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Purpose: This study aimed to compare the regulatory T cells in cord blood of ap-
propriate for gestational age (AGA) neonates with those of small for gestational 
age (SGA) neonates. Materials and Methods: Umbilical cord blood was collect-
ed upon labor in 108 healthy full-term (between 37 and 41 gestational weeks) 
neonates, who were born between November 2010 and April 2012. Among them, 
77 samples were obtained from AGA neonates, and 31 samples were obtained 
from SGA neonates. Regulatory T cells and lymphocyte subsets were determined 
using a flow cytometer. Student’s t-test for independent samples was used to com-
pare differences between AGA and SGA neonates. Results: Regulatory T cells in 
cord blood were increased in the SGA group compared with normal controls 
(p=0.041). However, cytotoxic T cells in cord blood were significantly decreased 
in the SGA group compared with normal controls (p=0.007). Conclusion: This is 
the first study to compare the distribution of lymphocyte subsets including regula-
tory T cells in cord blood between AGA neonates and SGA neonates.
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INTRODUCTION

Small for gestational age (SGA) is a clinically significant pregnancy disorder. 
Commonly, SGA is defined as a birth weight at or below the 10th percentile for 
gestational age.1 

Infants of low birth weight for gestation are at increased risk for neonatal mor-
bidity and mortality and consequently may require intensive care. Moreover, the 
prevalence of long-term developmental problems is high during adolescence and 
early adulthood among infants of low birth weight. SGA is also frequently associ-
ated with serious perinatal complications. For example, fetal distress and intrauter-
ine fetal death may occur during the fetal period, and neonatal distress such as 
pneumonia, sepsis, pulmonary hemorrhage, hypoglycemia, hypoproteinemia, and 
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MATERIALS AND METHODS

Study population
This study was performed using a sample of 108 pregnant 
mothers who delivered full-term neonates, based on a preg-
nancy period of 37‒41 weeks at Konkuk University Hospi-
tal during the period from November 2010 to April 2012. 
Cases of multiple gestation, congenital malformation, pla-
cental abnormalities (placenta previa, placenta accrete, and 
velamentous insertion of the cord), and maternal conditions 
[Behcet’s disease, Herpes Simplex Virus (HSV) infection, 
viral meningitis, tuberculosis, and systemic lupus erythema-
tosus] were excluded from the sample. There were 31 SGA 
neonates among a total of 108, and at the time of birth, de-
pending on the gestational age, the diagnostic standard of 
SGA was established based on a weight below the 10th per-
centile (37 weeks: 2.541 g; 38 weeks: 2.714 g; 39 weeks: 
2.852 g; 40 weeks: 2.929 g; 41 weeks: 2.948 g).1 The num-
ber of neonates with a normal weight was 77, and this was 
established based on the weight between the 10th percentile 
and 90th percentile (37 weeks: 2.542‒3.755 g; 38 weeks: 
2.715‒3.867 g; 39 weeks: 2.853‒3.980 g; 40 weeks: 2.930‒ 
4.060 g; 41 weeks: 2.949‒4.094 g).1 The study was approved 
by the Institutional Review Board. Written informed consent 
was obtained from all participants.

Sample collection
We drew blood from the umbilical cord intravenously for 
research shortly after birth. The 9-mL cord blood samples 
were collected in sterile EDTA tubes, dividing each sample 
by placing about 3 mL into each EDTA tube. We gently ag-
itated the tubes from side to side for about 30‒60 seconds 
in order to prevent clotting, and these specimens were then 
stored in a refrigerator. All experiments were performed 
within 24 hours after blood sampling.

Flow cytometry analysis
Multicolor flow cytometry analysis was performed using Cy-
tomics FC500 and CXP software (Beckman Coulter, Fuller-
ton, CA, USA). In order to separate mononuclear cells in the 
cord blood, 6 cc of each specimen was used for density gra-
dient centrifugation using a Ficoll filter (Ficoll-Paque, GE 
Healthcare Life Sciences, Milan, Italy). By floating the ob-
tained mononuclear cell layer in phosphonate-buffered sa-
line, its concentration was maintained as 1×106 cells/mL. In 
order to find the regulatory T cells among the mononuclear 

electrolyte abnormalities may present during the neonatal 
period. Many studies have suggested that in children born 
SGA, there is an association with the development of meta-
bolic syndrome in adult life, such as hypertension and renal 
diseases,2 and there is an increased incidence of immune 
diseases, such as asthma, during school age.3

SGA has several different causes, such as intrauterine in-
fections, multiple gestation, abnormality of the placenta, 
umbilical cord, and chromosomes, congenital malformation, 
congenital birth defects, maternal complications (pre-ec-
lampsia, hypertensive disorder, diabetes, asthma, anemia, 
and hyperthyroidism), and drug intake; however, most cas-
es of SGA are of unknown origin.4 According to a recent 
review article, SGA fetuses constitute a large heterogenous 
group that includes healthy small fetuses, chromosomally 
abnormal fetuses, and fetuses suffering from utero-placen-
tal insufficiency leading to intrauterine growth restriction 
(IUGR).5 Recent studies have shown that IUGR represents 
a human model of chronic fetal hypoxia, and a relationship 
between IUGR and pro-inflammatory cytokines has been 
described.5,6 Hypoxia and inflammation reaction, which are 
indicated as a cause of IUGR, can lead to varied responses 
in the body. In particular, it is reported that this hypoxia and 
inflammation reaction induce changes of the immune sys-
tem by producing fractional (subset) changes in lympho-
cyte blast cells in the body.7-10

Regulatory T cells are lymphocytes expressed as CD4+ 

CD25highFoxP3+, and these play an important role in the 
maintenance of self-tolerance and immune homeostasis. 
When immune system variation is represented in vivo, frac-
tional changes of regulatory T cells occur. There is no doubt 
that regulatory T cells expand in the periphery in human 
pregnancy and are present in significant numbers at the fe-
tal-maternal interface.11

In SGA, the immune system is likely to be changed by 
hypoxia and inflammatory reaction during pregnancy. While 
many early studies focused on the depressed immune re-
sponses of SGA infants, more recent research suggests that 
these defects may persist beyond infancy. However, in spite 
of this probability, efforts to explore the condition of the im-
mune system by directly investigating changes of lympho-
cytes in the blood of SGA infants have so far proven to be 
unsatisfactory.

In this study, we attempted to compare the distribution of 
lymphocyte subsets including regulatory T cells in cord 
blood between appropriate for gestational age (AGA) neo-
nates and SGA neonates.
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go, IL, USA). p values equal to or less than 0.05 were con-
sidered statistically significant.

RESULTS
 

Comparison of general clinical features between the 
two groups
The maternal age, gestational age, birth weight, systolic BP, 
diastolic BP, and proteinuria of each group were compared. 
Significant differences were not present in maternal age, 
gestational age, systolic BP, diastolic BP, and proteinuria. 
Birth weight was significantly different between the infant 
group of normal weight (3.270 g) and the SGA group (2.540 
g; p<0.001) (Table 1).

Comparison of regulatory T cells of the two groups
In the AGA group, the mean value of regulatory T cells was 
2.59%, the minimum value was 0.13%, and the maximum 
value was 8.06%. In the SGA group, the mean value of reg-
ulatory T cells was 3.02%, the minimum value was 0.60%, 
and the maximum value was 6.81%.

The distribution of cord-blood regulatory T cells showed 
a significant difference between the AGA and SGA groups 

cells, a Human Regulatory T Cell staining Kit (eBioscience, 
San Diego, CA, USA) containing CD4, CD25, and FoxP3 
was used. This kit included fluorescein isothiocyanate 
(FITC)-CD4, phycoerythrin (PE)-CD25, and PE-cyanin5-
FoxP3. To create isotype-negative controls that would in turn 
define the positive population, cells were stained with PE-cy-
anine 5-conjugatd rat IgG2a for 30 minutes at 4°C. After gat-
ing, the percentage of FoxP3+ cells (CD4+CD25highFoxP3+) 
was counted in the CD4+ population (Fig. 1).

For lymphocyte subsets, 3 mL of cord blood was incu-
bated for 15 minutes at room temperature with the follow-
ing two-color antibody combinations: CD3-FITC/CD8-PE, 
CD3-FITC/CD4-PE, CD3-FITC/CD19-PE, and CD3-
FITC/CD16 plus CD56-PE. Cytomics FC500 software was 
used to analyze cytotoxic T cells (CD3+CD8+), helper T 
cells (CD3+CD4+), B cells (CD3-CD19+), and natural kill-
er cells (CD3-CD16+CD56+).

Statistical analysis
In order to comparatively analyze clinical features and the 
lymphocyte blast cell ratio of the SGA and AGA groups, 
Student’s t-test was used, and the mean, maximum, and 
minimum values were also obtained. Statistical analysis 
was performed using SPSS 18 software (SPSS Inc., Chica-

Table 1. Clinical Characteristics of the Patients in the Appropriate and Small for Gestational Age Groups
Variable AGA group (n=77) SGA group (n=31) p value
Maternal age (yrs) 33 [26, 39] 32 [26, 37] 0.835
Gestational age at delivery (days)   271 [263, 288]   270 [259, 283] 0.147
Birth weight (kg)    3.27 [2.70, 4.57]    2.54 [1.49, 2.86] <0.001*
Systolic blood pressure (mm Hg) 109 [89, 129] 108 [83, 128] 0.324
Diastolic blood pressure (mm Hg) 69 [50, 89] 68 [53, 89] 0.065
2nd trimester mean uterine artery PI 0.74±0.19 0.89±0.24 0.109
3rd trimester umbilical artery PI 0.84±0.21 0.95±0.22 0.065
Proteinuria None None

AGA, appropriate for gestational age; SGA, small for gestational age; PI, pulsatility index.
Data are presented as mean [minimum, maximum]. Data are presented as mean±SD.
*Student’s t-test.

Fig. 1. Flow cytometric detection of regulatory T cells. (A) A forward and side scatter histogram was used to define the lymphocyte population. (B) The ex-
pression of CD4 and CD25 in total lymphocytes was detected and compared with the negative isotype control, and different gates were drawn to define 
CD4+CD25+high cells. (C) This expression is shown as the geometric mean of fluorescence intensity of FoxP3+ in CD4+CD25+high cells. 
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the body; they include T cells, B cells, and natural killer 
cells, and when these lymphocytes become abundant, they 
respond to antigens with high sensitivity, potentially result-
ing in the occurrence of allergic diseases. T cells include 
helper T cells, cytotoxic T cells, and regulatory T cells. 
Helper T cells induce a greater immune response by secret-
ing various cytokines, and cytotoxic T cells eventually in-
hibit the immune response by directly attacking or remov-
ing other cells through apoptosis. Regulatory T cells that 
positively inhibit the activation of other T cells are expressed 
as CD4, CD25, and FoxP3. This regulatory T cell plays an 
important role in maintaining self-tolerance and immune 
homeostasis and preventing autoimmune disease.12-15 In ad-
dition, regulatory T cells are able to prevent organ trans-
plant rejection by inhibiting the response of CD4+ cells.16,17

In order to maintain a successful pregnancy, the immune 
system of pregnant women during the gestational period 
shows special variation that involves regulatory T cells posi-
tively inhibiting activation of various T cells.11 An increase 

(p=0.041) (Table 2, Fig. 2). 

Comparison of lymphocyte subsets of the two groups
The distribution of lymphocyte subsets in the cord blood is 
summarized in Table 2. When compared according to birth 
weight, there were no statistical differences in helper T cells 
(AGA: 49.96% [12.49‒72.72%]; SGA: 52.23% [35.31‒ 
82.64%]; p=0.148), B cells (AGA: 16.79% [16.38‒36.85%]; 
SGA: 16.96% [4.46‒29.60%]; p=0.821), or NK cells (AGA: 
8.46% [0.65‒31.66%]; SGA: 9.38% [1.58‒25.49%]; p= 
0.421). However, the distribution of cord-blood cytotoxic T 
cells showed a significant difference between AGA and SGA 
groups (AGA: 21.64% [10.72‒36.51%]; SGA: 19.30% 
[8.60‒28.68%]; p=0.007) (Table 2, Fig. 3). 

DISCUSSION

Lymphocytes are cells that create an immune response in 

Table 2. Comparative Analysis of Lymphocytes Including Regulatory T Cells in Appropriate and Small for Gestational Age 
Groups

Lymphocytes AGA group (n=77) SGA group (n=31) p value
Regulatory T cells (%)  
  (CD4+CD25highFoxP3+) 2.59 [0.13, 8.06] 3.02 [1.60, 6.81] 0.041*

Helper T cells (%) (CD3+/CD4+)   49.96 [12.49, 72.72]   53.23 [35.31, 82.64] 0.148
Cytotoxic T cells (%) (CD3+/CD8+)   21.64 [10.72, 36.51] 19.30 [8.60, 28.68] 0.007*
B-cells (%) (CD19+) 16.79 [6.38, 36.85] 16.96 [4.46, 29.60] 0.821
NK cells (%) (CD3-/CD16+/CD56+)   8.45 [0.65, 31.66]   9.38 [1.58, 25.49] 0.421

AGA, appropriate for gestational age; SGA, small for gestational age.
Data are presented as mean [minimum, maximum].
*Student’s t-test.

Fig. 2. Regulatory T cells in cord blood of the appropriate and small for ges-
tational age groups. Central bars indicate the mean values, and upper and 
lower bars indicate the range. The mean value of cord blood regulatory T 
cells showed a significant difference between AGA and SGA neonates 
(2.59% vs. 3.02%, p=0.041, Student’s t-test). AGA, appropriate for gestation-
al age; SGA, small for gestational age.

Fig. 3. Cytotoxic T cells in cord blood of the appropriate and small for gesta-
tional age groups. Central bars indicate the mean values, and upper and 
lower bars indicate the range. The mean value of cord-blood cytotoxic T 
cells was significantly different between AGA and SGA neonates (21.64% 
vs. 19.30%, p=0.007, Student’s t-test). AGA, appropriate for gestational age; 
SGA, small for gestational age.
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was 0.35‒9.07%, and this value was shown to have a wider 
range than the reference values (1.7‒7.0%) of adult periph-
eral blood.22

As a follow up study, we attempted to compare the distri-
bution of lymphocyte subsets including regulatory T cells in 
cord blood between AGA and SGA neonates for the first 
time. In our study, regulatory T cells were increased (p= 
0.041); however, cytotoxic T cells were decreased (p=0.007) 
in the SGA group compared with normal controls. Addi-
tionally the distribution of helper T cells, B cells, and NK 
cells did not differ according to fetal body weight.

SGA fetuses are a heterogeneous group comprising fetus-
es that have failed to achieve their growth potential due to 
intrauterine growth restriction and fetuses that are constitu-
tionally small.5 According to a recent study, SGA of which 
specific cause has not been clarified has a close relationship 
with hypoxia and increased inflammation response.5,6 

In the context of hypoxia, hypoxia inducible factor-1 
(HIF-1) is expressed, and this factor plays the important 
role of regulating glycolysis, angiogenesis, erythropoiesis, 
and cell survival.32 HIF-1 is able to function throughout all 
aspects of normal and abnormal placental differentiation, 
growth, and function, including during the first trimester 
(physiologically low oxygen), during mid-late gestation 
(where there is an adequate supply of blood and oxygen to 
the placenta), and in pathological pregnancies complicated 
by placental hypoxia or ischemia.33

One study investigated hypoxia-inducible transcription 
factor in IUGR placentas, comparing placentas from nor-
mal pregnant, pre-eclampsia, and IUGR patients. In this 
study, the pre-eclampsia-to-normal pregnant placenta ratio 
for HIF-1 was 1.67 (p<0.001), and the IUGR-to-normal 
pregnant placenta ratio was 1.03 (p=not significant).34

Generally, hypoxia causes fractional changes of lympho-
cyte blast cells.7-10 In a hypoxic environment, these lympho-
cyte fractional changes may lead to variation in inflamma-
tion response markers. According to a recent study, HIF-1 
regulates the balance of the lymphocyte fraction.7 HIF-1 
also increases T helper cell type 2 (Th2) yet decreases T 
helper cell type 1 (Th1).35-37 In general, Th2 cells are excel-
lent helpers for B-cell antibody secretion; however, Th1 
cells also interact with cytotoxic T cells and macrophages.38 
Additionally, Th1 cells produce pro-inflammatory cyto-
kines such as interleukin (IL)-2, gamma-interferon, and tu-
mor necrosis factor-beta,39 whereas Th2 cells secrete anti-
inflammatory cytokines such as IL-4 and IL-5.39 Other 
cytokines, such as IL-3, IL-6, and tumor necrosis factor-al-

of regulatory T cells of pregnant women during the gesta-
tional period is observed at an early stage of pregnancy.18,19 
This change implies that regulatory T cells in the blood of 
pregnant women apparently recognize the fetus as an anti-
gen derived from a paternal line.20,21 These regulatory T cells 
are considered to play an important role in maintaining im-
mune homeostasis for the fetus in pregnant women during 
the gestational period.22,23 In a study, it was reported that the 
number of regulatory T cells in the blood of pregnant wom-
en during pregnancy was significantly increased and this 
value dropped after delivery;18 additionally, the number of 
regulatory T cells in the blood of pregnant women during 
the second trimester was found to be mostly increased.24 
When spontaneous abortion was compared with normal 
pregnancy for the first time in 2004, it was reported that the 
number of regulatory T cells in the blood of pregnant wom-
en was low,25 and another study reported that in the case of 
abortion at an early stage of pregnancy, a decrease of regu-
latory T cells was shown as well.26 The immunology mech-
anisms taking place in the placenta during pregnancy have 
been investigated since the 1990s, and it was reported that 
as implantation progressed, the ratio of lymphocytes in-
creased in the decidualized endometrium.27,28 In addition, as 
a result of analyzing regulatory T cells in the endometrial 
tissue of infertile females, an insufficiency of regulatory T 
cells was found.29

Large amounts of research relevant to pregnancy have 
been performed in a similar way; however, most of this re-
search has focused on the maternal blood and placenta. Al-
though umbilical cord blood reflects the condition of the fe-
tus during pregnancy, the research on cord blood from SGA 
neonates is still far from satisfactory.

The distribution of regulatory T cells in normal cord 
blood has not yet been defined. In several previous studies, 
the distribution of regulatory T cells in cord blood was re-
ported as 2‒3%,30 2.63‒8.94%,11 and 4.0‒10.0%.31 Howev-
er, these studies were limited in that they enrolled small 
sample numbers. In 2012, an investigative study on the lym-
phocyte subset in cord blood was undertaken for the first 
time. This study provided the reference intervals for lym-
phocyte subsets including regulatory T cells in umbilical 
cord blood from healthy full-term neonates. In this study, 
the reference intervals for lymphocyte subsets were: helper 
T-cells (CD3+/CD4+), 15.40‒70.06%; cytotoxic T-cells 
(CD3+/CD8+), 9.65‒34.28%; B-cells (CD19+), 4.50‒ 
29.59%; and natural killer cells (CD3-/CD16+/CD56+), 
1.42‒28.03%. The reference interval for regulatory T cells 
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