
INTRODUCTION

How is memory stored in the brain? After many years of re-
search, several researchers have found that memory is stored in 
a brain-wide manner rather than in a single region. Although 
memory acquisition shows a high dependency on hippocampal 
formation, animals with hippocampal lesions experience only 
partial retrograde amnesia, suggesting that long-term memory 
recall, does not depend on the hippocampus [1]. Pavlovian fear 
conditioning paradigm, in which conditioned stimulus (CS) is 
paired with unconditioned stimulus (US) to animals, is commonly 
used behavioral model for the memory system. In this paradigm, 

fear memory ‘recall’ is a term used by researchers to describe the 
behavioral reactions by presenting CS to animals after initial con-
ditioning [2]. Also, the term fear ‘extinction’ refers to the mental 
process underpinning a phenomenon in which animals’ fear reac-
tion decreases following repeated exposure to CS without the US 
[2]. After fear memory acquisition, it is known that the short-term 
memory is ‘consolidated’ into the long-term memory [3]. The me-
dial prefrontal cortex (mPFC) plays a key role in the appropriate 
processing of memory after consolidation. For example, human 
patients with deficits in the mPFC show impaired source memory, 
increased memory interference, and adaptation to new rules [4]. 
Rodent homologue of the human mPFC, including the anterior 
cingulate cortex (ACC), prelimbic cortex (PL) and infralimbic cor-
tex (IL), has been well documented in the context of fear learning 
and memory [5-7].

It has been postulated that memory traces or engrams are stored 
in the form of neural ensembles [8]. Although recent memory 
traces have been extensively studied in the hippocampus, circuits 
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and neural ensembles involved in long-term memory are rela-
tively less understood. Herein, we review studies on the role of 
the mPFC in fear memory circuits and the role of engram cells 
embedded in the mPFC regions. Because the mPFC is involved in 
a wide range of cognitive functions, the exact role of engram cells 
in this region has not been well studied. However, several studies 
have reported that the mPFC itself plays a role in the control of in-
nate fear [9], fear generalization [10-12] and remote fear memory 
[12-17] with axonal projection in amygdala or hippocampal 
formation. Moreover, research suggests that synaptic plasticity be-
tween engram cells underlies fear memory storage [18]. However, 
synaptic plasticity events occurring within the mPFC afferent and 
efferent regions that are correlated to memory states are yet to be 
summarized. In this review, we focused on recent studies reporting 
synaptic plasticity events within the mPFC, in the context of fear 
memory storage and extinction.

ANATOMICAL FEATURES OF mPFC

Traditionally, two major criteria have been used to anatomically 
identify prefrontal cortex in the mammalian brain. First, cytoar-
chitectonic studies have revealed the laminar structure of cortical 
areas. In mammals, the prefrontal cortex shows an “agranular” 
cytoarchitecture, which is supported by a body of evidence that 
these areas lack cortical layer 4–specific molecular markers [19]. 
Although the exact parcellation of the mPFC in rodents is argu-
able, it is generally agreed that there are three major subdivisions of 
the mPFC: the prelimbic cortex (PL), infralimbic cortex (IL), and 
anterior cingulate cortex (ACC). These three subdivisions are dis-
tinguished by their characteristic layer structures [20]. In addition, 
electrophysiological investigation reports that layer II/III neurons 
in the PL and IL show lower excitability than those of layer V/
VI, and layer II/III neurons in the PL show lower excitability than 
their equivalent in the IL [21].

Furthermore, early anatomical studies have found that the fron-
tal cortex can be characterized by projections from the thalamic 
mediodorsal nucleus [22]. Comparison of efferent projections 
between the PL and IL using retrograde tracers revealed that these 
two regions have dramatically distinct projection patterns, sug-
gesting their functions within the fear memory network [23-25]. 
In addition, the ACC, which is a part of the dorsomedial prefrontal 
cortex, shows innervation patterns slightly different from those of 
the PL and IL [26].

In addition to excitatory neurons, a heterogeneous inhibitory 
neuronal composition delineates the mPFC from the surrounding 
brain regions. Especially, IL shows relatively higher SST+ inter-
neuron density to PV+ neuron density compared to surrounding 

regions including PL, in a brain-wide cell-type-specific mapping 
study [27]. Inhibitory interneurons consisting of approximately 
17% mPFC neurons also have an intensive network within this 
region [28]. Monosynaptic viral tracing revealed that PL and IL 
share a similar long-range input pattern to SST+, PV+, and vasoac-
tive intestinal peptide (VIP)+ interneurons [29]. While PV cells 
preferentially target the soma or axon initial segment of pyramidal 
neurons, SST cells project their axons to dendrites to inhibit den-
dritic Ca2+ signaling in the pyramidal neurons [30]. Interestingly, 
somatostatin (SST) interneurons also innervate parvalbumin (PV) 
interneurons within the mPFC, whereas SST+ interneurons in the 
visual cortex do not [31]. 

Recent studies have reported that these interneurons participate 
in learning and memory. In the PL, PV+ cells are known to be 
involved in fear expression [32] or memory consolidation [33], by 
controlling the firing patterns of pyramidal cells directly through 
their projection patterns. Also, SST+ interneurons in the PL were 
shown to have cue-specific activity after memory encoding, and 
that activity reappeared during fear expression, suggesting that 
SST+ neurons actively participate in the fear memory network in 
this region [34]. In addition, during working memory tasks, inhibi-
tion of SST+ cells, but not PV+ cells, impaired hippocampal–pre-
frontal synchrony, suggesting their role in coordinating long-range 
inputs from other regions [35]. In addition, one study showed that 
interneurons in the PL receive excitatory input from the ventral 
hippocampus, thereby contributing to the control of tone respon-
siveness of pyramidal neurons in the PL [36]. Astrocytes and mi-
croglia, which are important non-neuronal cell types in the brain, 
are also known to contribute to long-term memory maintenance 
with their dedicated memory-specific transcriptomic changes [17]. 
In line with this finding, one study showed that astrocytes in CA1 
contribute to communication between CA1 and ACC [37]. Finally, 
a recent study showed that the formation of new myelination by 
the proliferation of oligodendrocyte precursor cells into myelinat-
ing oligodendrocytes is required for remote memory retention in 
the mPFC [38]. These data suggest that the local mPFC local cir-
cuit contributes to learning and memory.

RECRUITMENT OF ACC AND PL AFTER FEAR MEMORY  
FORMATION

It is well known that the early encoding of fear memory depends 
on the hippocampus. However, the systems consolidation theory 
posits that acquired fear memory is gradually reorganized from 
the hippocampus to other brain structures [39]. In this context, the 
input from CA1 to ACC is known to mediate fear memory recall. 
CA1, an important hub in the memory system, has been shown to 
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be involved in memory consolidation by a brain rhythm called a 
sharp-wave ripple. During sleep, when hippocampal sharp-wave 
ripples arise, ACC neurons fire shortly after sharp-ripple activity, 
but not when mice are awake [40]. Although memory-induced 
tight interactions during the awake state were not revealed in this 
study, another study showed that memory-specific interactions 
between these two regions arise in memory recall. Moreover, the 
synchronized pattern between the ACC and CA1 also indicates 
the age of the memory [41].

Frankland et al. [13] showed that reversible ACC inhibition with 
lidocaine was sufficient to impair remote fear memory but not re-
cent memory. Goshen et al. [42] also showed that remote memory 
recall can be impaired by optogenetic inhibition of ACC. In sup-
port of this, another study also showed that ACC mediates gener-
alized remote fear memory expression, by showing that ACC neu-
ral activity is required for the expression of fear response in a novel 
context, but not the fear-associated one [12]. After the recall of a 
memory, it has been postulated that memory transiently becomes 
“labile” and can be modified before it is reconsolidated. However, 
anisomycin treatment to block de novo protein synthesis within 
the ACC alone did not impair remote fear memory [43], suggest-
ing that the storage of remote fear memory does not rely solely on 
ACC. 

Inhibition studies have suggested the role of the prelimbic and 
infralimbic cortices in remote fear memory. Sierra-Mercado et al. 
[44] showed that the vmPFC, including PL and IL, inhibition with 
muscimol selectively disrupted remote fear memory but not recent 
memory. Further studies have attempted to dissociate the roles of 
the prelimbic and infralimbic cortices. First, the role of the PL in 
fear memory was suggested by the finding that PL inactivation 
with tetrodotoxin during both contextual and auditory fear condi-
tioning resulted in lowered freezing levels on the conditioning day, 
but not on the following day. In this study, the inactivation of PL 
during the retrieval session resulted in a reduced freezing level of 

the conditioned stimulus (CS) cue. However, PL inactivation did 
not affect innate fear expression, suggesting that this region plays a 
role in the expression of learned fear memory [45]. In addition, an 
early study showed that PL neurons show sustained CS response 
after conditioning, and their activity pattern is correlated with the 
fear state [46]. In summary, PL activity is necessary for remote fear 
memory expression, but not for recent or innate expression.

PL and basolateral amygdala (BLA) are known for encoding and 
expression of fear response. Although projection studies suggest 
that the BLA projects to both the PL and IL, differential projections 
toward these two regions have been observed [23]. Whereas layer 
II corticoamygdalar projection neurons in the PL are preferentially 
innervated by the BLA compared to those of the IL, layer III/V 
PAG (periaqueductal gray)-projecting neurons received more in-
puts from the BLA over those neurons of the PL, which is in agree-
ment with the report that BLA inactivation led to a decrease in 
PL neuron activities [36]. In addition, maturation of fear memory 
recruits the connection between the PL and the PVT. Although the 
PL directly innervates the BLA and optogenetic inhibition of PL 
axons in the BLA or PL somata impaired fear recall in recent time-
points, optogenetic inhibition of the PL neurons was not sufficient 
to impair the fear response at remote timepoints, whereas silenc-
ing prelimbic neurons innervating the PVT impaired fear recall 
at remote timepoints, but not in recent ones [47]. Moreover, PVT-
projecting PL neurons showed higher c-fos density than non-con-
ditioned animals, suggesting that PL to PVT connectivity serves as 
a fear memory–specific circuit [47]. Laminar-specific reorganiza-
tion of the prelimbic circuit involved in fear retrieval has also been 
reported. PL neurons projecting to the amygdala, residing in layer 
V, showed higher c-fos activity at 2 hours after fear conditioning, 
whereas layer VI PVT-projecting neurons showed higher c-fos 
density only at 4 days after conditioning [48]. In summary, while 
the ACC contributes to fear memory expression by communicat-
ing with the hippocampal formation, the PL is involved in storing 

Hippo-
campus

BLA

PVT

PL

ACC

MEC

Fig. 1. Functional network of 
remote fear memory. Active re-
gions during the storage of fear 
memory include cortical (blue 
boxes) and subcortical (blue 
circles) regions. Arrows indicate 
functional projection of each re-
gion. Dotted arrow indicates that 
projection is only active at recent 
time point. ACC, anterior cingu-
late cortex; PL, prelimbic region 
of the medial prefrontal cortex; 
PVT, paraventricular thalamus; 
MEC, medial entorhinal cortex; 
BLA, basolateral amygdala.
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and expressing remote fear memory (Fig. 1).
While the results of inhibition studies suggest that subregions of 

the mPFC contribute to the fear memory acquisition stage, a grow-
ing body of research suggests that neurons in these regions exhibit 
several types of plasticity. It is well known that temporally elevated 
neuronal excitability is important for neurons to be allocated and 
incorporated into an engram [49, 50]. Prelimbic neurons show an 
increased and sustained conditioned response in the conditioned 
tone, and higher excitability of prelimbic neurons was positively 
correlated with freezing behavior during fear recall and extinction 
failure [46]. Information from the hippocampus and amygdala, 
which innervate PL and fear-induced neuromodulatory inputs, is 
proposed to underly increase of the excitability of PL [51]. Further, 
the storage of fear memory in the PL requires contextual informa-
tion from the MEC layer Va, because eArchT-mediated MEC layer 
V terminal inhibition in the PL resulted in a remote fear memory 
deficit, but not a recent one [52].

Notably, immediate early gene (IEG) studies also support the 
differential roles of the two regions. In the case of PL, studies show 
consistent results that fear memory recall induces fos activity in 
the PL. An early study using a CaMKII (Ca2+-calmodulin depen-
dent kinase II) mutant mouse showed a gradual increase in fos 
induction in the ACC, PL, and IL as a function of time between 
fear memory acquisition and retention [13]. In addition, network 
analysis of brain-wide global c-fos activity showed that upregulat-
ed PL fos activity was associated with remote memory-associated 
fos network [53]. Similarly, a study conducted by Johannes Gräff 
showed higher c-fos induction in PL with remote fear recall [54].

ROLE OF THE IL IN FEAR MEMORY EXTINCTION

Compared with studies using the fear retrieval paradigm focus-
ing on the prelimbic cortices, reports using the extinction para-
digm have shown that infralimbic cortex, which lies under the PL, 
participates in the extinction of fear memory. Several inhibition 
studies have attempted to reveal the exact role of IL in fear ex-
tinction. Inactivation of IL with muscimol and lidocaine before 
extinction learning was sufficient to impair the consolidation of 
extinction learning [55, 56]. Finally, treatment with the protein 
synthesis inhibitor anisomycin before extinction training affected 
the reconsolidation of extinction training and susceptibility to ex-
tinction training [56, 57]. 

With electrical microstimulation, one study showed that, in 
contrast to PL microstimulation which increased fear expression 
and decreased the effect of extinction training, rats underwent IL 
microstimulation showed accelerated extinction training [58]. In 
addition, one study revealed that IL neurons projecting to BLA are 

required for consolidation of fear extinction memory [59], sug-
gesting that IL region is required for fear extinction. Optogenetic 
activation of IL within the context of fear conditioning also en-
hances effect of extinction training [60]. Furthermore, it has been 
shown that recall of fear extinction memory increases excitability 
of IL neurons temporally [61-63]. These studies suggest that the 
neuronal activity of IL during extinction training plays a key role 
in extinguishing previously learned fear response. Interestingly, 
it is reported that layer V/VI neurons in the IL receive excitatory 
input from layer V/VI neurons of the PL during extinction train-
ing [64]. In addition, synchronization of local field potential (LFP) 
in the fast gamma frequency between the PL and IL is enhanced 
during extinction [65]. Inhibition of the connection between PL 
and IL impaired the updating of previous association in extinction 
training [66]. All these results suggest that the interaction between 
the IL and PL might be important during extinction. 

Similar to the PL, the IL circuit mediating extinction seems to 
undergo a time-dependent shift. Although IL itself participates in 
fear extinction learning at both recent and remote time points [56], 
a recent report showed that extinction of remote memory recruits 
different neurons compared to recent ones. Among the impor-
tant outputs of the IL are the nucleus reuniens (NRe) and BLA. 
Although extinction training recruits BLA-projecting IL neurons 
[59], the extinction of remote fear memory did not recruit these 
neurons. Instead, IL neurons projecting to the NRe, which also 
have a strong projection to the BLA, were gradually recruited [67]. 
In summary, these reports show that increased activity in the IL is 
reflected in downstream regions that regulate extinguishing previ-
ously formed fear memory.

In addition to the PL, IL neurons also project to the PVT, and 
the function of this connectivity was systemically questioned by 
an experiment similar to that performed by Do Monte and their 
colleagues. When they labeled IL neurons projecting to the PVT 
through retrobeads, they found an increase in c-fos expression in 
those neurons during extinction retrieval and reported that ex-
tinction memory was not recalled when they chemogenetically in-
hibited IL projection in the PVT. Seven days after extinction train-
ing, optogenetic inhibition of IL projections in the PVT reversed 
the effect of chemogenetic activation of the PVT to the central 
amygdala (CeA), which lowered the freezing level during retrieval, 
suggesting that IL projection to the PVT mediates extinction recall 
[68]. PVT projection to PL is known to play a role in fear response 
[69]. Although PVT projects to IL more extensively than to PL, 
roles of axonal projection of PVT to IL in various fear memory 
stages are yet to be discovered. In summary, IL orchestrates extinc-
tion of fear memory with projection to PVT and BLA, which are 
known to be involved in fear response of animal (Fig. 2).
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SYNAPTIC PLASTICITY INDUCED BY FEAR MEMORY  
CONSOLIDATION

Neuronal activity can induce several types of plasticity in the 
brain, and the Ca2+-dependent signal cascade from the spine is 
known to be a key mechanism [70]. Within the spine, NMDA (N-
methyl D-aspartate) receptor activation can lead to an influx of 
Ca2+ ions into postsynaptic neurons and activate transcription of 
IEGs, which are transcription factors that mediate cellular func-
tions [71]. Within the hippocampus, GluN2A subunit-containing 
NMDAR is required for fear memory formation [72]. Whereas 
both GluN2A and GluN2B subunits are involved in long-term 
potentiation (LTP) induction in the ACC, GluN2B subunit-con-
taining NMDAR function is required for early acquisition of fear 
memory, as microinjection of a GluN2B subunit antagonist Ro25-
6981 in the ACC impaired contextual fear memory recall in mice 
[73]. 

It is well known that protein kinase Mζ (PKMζ) contributes to 
long-term potentiation [74], memory persistence [75], and chronic 
pain, another critical function of mPFC [76, 77]. Within the 
mPFC, prelimbic PKMζ overexpression leads to enhancement of 
long-term, but not short-term, fear memory [78]. Furthermore, a 
recent study reported that PKC and PKMζ in the PL are necessary 
for long-term memory reconsolidation and persistence, respec-

tively [79]. Similarly, it is known that PKMζ and CP-AMPAR are 
required for long-term synaptic enhancement in ACC [80].

Structural changes initiated by neuronal activity are structural 
changes in the spines. In the ACC, fear conditioning increased 
spine density in layer II/III pyramidal neurons compared with 
control animals, and these effects lasted over 49 days (Table 1) [81]. 
A similar increase in the spine density of engram cells, which were 
labeled after fear conditioning, was observed in the PL (Table 1) 
[52]. Recently, one study showed that fear-activated CA1 engram 
cells had increased relative spine density connected with CA3 
engram cells [18]. Unlike spine density occurring in the CA3-CA1 
circuit, it is noteworthy that an increase in spine density in the 
ACC was not observed in the recent time window, which is consis-
tent with inhibition studies [15]. One of the molecular mediators 
of spine density within the PL is a molecular motor protein (KIFs). 
In this study, KIF3B was upregulated 1 hour after fear condition-
ing, and shRNA-mediated knockdown of KIF3B led to an increase 
in spine density [82].

An increase in spine density suggests that prefrontal neurons 
are more responsive to CS cues. Simultaneously, efferent from the 
prefrontal cortex also undergoes strengthening, which can rein-
force signals toward downstream regions underlying fear-related 
behavior. PL sends dense projection to paraventricular nucleus of 
the thalamus (PVT), and inhibition of PL-PVT connectivity at a 

Table 1. Dendritic spine dynamics of different mPFC regions’ pyramidal neurons during different memory processes

Region Layer Memory stage Spine density Spine morphology Reference

ACC II/III Consolidation Increased ? [15]
V/VI Consolidation Baseline ? [81]
II/III Consolidation Increased Enlarged [81, 93]
II/III Extinction Baseline Sustained [93]

PL - Consolidation Increased ? [52]
V Extinction Decreased ? [94]

IL II/III Consolidation Increased Increased [93]
II/III Extinction Sustained Baseline [93]

Hippo-
campus

BLA

NRe
PVT

IL

PL layer 
V/VI

Fig. 2. Functional network of 
fear memory extinction. Active 
regions during the extinction 
of fear memory are indicated in 
colored circles and boxes. Arrows 
indicate functional projection of 
each region. Dotted arrow indi-
cates that projection is only active 
at recent timepoint. PL, prelimbic 
region of the medial prefrontal 
cortex; IL, infralimbic region 
of the medial prefrontal cortex; 
PVT, paraventricular thalamus; 
BLA, basolateral amygdala; NRe, 
nucleus reuniens.
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remote time point impairs retrieval of fear memory [47].
In addition to plasticity at the dendrite level, other studies have 

suggested that presynaptic plasticity occurs within PFC regions. 
Within the ACC and infralimbic cortices, elevated GAP-43 
(Growth Associated Protein 43) levels were observed, as well as c-
fos [83]. Recent advances in genetics enabled genetic access of spe-
cific neurons. The Targeted Recombination in Active Populations 
(TRAP) system utilizes intrinsic IEG promoters to express Cre 
recombinase-dependent genes following neuronal activity under 
tamoxifen administration [84]. RNA sequencing of ACC TRAPed 
cells revealed that genes involved in membrane fusion are associ-
ated with long-term fear memory maintenance [17]. 

Long-term potentiation, where synapse function is facilitated 
for a long time, is known to underlie several memory functions, as 
well as in the engram. High-frequency stimulation results in LFP 
(local field potential) potentiation within the prelimbic region of 
rats [85]. Long-term potentiation of the hippocampus–mPFC 
pathway did not last for more than 1 week by HFS (high-frequency 
stimulation) or by exposing rats to enriched environments [86]. 
One interesting study showed that learning new rules was facili-
tated by long-term depression, showing that potentiated ventral 
hippocampal input to ACC carries information of learned rules, 
and updating internal rules requires “resetting” previous informa-
tion [87].

SYNAPTIC PLASTICITY INDUCED BY FEAR EXTINCTION

As suggested by region-level studies, it has been shown that syn-
aptic plasticity also plays a role in extinction of acquired fear mem-
ory. By stimulating mediodorsal thalamic axons that delineate the 
prefrontal cortex from the surrounding cortices, Herry and Garcia 
[62] enabled in vivo long-term depression (LTD) and long-term 
potentiation (LTP) in the mPFC. Low-frequency stimulation of 
those axons was associated with fear memory to be resistant to 
extinction training, and high-frequency stimulation 1 h before ex-
tinction training led to higher maintenance of extinction memory.

NMDA-dependent Ca2+ influx is important for synaptic plastic-
ity. NMDA receptor function in the mPFC has also been studied. 
With viral administration of Cre recombinase and a mouse line 
in which Grin1 was knocked out by Cre expression, researchers 
achieved mPFC excitatory neuron-specific knockout (KO) of 
Grin1 [88]. These mPFC-NR1 KO mice showed impaired audi-
tory fear extinction, and treatment with 3-(2-carboxypiperazin-
4-yl)propyl-1-phosphonic acid (CPP), the NMDAR antagonist, 
into the ventral mPFC regions impaired the consolidation of 
extinction training [89]. In summary, NMDA-dependent synaptic 
plasticity events within the IL may underlie fear extinction. One 

of the candidate regions involved in the modification of NMDAR 
currents is the ventral hippocampus, which may send contextual 
information to the IL [90]. In a study by Soler-Cedeño et al. [90], 
NMDA current by the ventral hippocampus (vHP) afferents 
within the IL was correlated with freezing levels. 

Extinction training has been shown to influence the density 
[91] and morphology [92] of the dendritic spine in neurons in the 
fear memory system. Several studies showed that extinction also 
induces structural changes in the mPFC regions. After extinction 
training, structural changes in ACC and IL neurons were reversed 
in a complex manner. Where extinction training affected only 
spine density, but not spine size, increase induced by fear acquisi-
tion in the ACC, IL neurons still showed a higher spine density 
than that in pseudo-conditioned animals. However, the eleva-
tion of spine size of IL neurons returned to the level observed in 
pseudo-conditioned mice [93]. In the PL, it is reported that apical 
dendrites of pyramidal neurons showed decreased spine density in 
animals underwent extinction training compared to no extinction 
group (Table 1) [94].

Recent studies suggest that several brain areas participating in 
remote memory systems, including the mPFC, undergo a “transi-
tion state” between the reconsolidation–extinction stage. In this 
study, ERK phosphorylation, which is required for fear memory 
reconsolidation in the amygdala [95], was observed in the mPFC 
during the extinction stage, whereas CREB, a downstream target 
of phosphorylated ERK, was observed in both the reconsolida-
tion and extinction stages. Interestingly, between the two stages 
existed a transition phase, where ERK and CREB phosphorylation 
was downregulated to the basal level, suggesting the occurrence of 
“turning off ” of molecular signatures in the reconsolidation stage 
[96].

FEAR MEMORY ENGRAM IN THE mPFC

Many engram studies have focused on several regions that are 
required during memory formation, such as the hippocampal 
formation. PL was an early target of engram study, for inhibition 
studies show that inhibition of fear learning-activated neurons in 
this region during fear recall decreased the freezing level of mice 
only during remote recall [52]. As discussed earlier, spine density 
may explain this finding. In recent times, these neurons have not 
shown increased spine density, which increases with time. In addi-
tion, these neurons were reactivated during remote recall, support-
ing the idea that this ensemble contains actual engram cells [52]. 
Maturation of engram cells in the prefrontal cortex was further 
questioned in a recent study by the Liqun Luo group [16]. In their 
study, they found that 14-day-old fear memory was related to the 
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recruitment of PL engram cell-dependent fos expression levels in 
cortical areas. Taking advantage of TRAPing putative engram cells, 
Chen et al. [17] screened ACC engram cells at a remote time point, 
as discussed above. By combining single-cell RNA sequencing 
(scRNA-seq), they screened for differentially expressed genes spe-
cific to fear memory. Although this study did not show behavioral 
data on whether TRAPed neurons are necessary or sufficient for 
fear-related behavior, genetic access to engram cells will help un-
derstand engram-specific molecular programs [17]. Finally, among 
other regions, IL neurons that were activated during remote recall 
were reactivated during extinction training, as suggested by IEG 
expression [97]. However, how molecular and structural properties 
of engram cells, compared to surrounding mPFC neurons is still 
missing (Table 1). Future research is needed to reveal IL engram-
specific molecular changes underlying fear memory formation 
and extinction.

CONCLUSION

In this review, we summarize findings on how the mPFC con-
tributes to fear memory. Anatomical studies and intraregional 
connectivity patterns show that the mPFC has a unique niche to 
modulate the fear response, with connection to the hippocampal 
area and amygdala. Surprisingly, non-neuronal cells, including oli-
godendrocytes, astrocytes, and microglial cells also participate in 
consolidating and maintaining fear memory. 

Alongside these results, reports indicate that mPFC neurons 
show increased responsiveness to fear-related cues at remote time 
points compared to recent ones, indicating that slow and long-last-
ing changes may contribute to the consolidation of fear memory, 
thereby shifting fear memories from hippocampus-dependent to 
fewer dependent ones. Structural changes on neurons in the ACC 
and the PL might underlie consolidation procedure. In line with 
this, studies on IEG expression suggest that transiently activated 
neuronal ensembles or engram cells in those areas gradually ma-
ture to increase their influence on remote fear memory networks 
[8, 52]. 

Extinction training is an important mental procedure for an 
animal to properly adapt to the environment [2]. Behavioral re-
sults from lesion study or inhibition study suggest that the IL is 
required for the extinction of consolidated fear memory. Similar 
to the structural changes following memory consolidation, extinc-
tion training also influences structure of IL neurons [93]. Network 
analysis of c-fos activation pattern following extinction shows that 
the IL is a functional hub in the brainwide network of fear extinc-
tion [54]. 

Many studies indicate a functional shift of the mPFC circuit 

in remote memories [16, 47, 48] and extinction [67]. To date, the 
mechanism underlying this shift is unknown. Silent engram hy-
pothesis posits that time-dependent maturation of engram cells 
makes ‘silent’ engram active [39, 52]. Structural changes in engram 
cells, including spine density, are reported to be altered in engram 
cells of the PL [52]. However, it is still unknown how structural 
alterations, particularly in the engram cells in three subregions of 
the mPFC, are linked to memory states. Future studies should re-
veal the molecular profiles and structural plasticity of engram cells 
at various memory stages.
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