of
all individual SHAP values for the 0-month models
(Figure 5). While many of the same variables are
important when computed via mean or maximum, there
are new variables in the top five ranking by maximum
that include REM sleep behavior disorder, PHQ-9 slope
as computed by a linear fit of PHQ-9 scores through
time, paralysis, dysarthria, and having a vision problem.
The variable falls last year injury or device also appears,
which differs from falls last year injury by additionally
including whether the patient is using an ambulatory
assistive device. Extreme lab values, such as sodium,
creatinine, and albumin, can also produce large SHAP
values.

Fairness

Models were examined for equitable performance in AUC
and calibration by sex and by race (Table 2). In most
models, male and female subgroups showed comparable
performance as measured by AUCs falling within the
95% CI of the comparative group. The exceptions are that
AD models demonstrate better performance for females at
the 12, 24, and 60-months prior timepoints, and MS
models demonstrate better performance for females at the
0-months prior timepoint. In the racial subgroups, particular
attention is paid to the Black race and White race subgroups,
which represent the two largest subpopulations. Most models
showed comparable performance between races, with the
exceptions of ALS models demonstrating better performance
for Black patients and MS models better performance for
White patients. Racial categories with low representation,
including American Indian or Alaska Native, Asian,
Multiracial/Multicultural, Other, Declined, Unknown, and
missing, were grouped into a single Other category for
these analyses. AUCs for the Other category were compar-
able to or exceeded AUCs for Black and White subgroups
in all models except the PD 60-month model.

Calibration for male and female subgroups was excel-
lent. Racial subgroups were generally well-calibrated but

Figure 4. Top five variables for 12-month models by SHAP mean absolute value. The top five predictive variables for each 12-month model
are displayed in descending order of importance along with the vertical axis according to SHAP mean absolute value. The SHAP mean
absolute value divided by the cumulative sum of all variables’ SHAP mean absolute values is indicated in parentheses. The most important
model variables are the slope of a linear fit of patient weight throughout time in AD, male sex in PD, maximum urea nitrogen lab value in
MS, and most recent total cholesterol lab value in ALS.
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showed some variation, particularly for the smallest sub-
group of Other race. Moderate underprediction is present
for Black patients at moderately high-risk levels of AD
and at midrange risk levels of MS in the 0-month models
(Figure 6). Calibration plots for the other timepoint
models are available in Supplementary Figures 4, 5, and 6.

Additional models were developed with racial variables
excluded to test whether this changes the performance
between racial subgroups. It can be desirable to exclude
protected attributes due to their sensitivity and perceived
potential for bias. However, it is possible that in spite of
this, models will determine proxies for race, incorporating
the same bias but with less transparency.55 Additionally,
the exclusion of protected information could cause a
failure to recognize a legitimate relationship with the
outcome.56 As there are potential advantages and disadvan-
tages to the exclusion of racial variables, this modeling
strategy is presented as a comparison to the full models.

The exclusion of race variables led to minor changes in
overall AUC which were well within the 95% CI of the
AUCs of the full models. AUC performance between
racial subgroups was also consistent (Supplementary
Table 3). Very few differences in the top five global features
were noted. The original PD 24-month and 60-month

models ranked Black race in the top five and, with the
exclusion of this variable, additional variables of systolic
max and HDL max entered the top five rankings
(Supplementary Figures 7 and 8).

Calibration between racial subgroups was similar for
most models; however, the PD models were a notable
exception. Parkinson’s disease models excluding racial
variables tended to overpredict diagnosis for Black patients
(Figure 7). A relationship between Black race and PD diag-
nosis exists but has not been attributed to a single known
cause.57,58 Recognizing that the EMR data may under-
represent true diagnoses, the model’s “over-prediction”
could be used to correct for missed opportunities for true
diagnosis and provide additional services in a population
that may be currently underserved.

Discussion
The data in the analysis represent real-world progression
toward neurological disease, highlighting important vari-
ables for clinical assessment. The routine collection of
patient-reported outcomes such as PHQ-9 was instrumental
in the quality of predictions. Considering the relative ease in
the administration and integration of a screening tool that

Figure 5. Top five variables for 0-month models by SHAP Maximum absolute value. The top five predictive variables for each baseline
model are displayed in descending order of importance according to SHAP maximum absolute value along with the vertical axis. Extreme
lab values, such as Sodium, Creatinine, and Albumin, have relatively large SHAP values. Rare conditions, such as a diagnosis of REM sleep
behavior disorder, paralysis or reported symptoms of dysarthria or vision problems, have large effects on small numbers of patients. The
PROMIS global mental health z-score and the slope of a linear fit of longitudinal PHQ-9 scores are also ranked.
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has been validated in multiple populations, including older
adults,59 the PHQ-9 could provide value to providers
beyond its use for depression screening and tracking.
Data from sleep studies were less commonly collected but
were highly predictive in a subset of patients, in particular
those eventually diagnosed with PD. Considering the
prevalence of sleep dysfunction associated with PD and
suggestions that REM sleep behavior disorder may be a
prodromal marker for PD,60 the ordering of a polysomno-
gram sleep study may be warranted in those patients who
report disruption in sleep in combination with a change in
PHQ-9 score.

The most important predictive variables included falls
last year injury in all four diseases in the baseline
models. Importantly, gait, while traditionally considered a
motor task, is actually a very complex dual-task which

requires the simultaneous processing of visual information
and the execution of motor commands to control lower
extremity musculature.61 Falls history is routinely collected
as part of hospitalizations using the Hester Davis Scale,62

but is frequently overlooked at primary care visits,63 high-
lighting the importance of evaluating functional gait in
those patients 55+ years as part of their primary care.

There was variation in the predictive ability of the study’s
models across time and diseases. While the methodology for
the development of all models was the same, the diseases
themselves differ in prevalence, rate of progression, and
symptoms. Three out of four of the 60-month prior models,
as well as the ALS 24-month prior model, do not exceed a
threshold of 0.70 AUC, a common benchmark for acceptable
performance. However, all models at the 0-months and
12-months prior timepoints exceed this threshold, as well as

Figure 6. Calibration and prediction histograms by sex and by race. The mean predicted risk of disease is compared to the observed
proportion of disease in eight quantiles by sex and by race. Bars indicate numbers of patients in evenly spaced bins of predicted risk and
utilize the secondary y-axis. Male and female subgroups demonstrate excellent calibration, as measured by their adherence to the
45-degree line that represents perfect calibration. Racial subgroups were generally well-calibrated but showed some variation.

14 DIGITAL HEALTH



AD, MS, and PD models at the 24-months prior timepoint,
and MS models at the 60-months prior timepoint.

An advantage of this modeling approach is that data are
readily available in the EMR, requiring no additional data
collection, time, or expense for an initial screen.
Individualized explanations through SHAP values allow
clinicians to evaluate the predictions in the context of
their medical expertise and the patient’s history before
engaging in patient discussion, implementing preventive
interventions, or ordering additional testing. Evaluation of
the risks and benefits prior to patient engagement can miti-
gate possible harms, such as anxiety about an uncertain
future problem.

In addition to the clinical utility for an individual patient,
risk stratification can be used at a population level to create
patient registries and triage by comparative disease risk.
Quantitative risk stratification could prioritize outreach by
care and research coordinators and facilitate forecasting of
resources needed for managing the health care needs of
an aging population or identifying subpopulations who
could benefit from additional care. Further, the difficulty
in navigating the healthcare system, which includes mul-
tiple visits with a range of providers and specialists, is
socially and emotionally taxing to the patient64 and delays
the onset of medication, behavioral or physical interven-
tions that may in some cases aid in the treatment or serve
to slow disease progression. Even after diagnosis of neuro-
logical disease, PD in particular, many patients are not
being treated by a movement disorders neurologist, which

further complicates the effective management of the
disease.65 We are currently evaluating the feasibility of
building additional disease-specific models that could be
used by those providers, not specially trained in neuro-
logical disease management, to aid in treatment strategy
and disease tracking.

Careful consideration of the effect on health disparities
should be part of any intervention design, to ensure that
resource allocation and opportunities are equitable. This
begins with an examination of how the models use sensitive
data and any differences in the prediction accuracy. The
model fairness analysis found generally equitable perform-
ance of the models in discrimination and calibration by sex
and by race, but these metrics rely on the accuracy of the
diagnoses in the medical record, which may be biased. In
models where the effect of removing racial variables was
negligible, it is reasonable to conclude there are no differ-
ences as a function of race, however, it is possible that
the models are using other variables to encode racial differ-
ences. In PD models, the exclusion of racial variables led to
higher proportions of Black patients predicted to be diag-
nosed than were observed. We hypothesize that there may
be underdiagnosis in the Black population, and the
models excluding race could be used to direct more atten-
tion and services to this population, facilitating equitable
treatment. In AD, MS, and ALS, we did not observe the
same effect from the models excluding race. Additional
fairness analyses are needed for specific interventions to
ensure that the models provide equitable opportunities,

Figure 7. Comparison of calibration when racial variables are excluded. PD models excluding racial variables tended to overpredict
diagnosis for Black patients, as seen by the mean predicted risk exceeding the observed proportion of diagnoses for several of the
quantiles. Recognizing that the EMR data may underrepresent true diagnoses, models could be used to correct for missed opportunities for
true diagnosis.
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and if not, post hoc calibration adjustments can be
considered.

This study has limitations. The data are limited to
patients and medical history available in the Cleveland
Clinic medical record. Some health information is unavail-
able for patients also receiving treatment at other healthcare
centers or receiving no treatment. The models rely on
appropriate diagnoses of neurological disease in the
medical record. The patient population may differ from
the community population in motivation to seek care and
access to care. Racial disparities in healthcare access and
utilization have been noted in neurological care.40

Although patients of Black and White race were well-repre-
sented in this population, other minority groups had less
representation. Additional research on the applicability of
the risk predictions in a prospective cohort and generaliz-
ability to another health system’s EMR data should be
completed.

As additional technologies for quantitative assessment
are introduced into routine clinical care, such as simple
functional gait assessments or sleep evaluation through
wearable technology, the predictive ability of EMR data
will increase. Clinical practice and data collection among
healthcare systems varies, and it is likely that models
trained on a healthcare system’s own data will perform
best in their populations. With explainable methods, knowl-
edge about the workings of these models can be
generalized and tested in other health care systems. It is
important to share the results discovered from systematic
comparisons of methods and data elements.

Conclusions
The results demonstrate that EMRs contain latent informa-
tion that can be used for accurate risk stratification for
neurological disorders, and modeling efforts are expected
to improve with continuous improvement in EMR data col-
lection and extraction. Health systems differ in their popu-
lations and data collection processes and are likely to
benefit from tuning ML algorithms to their own EMR
data, but interpretable ML allows data elements, modeling
techniques, and outcomes of models to be shared and
built upon. The importance of patient-reported outcomes,
sleep assessments, and monitoring the incidence and condi-
tions contributing to falls in these models can inform health-
care providers about prognostic risk factors to assess in their
own patients. Risk stratification may be used in the care of
individual patients or in population health management. It
is important that interpretability and fairness be considered
in both the model development process and in the clinical
workflows that use the predictions.
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