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Non-tuberculous mycobacteria (NTM) are difficult to identify by biochemical and

genetic methods due to their microbiological properties and complex taxonomy.

The development of more efficient and rapid methods for species identification in

the veterinary microbiological laboratory is, therefore, of great importance. Although

MALDI-TOF Mass Spectrometry (MS) has become a promising tool for the identification

of NTM species in human clinical practise, information regarding its performance on

veterinary isolates is scarce. This study assesses the capacity of MALDI-TOF MS to

identify NTM isolates (n = 75) obtained from different animal species. MALDI-TOF MS

identified 76.0% (n = 57) and 4% (n = 3) of the isolates with high and low confidence,

respectively, in agreement with the identification achieved by Sanger sequencing of

housekeeping genes (16S rRNA, hsp65, and rpoB). Thirteen isolates (17.3%) were

identified by Sanger sequencing to the complex level, indicating that these may belong to

uncharacterised species. MALDI-TOF MS approximated low confidence identifications

toward closely related mycobacterial groups, such as the M. avium or M. terrae

complexes. Two isolates were misidentified due to a high similarity between species or

due to the lack of spectra in the database. Our results suggest that MALDI-TOF MS can

be used as an effective alternative for rapid screening of mycobacterial isolates in the

veterinary laboratory and potentially for the detection of newNTM species. In turn, Sanger

sequencing could be implemented as an additional method to improve identifications in

species for which MALDI-TOF MS identification is limited or for further characterisation

of NTM species.
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INTRODUCTION

Mycobacteria are a diverse group of acid-fast Gram-positive
bacilli that include more than 200 species differentiated into five
newly emended genera (1). This group of ubiquitous bacteria can
be found in a wide range of environments, with many species
being important animal and human primary and secondary
pathogens. Although the members of the Mycobacterium
tuberculosis complex (MTBC), causal agents of tuberculosis (TB)
in animals and humans, are probably the most widely studied
mycobacterial agents in veterinary microbiology, other non-
tuberculous mycobacteria (NTM), such asMycobacterium avium
subsp. paratuberculosis (MAP) in ruminants or Mycobacterium
marinum in fish are also very relevant animal pathogens (2, 3).
Importantly, NTM have been isolated from a diverse range of
animals and, not only do they interfere with diagnostic methods
implemented in the eradication and control of TB, but may also
pose a risk for immunocompromised patients (4–6).

Molecular genetic methods greatly improved the capacity
of clinical microbiology laboratories to identify NTM species
with the development of several methods, such as genetic probe
assays, including the INNO-LiPAMycobacteria or the GenoType
Common Mycobacteria assays (7–9). Although these methods
are still used in many laboratories, they are expensive, identify
a limited number of mycobacterial species and misidentify
less prevalent NTM species due to probe cross-reactivity (10).
By these reasons, sequence-based identification methods, such
as Sanger sequencing, have become an alternative for the
identification of mycobacterial species due to their nucleotide-
level resolution as well as flexibility (11, 12). Advanced
procedures based on Whole Genome Sequencing (WGS) have
also been effectively used to identify NTM isolates and could
be very useful for the description of novel NTM species or
epidemiological investigations (13, 14). However, due to the
increased costs and technical and training requirements of WGS,
its implementation in routine diagnosis of NTM is limited. As
a result, many laboratories still use a combination of probes
and Sanger sequencing as a reference method to identify NTM
species (8, 15, 16).

Sanger sequencing is based on the analysis of conserved

genetic regions, mainly the hypervariable region of the 16S rRNA
gene (11, 12, 17), the hypervariable region of the hsp65 gene (18,

19), the rpoB gene (12, 20) or the 16S-23S internal transcribed

spacer (21). Nevertheless, the routine use of sequencing in
the microbiological laboratory is not as straightforward as
it could initially seem for several reasons (11). Firstly, the
ever-increasing number of mycobacterial species, taxonomical
variations and high genetic similarity between species makes
genetic identification a daunting task. In addition, the vast
amount of sequence data in public repositories, whichmay not be
appropriately annotated, and the rarity of certain mycobacterial
species requires special caution when assigning an identification.

The introduction of MALDI-TOF MS in bacterial species
identification has revolutionised clinical microbiology in the last
decade, allowing a cost-effective and rapid identification of many
important human pathogens (22). In the veterinary field, the
application of MALDI-TOF MS has also received great interest

and has been used to identify different veterinary important
microbial pathogens, such as Brucella or Staphylococcus, with
very promising results (23–25).

During many years, mycobacterial species have proven to
be a difficult agent to identify through MALDI-TOF MS,
mainly due to their complex cell wall composition and their
fastidious growth. Since its first implementation in mycobacterial
identification, there have been major advances in the use of
MALDI-TOF MS for the identification of NTM species (26).
In the first place, improvements in extraction protocols have
enhanced the availability and quality of proteins for MALDI-
TOF MS analysis (8, 27, 28). Secondly, an increasing number
of mycobacterial spectra, which are the foundation for MALDI-
TOF MS identification, have become available over the years (26,
29). Nevertheless, several mycobacterial species are still difficult
to identify through proteomic methods, including veterinary
important species, such asM. bovis or members of theM. avium
complex (MAC). In this aspect, several efforts have been made
to tackle these limitations, such as expanding Main Spectra
Profiles (MSPs) of these mycobacteria for MALDI-TOF MS
analyses (30, 31).

There is limited data regarding the general capacity of
MALDI-TOF MS in the identification of NTM isolates in the
veterinary setting, when compared to the information available
in the human clinical practice (30–34). The aim of this study
was to evaluate the use MALDI-TOF MS in the identification
of NTM obtained from different animal species, and compare its
performance against standard genetic methods.

MATERIALS AND METHODS

Sample Selection and Processing
A total of seventy-five (n = 75) isolates were included in
this study; 69 isolates were selected from a collection of
samples obtained from animals (n = 20 species, Table 1)
with suspected mycobacteriosis that were originally submitted
for bacteriological culture during routine diagnostics by
the Mycobacterial Unit of VISAVET Health Surveillance
Centre (years 2011–2015). Six isolates corresponded to
established reference strains and were used as controls (Table 1,
Supplementary Table 1).

All samples were originally considered as suspicious for
tuberculosis and were therefore processed and cultured in
the BSL3 facilities of VISAVET according to standardised
mycobacteriological procedures as described elsewhere (35).
Briefly, tissues were homogenised in sterile distilled water
(Sigma-Aldrich, St. Louis, MO, USA), decontaminated with
0.75% (w/v) hexadecyl pyridinium chloride (Sigma-Aldrich)
and centrifuged. Pellets were then swabbed on Löwenstein-
Jensen and Coletsos slants supplemented with sodium pyruvate
(Difco, Madrid, Spain), and incubated for a maximum of 3
months. When growth was observed, isolated colonies were
analysed using PCR and DVR-spoligotyping in order to detect
the presence of the MTBC (36, 37). Once the presence of
MTBC members was discarded, a loop-full of mycobacterial
culture was inoculated in 15mL of Middlebrook 7H9 liquid
medium, supplemented with sodium pyruvate and oleic albumin
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TABLE 1 | Samples (n = 75) analysed in this study.

N◦ samples Animal species Sample origin

2 Alpaca Lung, lymphnodes

1 American oystercatcher Liver

32 Bovine Lung, lymphnodes

1 Common shelduck Lymphnodes

6 Deer Lymphnodes

1 Domestic goat Lymphnodes

2 Domestic Pig Tissue homogenate, lymph nodes

1 Eurasian griffon Lymphnodes

2 Ferret Lymphnodes, liver, spleen

1 Fox Tissue homogenate

1 Fulvous whistling duck Liver, spleen

1 Giant Wood-Rail Liver

1 Lesser kestrel Lymphnodes

1 Mackerel Necrotic granuloma

2 Malayan tapir Trunk lavage

5 Mountain goat Lymphnodes

1 Orangutan Gastric lavage

1 Raccoon Lymphnodes

6 Reference culture Spanish type culture collection (CECT)

1 Roe Deer Lymphnodes

7 Wild boar Lymphnodes

The relationship between the animal species and the isolates identified within these

species can be found in Supplementary Table 1.

dextrose catalase (OADC) (Becton Dickinson, Franklin Lakes,
NJ, USA), and incubated for up to 30 days. Cultures were visually
inspected every 5, 10, 21, and 30 days and whenmicrobial growth
was visible, 1 and 1.5mL of liquid culture were processed for
proteomic and genetic analysis, respectively.

Protein Extraction and MALDI-TOF MS
Analysis
One mL of Middlebrook 7H9 medium was centrifuged at 15,500
× g for 2min, the supernatant was discarded and the pellet was
resuspended in 300 µL of HPLC-grade water (Sigma-Aldrich, St.
Louis, MO, USA). Culture samples were then heat-inactivated at
100◦C for 30min and, following the addition of 900 µL of 96%
ethanol (Panreac, Castellar del Vallès, Barcelona, Spain), these
were stored overnight at−20◦C.

Samples were centrifuged at 15,500 × g for 2min, the
supernatant was discarded and the pellet was let to air-dry
at room temperature for at least 15min. A small quantity
of 0.5mm glass beads and a volume equal to pellet size of
HPLC-grade acetonitrile (Honeywell FlukaTM, Charlotte, NC,
USA) were added and samples were vortexed for 10min and
sonicated at 40KHz for another 10min on a Ultrasons sonicator
(Selecta, Barcelona, Spain). An equal volume of 70% HPLC-
grade formic acid (Sigma-Aldrich) was added and samples were
centrifuged at 15,500 × g for 2min. One µL of the supernatant
was spotted on a polished steel target plate, let dry at room

temperature and overlaid with one µL of α-cyano-4-hydroxy-
cinnamic acid (HCCA) matrix HPLC grade (Bruker Daltonics,
Billerica, MA, USA). Plates were then analysed on a Bruker
Daltonik UltrafleXtreme MALDI TOF/TOF system (Bruker
Daltonics) and spectra were compared against the Mycobacteria
Library version 3.0 (38). Calibration of the Bruker BioTyper was
performed using the Bruker Bacterial Test (BTS) according to the
manufacturer’s recommendations, and validation was achieved
by running a reference strain of E. coli (ATCC 25922) as well
as with the incorporation of mycobacterial reference strains
(Table 1, Supplementary Table 1).

Final MALDI-TOF MS identifications were based on the
score and consistency of the results. For the Bruker systems,
MALDI-TOF scores higher or equal to 2.0 are required for a
high confidence identification. Nevertheless, due to the biological
features of mycobacteria, previous studies have shown that
lower scores can effectively be used for NTM identification
(15, 26). Therefore, MALDI-TOF scores higher or equal to 1.8
were considered high confidence identifications as described
elsewhere (26) and were used to establish a positive NTM
identification. Low confidence identifications were established
when MALDI-TOF scores were obtained between 1.6 and 1.8,
and non-reliable identifications were set when MALDI scores
were below 1.6. In addition, consistency of the identification was
evaluated by assessing the taxon and the ID score of the first
five results returned by the MALDI-TOF MS. When more than
one taxon was identified with a similar score, the results were
approximated to the most related mycobacterial group. In the
cases in which identifications were not reliable or had a low
confidence score, extractions andMALDI-TOFMS analyses were
repeated. In either case, these low confidence identifications were
not considered for the final identification result.

DNA Extraction and Sanger Sequencing
One and a half (1.5) mL of Middlebrook 7H9 media were
centrifuged at 11,500 × g for 10min. The pellet was washed in
1mL of HPLC-grade water and samples were centrifuged again at
11,500× g for 10min. The pellet was then resuspended in 100µL
of HPLC-grade water and heat-inactivated at 100◦C for 30 min.

For species identification through Sanger sequencing, samples
were analysed following an algorithm designed according to
growth speed in culture and partial 16S rRNA sequence
(Figure 1) (17). The rpoB gene and the hsp65 short fragment were
used to identify rapid-growing and slow-growing mycobacteria,
respectively (19, 20). In the case of M. avium and M.
intracellulare, the hsp65 long fragment was also used for species
and subspecies identification (18). DNA amplicons were sent to
STABvida (Lisbon, Portugal) for Sanger sequencing.

All DNA sequences were manually curated and compared
against the NCBI nucleotide database using the Basic Local
Alignment Search Tool (BLAST). Species identification was
accepted when sequence identity was above 99% for the 16S
rRNA and hsp65 genes, and above 98% for the rpoB gene (11). If
incongruent results were obtained between sequences or against
MALDI-TOF MS identification, the hsp65 short fragment or the
rpoB gene were sequenced in those cases where they were not
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FIGURE 1 | Algorithm describing species identification through Sanger sequencing.

required initially (Figure 1). When sequence identity was low,
identification was limited to the genus or complex level.

RESULTS

From the total number of isolates (n= 75), MALDI-TOFMS was
able to identify 58 isolates (77.3%) with high confidence (score≥
1.8) to the group/species level, and 8 with low confidence (score
between 1.6 and 1.8) (Table 2). The remaining isolates (n = 9)
could not be identified reliably (score < 1.6). One third (n = 25)
of the total number of isolates were identified asM. avium.

The majority of the isolates (n = 62, 82.7%) were identified
with high confidence to the species or subspecies level through
Sanger sequencing (Table 2, Supplementary Table 1). One third
(n = 25) of the total number of isolates were identified as
M. avium subspecies, and could be further differentiated into
M. avium subsp. avium (n = 17) and “M. avium subsp.
hominissuis” (n = 8). The remaining non-M. avium isolates
(n= 37) were identified as other NTM species, withmost of them
corresponding to M. fortuitum (n = 6), M. non-chromogenicum
(n = 4), M. thermoresistibile (n = 4), and M. peregrinum
(n= 3). Thirteen isolates could not be reliably identified to
the species level based on Sanger sequencing, suggesting that
they could possibly represent unknown NTM species. Sequence
identity was below 98% for the complementary sequencing

targets (i.e., hsp65, rpoB or both) for 12 isolates, but the 16S
rRNA sequence was related to the M. avium (n = 8), M.
terrae (n = 2), M. fortuitum (n= 1), or M. simiae (n = 1)
complexes (Supplementary Table 1). An additional isolate could
be classified as M. bourgelatii or M. intermedium based on
16S rRNA and hsp65/rpoB sequences, respectively. However,
when compared to M. intermedium, this isolate presented the
characteristic 12 bp gap ofM. bourgelatii (data not shown).

The ability of the two methods to identify NTM was similar,
since 88% (n= 66) of the isolates were identified by bothmethods
(n= 57) or could not be identified by either (n= 9). In the latter
case, non-reliable identifications obtained by MALDI-TOF MS
corresponded to isolates for which Sanger sequencing could not
provide a clear matching identification. In a similar manner to
sequencing, MALDI-TOF MS approximated the identifications
to closely related groups of species, such as the M. avium or M.
terrae complexes (Supplementary Table 1).

The remaining isolates (n = 9) presented discording
identifications and were evaluated further. One of these isolates
was identified as M. malmesburyense by Sanger sequencing and
as M. novocastrense through MALDI-TOF MS. Four isolates
could be identified with Sanger sequencing but the MALDI-
TOF MS identification had a low confidence score. Despite their
low confidence score, the identification between three of these
isolates agreed with the one obtained through Sanger sequencing,
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TABLE 2 | Species identification comparison between Sanger sequencing and MALDI-TOF MS (v3.0).

Score

Isolate Sanger sequencing ID MALDI-TOF MS ID < 1.6 >1.6 and < 1.8 ≥ 1.8 and < 2.0 >2.0

17 M. avium subsp. avium M. avium 2 4 11

8 ‘M. avium subsp. hominissuis’ M. avium 6* 2

8 M. avium complex M. intracellulare/chimaera group 8

1 Mycobacterium sppa M. intermedium 1

2 M. chitae M. chitae 1 1

1 M. colombiense M. colombiense 1*

1 M. elephantis M. elephantis 1

1 M. engbaekii M. hiberniae/engbaekiib 1

2 M. europaeum M. europaeum 1 1

6 M. fortuitum M. fortuitum 1 5

1 M. fortuitum complex M. fortuitum 1

1 M. intracellulare M. intracellulare/chimaera group 1

1 M. kansasii M. kansasii 1*

1 M. malmesburyense M. novocastrense 1

1 M. neoaurum M. neoaurum 1

4 M. nonchromogenicum M. nonchromogenicum 1 3

1 M. palustre M. palustre 1

3 M. peregrinum M. peregrinum 1 2

2 M. phlei M. phlei 2*

1 M. septicum M. septicum 1

1 M. seoulense M. seoulense 1

1 M. shimoidei M. shimoidei 1

1 M. simiae complex M. interjectumc 1

1 M. smegmatis M. smegmatis 1

1 M. terrae M. terrae 1*

2 M. terrae complex M. hiberniae/engbaekiib 2

4 M. thermoresistibile M. thermoresistibile 4

1 M. vaccae M. vaccae 1*

Sanger sequencing identifications fulfilled the required thresholds depending on the genetic target used: 99% (16S rRNA and hsp65) and 98% (rpoB).
* Includes a single reference strain (n = 6).
aClosely related to M. bourgelatii and M. intermedium.
bM. terrae complex.
cM. simiae complex.

while the fourth isolate (M. engbaekii) could not be appropriately
differentiated from M. hiberniae, a related species from the
M. terrae complex. Finally, four isolates were identified with
low confidence through MALDI-TOF MS but could only be
identified to the complex level by Sanger sequencing.

DISCUSSION

The implementation of MALDI-TOF MS in the identification
of mycobacteria has become an interesting alternative to
genetic methods in human clinical microbiology laboratories.
In veterinary mycobacteriology, MALDI-TOF has proven to
be a reliable identification method of mycobacteria in a study
evaluating 111 NTM isolates obtained from wild boars in
Switzerland (33). In addition, other studies have focused on other
veterinary important mycobacteria such as MAP in different

animal hosts or M. marinum in fish (30, 34). Our study expands
the utility of MALDI-TOF MS characterisation in a diverse array
of animal species (n = 20), with an overall high agreement with
Sanger sequencing.

Sanger sequencing is commonly used as a reference method
for taxonomical identification of mycobacterial species in the
clinical setting (8, 15, 16). However, its implementation is not
without drawbacks due to the taxonomical complexity of the
genus and the high genetic similarity of certain species or
groups, which require the use of several housekeeping targets,
and the lack of updated and curated sequence databases. Efforts
have been made toward the automation of this process with
the development of Open-Source tools for the identification of
NTM species using Sanger sequencing data (12), which could
greatly facilitate the use of this methodology in the future.
In contrast, although WGS allow for a higher resolution than
traditional sequencing of conserved genetic targets and show a
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great potential for the identification of NTM species directly from
samples (14, 39), its increased costs and training requirements
currently limits its implementation as a routine method in many
microbiology laboratories. However, this may change in the
future as WGS becomes more accessible with the development
of simple bioinformatics tools.

MALDI-TOF MS offers a simplified process for NTM
identification based on spectral similarities with a curated MSP
database and reinforced with confidence values, leading to amore
standardised procedure. In our study, high confidence MALDI-
TOFMS scores (≥ 1.8) were used for NTM species identification,
and the majority of the evaluated isolates were identified as
such, indicating a good correlation with the stored MSPs in
the database. A recent publication proposed the threshold for
a high-confidence identification to be set at 2.0 (15). However,
a threshold of 1.8 proved to be sufficient in the context of
this study, since all identifications using this threshold agreed
with the reference genetic method, with one exception (M.
malmesburyense). Nevertheless, further studies including a wider
range of NTM strains from different animal species should be
carried out in the future to assess this threshold. Interestingly,
identifications to the species or complex level could still be
achieved even with lowMALDI-TOF scores (1.6–1.8), indicating
that these could provide valuable information that could be used
by laboratory personnel to fine tune subsequent tests for isolate
identification (15).

From the point of view of cost-effectiveness, MALDI-TOF
MS presents several advantages to Sanger sequencing. Sanger
sequencing requires at least two PCRs per isolate followed by,
at least, two sequencing reactions per target. Therefore, 96 well-
sequencing plates can analyse up to 48 samples per run, which in
turn can take several hours. Furthermore, the obtained sequences
require careful sequence curation and interpretation. In contrast
MALDI-TOF MS requires just one procedure and up to 384
samples can be tested per run in a couple of minutes, allowing for
a much more rapid identification and reduced cost per sample.
Although our study used a liquid culture step from primary
isolation until final identification, good identification results can
also be achieved from primary isolations in solid media (26).

MALDI-TOF cannot effectively discern between certain
closely related NTM species or subspecies of veterinary and
human importance, such asM. intracellulare andM. chimaera or
M. avium subspecies. These species represent an important group
of mycobacteria in veterinary medicine that can be frequently
isolated in cattle and swine (40–42). Their potential interference
with routine animal TB diagnosis and their opportunistic nature
make their identification an important element of eradication
programmes and public health (2, 5, 43–45). Differentiation of
these species can only be achieved through genetic methods,
such as sequencing of the 3’ end of the hsp65 gene, PCR-based
detection of specific Insertion Sequences or WGS approaches
(18, 39, 46). One third of the isolates in our study corresponded
to M. avium subspecies, and we additionally identified one M.
intracellulare-chimaera group isolate. MALDI-TOF confidence
scores in our study were, in general, high for these species,
probably as a result of the large amount of MSPs stored in
current libraries. This suggests that, despite its limit in resolution,

MALDI-TOF MS could be used as a rapid method for initial
screening of M. avium and therefore aid in the subsequent
choice of the appropriate genetic targets for a more thorough
characterisation. Recent efforts in the analysis of MSPs from this
group of bacteria suggest that, with an appropriately curated
database, MALDI-TOF MS identification of these, and other,
challenging species could be achievable in the future (30, 31, 47).
Certainly, MSP analysis for the detection of characteristic peaks
between closely related mycobacteria should be carried out in
the future (48). In addition, the analysis of lipid profiles through
positive-ion MALDI-TOF MS or alternative MS instruments,
such as High Resolution Tandem Mass Spectrometry, have
been recently used to differentiate between closely related
mycobacteria, such as the MTBC and M. abscessus subspecies
(48, 49). Although these studies were carried out in a limited
number of strains, their use in other closely related mycobacteria
could also be an interesting alternative in the future.

Misidentifications and non-reliable identifications are two
important limitations in the implementation of MALDI-TOF
MS in microbiological laboratories (33). This is mainly a result
of a reduced number and variety of MSPs for less prevalent
mycobacterial species in current databases or the absence of
MSPs for unknown NTM species.

Low confidence and non-reliable identifications in our study
were mostly observed in isolates that could not be identified
through Sanger sequencing either. Interestingly, although
MALDI-TOF identifications in these cases are not considered
reliable, they were similar to the ones obtained through Sanger
sequencing. For example, the isolate that was closely related to
M. bourgelatii/intermedium was identified as M. intermedium
by MALDI-TOF MS, and the M. simiae complex isolate was
identified as M. interjectum, a closely related species as seen by
sequencing of 16S rRNA and rpoB genes. This indicates that
MALDI-TOF may also be useful in detecting non-established
NTM species and aid in the selection of complementary methods
for a cost-effective characterisation (50). Further characterisation
of these isolates would be needed to define these species and is
outside of the scope of this publication.

Only one misidentification with a high-confidence score
was observed in our study, which corresponded to M.
malmesburyense, a rare mycobacterial species for which no MSPs
are currently available. In addition to the absence of MSPs, a
limited number of spectra from less prevalent mycobacterial
species (e.g., M. setense) has also been shown to have a negative
effect in MALDI-TOF MS performance (15, 29). The isolation
of rare and unknown NTM species in animal samples in this
study, as well as in the one published by Ghielmetti et al., strongly
indicate that animals contain a large diversity of NTM species
that is not being represented by current nucleotide and MSP
databases, which are mainly focused on human clinical isolates
(24, 33). Furthermore, as more animal and environmental
sources are sampled, there is an increasing need to describe
novel species of mycobacteria for a better classification and
understanding of mycobacterial ecology and taxonomy. Thus,
the addition of MSPs from animal sources could aid in the
identification of less prevalentmycobacterial species and improve
the performance of MALDI-TOFMS identification in the future.
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In conclusion, despite the limited discriminatory power
among certain mycobacterial groups, MALDI-TOF MS may be
a suitable alternative for NTM species identification for several
reasons. Unlike sequencing, in which multiple targets need to
be identified, purified and reprocessed with a sequencing PCR,
MALDI-TOF spectra are readily obtained after the extraction
protocol. In addition, MALDI-TOF steel plates allow for the
simultaneous analysis of a large number of samples, making
this methodology extremely time- and cost-efficient. If adequate
MSP libraries are available, data processing is minimal, and does
not require thorough taxonomic or database research which
could lead to erroneous species identification (11). However,
there is a need to incorporate a larger number of MSPs from
veterinary isolates in the available databases in order to increase
MALDI-TOF performance with samples with a high diversity of
mycobacterial species, such as those originating from animals
or environmental sources. Nevertheless, even in the absence
of curated MSPs, MALDI-TOF can be a powerful tool for the
detection of potentially unknown NTM species. In these cases,
or when closely-related mycobacterial species are detected, the
use of more precise molecular genetic methods could be of use
and refined identification algorithms could significantly improve
identification turnaround times.
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