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Abstract

Motivation: Epigenome-wide association studies can provide novel insights into the regulation of

genes involved in traits and diseases. The rapid emergence of bisulfite-sequencing technologies

enables performing such genome-wide studies at the resolution of single nucleotides. However,

analysis of data produced by bisulfite-sequencing poses statistical challenges owing to low and un-

even sequencing depth, as well as the presence of confounding factors. The recently introduced

Mixed model Association for Count data via data AUgmentation (MACAU) can address these chal-

lenges via a generalized linear mixed model when confounding can be encoded via a single

variance component. However, MACAU cannot be used in the presence of multiple variance com-

ponents. Additionally, MACAU uses a computationally expensive Markov Chain Monte Carlo

(MCMC) procedure, which cannot directly approximate the model likelihood.

Results: We present a new method, Mixed model Association via a Laplace ApproXimation

(MALAX), that is more computationally efficient than MACAU and allows to model multiple vari-

ance components. MALAX uses a Laplace approximation rather than MCMC based approxima-

tions, which enables to directly approximate the model likelihood. Through an extensive analysis

of simulated and real data, we demonstrate that MALAX successfully addresses statistical chal-

lenges introduced by bisulfite-sequencing while controlling for complex sources of confounding,

and can be over 50% faster than the state of the art.

Availability and Implementation: The full source code of MALAX is available at https://github.com/

omerwe/MALAX.

Contact: omerw@cs.technion.ac.il or ehalperin@cs.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, epigenetic variation has proven to be an important

factor in many traits and diseases (Bird, 2007). One of the most prom-

inent sources of epigenetic variation is differential DNA methylation

(Jones, 2012). Currently, the predominant technology for measuring

methylation levels is based on methylation arrays, which can probe a

specific list of sites. However, the recently emerging bisulfite-sequenc-

ing technology enables measuring methylation levels across the entire

genome (Cokus et al., 2008). In spite of the clear advantages, testing

for associations between methylation patterns and phenotypes via

bisulfite-sequencing data is hindered by several challenges.

The main challenge in the analysis of bisulfite-sequencing data is

their typically low and uneven sequencing depth. Specifically, the

proportion of the number of methylated reads to the total number

of reads is an unreliable measure of the true methylation level, when

the total number of reads is small. Consequently, naive application

of regression models for such data leads to loss of power and to

spurious results (Sun et al., 2014). To circumvent this difficulty, sev-

eral methods proposed treating the phenotype as an explanatory

variable and the methylation sites as beta-binomial (BB) distributed

response variables (Dolzhenko and Smith, 2014; Feng et al., 2014;

Sun et al., 2014). The use of a BB distribution accounts for both
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the binomial nature of the methylation levels and for their ten-

dency to be highly overdispersed relative to a standard binomial

distribution.

Although the aforementioned methods successfully account for

independent overdispersion, methylation counts of different individ-

uals are often correlated owing to confounding factors such as popu-

lation structure, cryptic relatedness or batch effects in the data (Lea

et al., 2015). Such confounding factors must be accounted for to

prevent spurious findings. Linear mixed models (LMMs) are often

used to control for confounding in genetic studies (Yang et al.,

2014), but similarly to other regression models, LMMs suffer from

loss of power and spurious results in the presence of bisulfite-

sequencing data (Lea et al., 2015). To address this challenge, Mixed

model Association for Count data via data AUgmentation

(MACAU) (Lea et al., 2015) combines the idea of treating methyla-

tion sites as response variables, with a generalized linear mixed

model (GLMM) that can control for confounding.

A severe limitation of GLMMs is that numerical likelihood

evaluation is computationally infeasible in typical settings. To over-

come this limitation, MACAU assigns a prior distribution to the

model parameters and then estimates their posterior distribution via

MCMC. The posterior mean and variance estimates of the effect of

the phenotype on a certain site are then used to test for association,

by treating them as maximum likelihood estimates (MLEs) and

using them in a Wald test context.

Although MACAU addresses the computational infeasibility

limitation, the proposed MCMC approach suffers from two caveats.

First and foremost, MACAU cannot be used in the presence of mul-

tiple variance components, because it uses an approximation that

specifically exploits the structure of its probabilistic model when

there is only a single variance component (in addition to the vari-

ance component associated with the identity matrix). In recent years

it has been shown that it is often beneficial to use multiple variance

components to control for multiple sources of confounding. For ex-

ample, Widmer et al. (2014) suggested using two variance compo-

nents to improve the model fit; Chen et al. (2016) used three

variance components to control for genetic relatedness as well as

household and block group membership; Cohen et al. (2016) used

two variance components to control for both genetic relatedness and

for experimental variability; Powell et al. (2013) used two variance

components corresponding to additive and dominance effects. In the

context of Epigenome-wide association studies (EWASs), it can be

beneficial to control for genetic similarity as well as methylation

similarity, which can for example capture confounding due to cell

type composition (Zou et al., 2014).

A second caveat of the proposed MCMC approach is the need to

carry out convergence diagnostics and fine-tune many parameters,

which hinders the use of MCMC methods in practice.

Here we present Mixed model Association via a Laplace

ApproXimation (MALAX), which directly approximates the likeli-

hood of the GLMM used by MACAU via a Laplace approximation

(Rasmussen and Williams, 2006). Briefly, MALAX approximates

the conditional distribution of the logit of the methylation levels

given the data as a multivariate normal distribution, by using a se-

cond order Taylor expansion. This approximation enables a fast

analytical approximation of the MLEs of all parameters, allowing

MALAX to successfully address the caveats above: MALAX can be

used with multiple variance components, it does not assume the ex-

istence of a prior distribution of the model parameters, and it does

not require parameter fine-tuning. Additionally, MALAX can be

over 50% faster than the state of the art.

In order to evaluate MALAX we carry out extensive simulations

of studies with diverse sources of confounding. We additionally

demonstrate the advantages of MALAX in an analysis of 50 ba-

boons with multiple variance components, which was not possible

using previous methods. Our simulations and real data analysis indi-

cate that MALAX has high power to discover phenotype-epigenetic

associations, while controlling for diverse sources of confounding.

2 Materials and methods

2.1 Methods overview
We begin by providing an overview of association testing in the

presence of bisulfite-sequencing data. Consider a dataset of n indi-

viduals with measured phenotypes, covariates, read counts and

methylated read counts. We are interested in testing the null hypoth-

esis that the proportion of methylated reads at site j is independent

of the phenotype.

A naive approach is to treat the observed proportion of methy-

lated reads at site j as an additional covariate and test for associ-

ation between this covariate and the phenotype via a regression

model. Specifically, assuming a quantitative phenotype and denoting

x ¼ ½x1; . . . ;xn�T as a vector of observed phenotypes, yj ¼ ½yj
1; . . . ; yj

n�
T

and r j ¼ ½rj
1; . . . ; rj

n�
T as vectors with the number of methylated

reads and the total number of reads for site j, respectively, and

W ¼ ½w1; . . . ;wn�T as a matrix of covariates including an intercept,

(where each element wi is a vector of c covariates for individual i), a

naive regression model is defined as follows:

x ¼ aþ yj=r j
� �

bþ �: (1)

Here, � � N 0; r2
e I

� �
is a vector of independent normally distributed

residuals with variance r2
e , yj=r j
� �

¼ ½yj
1=r

j
1; . . . ; yj

n=r
j
n�

T is a vector

of methylation levels, a ¼ ½a1; . . . ; ac�T is a vector of fixed effects,

and b is the fixed effect of the methylation level. Association testing

amounts to testing the null hypothesis H0 : b ¼ 0. The above model

can be extended to account for complex sources of confounding by

using a LMM, which consists of changing the distribution of � to

� � Nð0;
PV

v¼1 r2
vKv þ r2

e IÞ, where Kv is an n � n matrix describing

the effect of the vth source of confounding, and r2
v is the vth vari-

ance component.

Unfortunately, the observed proportions encoded in the vector

yj=r j are unreliable estimators of the true proportions when r j con-

tains small numbers, which can in turn lead to loss of power and to

spurious results (Lea et al., 2015). A common solution is to treat the

phenotype as a covariate and the observed number of reads as a re-

sponse variable, which enables to explicitly model the binomial na-

ture of the methylation levels. We now present the statistical model

of MALAX and MACAU, which adopts this approach in the frame-

work of a GLMM.

2.2 Statistical model
MALAX models the distribution of yj

i conditional on all the other

variables via a binomial GLMM as follows:

yj
i j r

j
i; xi;wi � Bin rj

i;p
j
i

� �
pj

i ¼ 1þ exp �lið Þð Þ�1

l � N Waþ xb;
PV

v¼1 r2
vKv þ r2

e I
� �

:

(2)

Here, pj
i is the methylation probability of a probe coming from site j

in individual i, and l ¼ ½l1; . . . ; ln�T is the vector of the logits of these
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probabilities. The variance component r2
e accounts for independent

over-dispersion, which describes the observation that the variance of

methylation levels across different individuals is often much larger

than expected under a binomial model.

A natural interpretation of this model is that every individual i is

associated with a latent random variable li which is affected by her

covariates and genetic variants, such that larger values of li lead to

higher methylation levels. In this respect, the model is similar to the

well-known liability threshold model often employed in case-control

studies (Weissbrod et al., 2015), wherein every individual is associ-

ated with a latent liability value. If Kv is a matrix of inner-products

of normalized genetic vectors, it encodes the assumption that genetic

variants exert a linear effect on li, similarly to the assumption often

employed in standard LMMs.

Association testing consists of testing the null hypothesis

H0 : b ¼ 0, and can be carried out via a Wald test, which requires

computing the MLE of the model parameters. The log likelihood

function is given by:

‘ a; b; r2
1; . . . ; r2

V ; r
2
e

� �
¼ log

ð
P lð Þ

Yn

i¼1
P yj

i j li; r
j
i

� �
dl; (3)

where we omitted conditioning l on the observed variables and on

the model parameters for brevity. Equation (3) demonstrates that

likelihood evaluation requires numerically evaluating an n-dimen-

sional integral, which scales exponentially with n when using state

of the art algorithms, such as adaptive Gauss-Kronrod quadrature

(Kahaner et al., 1989). To circumvent this difficulty, MACAU

adopts a Bayesian framework by first assigning a prior distribution

to the fixed effects and variance components, and then sampling

parameter values from their posterior distribution. In contrast,

MALAX does not assume that the parameters have a prior distribu-

tion, and instead directly approximates the likelihood via a Laplace

approximation.

2.3 Laplace approximation
The underlying idea behind MALAX is that the conditional density

P l jx;W ; yj; r j
� �

can be approximated to follow a multivariate

Gaussian via a second order Taylor expansion. Under this approxi-

mation, the log likelihood can be approximated as follows:

‘ a; b; r2
1; . . . ; r2

V ; r
2
e

� �
�

�1

2
bl �m
� �T

r log P yjjl
� �

j
l¼bl

� �
� 1

2
log jGAj þ log P yjjbl� �

:
(4)

Here, bl ¼ argmaxlP l j x;W ; yj; r j
� �

; G ¼
PV

v¼1 r2
vKv þ r2

e I is the

overall covariance matrix, m ¼ a is the mean of l, r log P yjjl
� �

j
l¼bl is

the gradient of log P yjjl
� �

with respect to l, evaluated at l ¼ bl , and A

¢�rr log P l jx;W ; yj; r j
� �

j
l¼bl is the Hessian of the negative loga-

rithm of the conditional density of l with respect to l, evaluated at

l ¼ bl .
A brief sketch of the derivation of Equation (4) is now provided,

with a longer description available in (Rasmussen and Williams,

2006). First, we apply a second order Taylor expansion to the loga-

rithm of P l; yj jx;W ; r j
� �

aroundbl as follows:

log P l; yj j x;W ; r j
� �

� log P l ¼ bl ; yj j x;W ; r j
� �

� 1

2
l �bl� �T

A l �bl� �
:

(5)

Using this approximation, the log likelihood can be approximated

analytically as follows:

‘ a; b; r2
1; . . . ; r2

V ; r
2
e

� �
¼ log P yjjx;W ; r j

� �
� log ½P l ¼ bl ; yjjx;W ; r j

� � Ð
exp �1

2
l �bl� �T

A l �bl� �� �
dl�

¼ log ½P l ¼ bl ; yjjx;W ; r j
� �

2pð Þn=2jAj
�

1

2�

¼ �1

2
bl �m
� �T

G�1 bl �m
� �

� 1

2
log jGAj þ log P yjjbl� �

¼ �1

2
bl �m
� �T

r log P yjjl
� �

j
l¼bl � 1

2
log jGAj þ log P yjjbl� �

:

(6)

The second equality can be verified by noting that the integral is equal

to the reciprocal of the normalizing constant of a multivariate normal

distribution with mean vector bl and covariance matrix A�1. The third

equality is derived by using the definition of P l ¼ bl ; yjjx;W ; r j
� �

and

some algebra. The fourth equality uses the following equation:

r log P l; yjjx;W ; r j
� �

¼ r log P yjjl
� �

�G�1 l �mð Þ; (7)

and the fact that the above equation is equal to 0 by definition when

l ¼ bl .
The computation of bl can be performed via Newton–Raphson it-

erations, which require inverting the Hessian of log P l; yjjx;W ; r j
� �

with respect to l. Additionally, the likelihood approximation re-

quires evaluating the determinant of the matrix AG. Both operations

scale cubically with n under standard implementations. Hence, the

computational complexity of the algorithm is O n3
� �

. The number of

cubic operations required for each methylation site depends on the

number of iterations required for convergence of the Newton-

Raphson algorithm and of the optimization scheme, and was typic-

ally around 50 in our implementation.

2.4 Testing for association
MALAX tests for association between a phenotype vector x and a

vector of methylation counts yj by attempting to reject the null hy-

pothesis H0 : b ¼ 0 via a Wald test. The test statistic is given by

T ¼ b̂
2
=var b̂

� �
, where b̂ is the MLE of b, and asymptotically fol-

lows a v2 distribution with one degree of freedom under the null hy-

pothesis. MALAX estimates var b̂
� �

via the diagonal entry

corresponding to b in the inverse of the Hessian of the log likeli-

hood. MALAX approximates the Hessian via finite differences.

2.5 Gradient computation
The gradient of the approximate log likelihood above is required

both for approximating the Hessian and for the maximum likeli-

hood estimation procedure. A subtle point that requires consider-

ation is that while the quantities G and m depend explicitly on the

model parameters, the quantities bl and A also implicitly depend on

these parameters. We therefore divide the partial derivative accord-

ing to each parameter h (which can represent variance components

or fixed effects) into its explicit and implicit components, by using

the chain rule as follows:

@ log P yjjx;W ; r j
� �
@h

¼ @L1

@hexplicit
þ
Xn

i¼1

@ log P yjjx;W ; r j
� �
@ l̂ i

@ l̂ i

@h
;

(8)
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where L1 ¼ � 1
2
bl �m
� �T

G�1 bl �m
� �

. A full derivation is provided

in the Supplementary Material. The gradient computation scales cu-

bically with the sample size under standard implementations, simi-

larly to the likelihood approximation.

2.6 Optimization and implementation details
The model parameters were optimized via the L-BFGS-B algorithm

(Byrd et al., 1995), using the implementation provided in the SciPy

package (Jones et al., 2001). To begin the optimization procedure

with reasonable initial values, the initial values of the fixed effects

were computed via a BB model. The initial value of each variance

component was 0.5. The code was compiled using Cython (Behnel

et al., 2011) for efficient computations. When testing each site, indi-

viduals with zero reads at this site were excluded from the analysis.

3 Results

We evaluated the performance of MALAX on synthetic and real data.

In all experiments, we compared the following methods: (i) MALAX-

2, which uses two variance components, corresponding to both gen-

etic kinship and to similarity estimated from methylation data;

(ii) MALAX-1g, which uses a single variance component of genetic

kinship; (iii) MALAX-1m, which uses a single variance component of

methylation similarity; (iv) BB model can only control for independ-

ent over-dispersion; and (v) MACAU (using default settings), which

uses a single variance component of genetic kinship. Specifically,

MACAU used 1000 MCMC iterations and 100 burn-in iterations.

We verified that increasing these numbers increased the run-time and

had a negligible effect on the results (results not shown).

In the synthetic experiments, the genetic kinship matrix was

computed via normalized single nucleotide polymorphisms (SNPs),

and the methylation similarity was based on cell-type composition,

as described in the next section. In the real data analysis, the genetic

kinship matrix was computed as described in Lea et al. (2015), and

the methylation similarity matrix was constructed as described in

Section 3.3.1.

3.1 Data simulation
We simulated synthetic data with two sources of confounding: gen-

etic confounding and confounding due to cell-type composition,

which was shown to be a major source of confounding in methyla-

tion studies (Jaffe and Irizarry, 2014). Specifically, we simulated in-

dividuals with cell-type composition and SNPs. Every individual

was sampled from a mixture of four populations, and the SNP distri-

bution of every individual reflected the SNP distributions in the cor-

responding populations. The phenotype of every individual was

affected by the SNPs and by two normally distributed covariates.

Finally, the methylation levels were affected by the SNPs, the covari-

ates, and possibly also by the cell-type composition and the pheno-

type (Supplementary Material).

The populations were generated via the Balding Nichols model,

which assumes that several populations diverged from a single an-

cestral population (Balding and Nichols, 1995). Under this model,

the distance between populations can be quantified via the FST meas-

ure, where FST ¼ 0.01 corresponds to the typical difference between

human individuals across remote regions in Europe.

Unless stated otherwise, in all experiments we simulated 200 in-

dividuals with 2 covariates, 60 000 SNPs, a normally distributed

phenotype affected by 500 of the SNPs, and 10 000 methylation

sites, such that either 0, 25 or 50% of the methylation sites were dif-

ferentially methylated (DM) according to five different cell-types,

and 500 out of the 10 000 sites were associated with the phenotype.

The allele frequencies of each population were generated using FST

¼ 0.01. Ten datasets were generated for each unique combination of

evaluated settings. A full description of the simulations procedure is

provided in the Supplementary Material.

3.2 Synthetic data experiments
We performed several experiments to evaluate the performance of

the evaluated methods. In all experiments, the genetic kinship ma-

trix was given by XXT=m, where X is a matrix of normalized SNPs

and m is the number of SNPs. The methylation similarity matrix

was similarly given by ZZT=p, where Z is a matrix of normalized

cell-type compositions (which can be estimated using e.g. methyl-

omes from purified cell types), and p is the number of cell-types.

Our first experiment examined the benefits of using two variance

components. To this end, we generated datasets with various de-

grees of cell-type composition effects by varying the number of sites

that are DM across different cell-types. We first measured the ro-

bustness of the methods to false positive detections. The false posi-

tive rate of MALAX-2 was comparable or superior to that of the

other methods under all settings, as evidenced by both QQ plots and

by the genomic control inflation factor (Devlin and Roeder, 1999)

(Fig. 1). We also evaluated a version of MACAU which used only a

matrix of methylation similarities (similarly to MALAX-1m). As ex-

pected, this version of MACAU performed very similarly to

MALAX-1m (results not shown).

Next, we measured the ability to identify truly associated sites

via detection power (defined as the proportion of top ranked sites

that are directly associated with the phenotype) of the top 500 sites

(corresponding to the number of truly associated sites), as this meas-

ure allows a fair comparison between methods with different false

positives rates. As expected, MALAX-1g and MACAU outper-

formed the other methods in the absence of DM sites, but the advan-

tage of MALAX-2 and MALAX-1m increased with the proportion

of DM sites (Fig. 2). MALAX-2 clearly outperformed the other

methods at distinguishing associated from non-associated sites when

50% of the sites were DM. Exact power results are presented in

Supplementary Figure S1, which shows very similar results. We fur-

ther verified that the results remained similar when modifying some

of the simulation parameters such as the number of covariates, the

proportions of DM sites and the numbers of populations (results not

shown). Additionally, we evaluated the performance of two add-

itional recently proposed methods for GLMM approximations

(Jiang et al., 2016; Chen et al., 2016), and found that MALAX out-

performs both methods (Supplementary Material).

To explore the computational efficiency of the methods, we

measured their run time under varying sample sizes, using a single

core of a Linux workstation with a 2GHz Xeon CPU. BB was the

fastest method, owing to its relatively simple model, while MACAU

was substantially slower than the MALAX methods (Fig. 3).

Interestingly, the three MALAX settings had very similar run times,

indicating that using additional variance components incurs a negli-

gible computational price. We note that MACAU was invoked with

the default parameter of 1000 MCMC iterations, which could make

the advantage of MALAX even greater in practice.

Finally, we explored the differences between MALAX-1g and

MACAU, which both use a single variance component of genetic

kinship. The P-values computed by the two methods were highly

correlated (Fig. 4), indicating that MALAX-1g can be routinely used

at a substantially reduced computational cost compared with the

state of the art.
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3.3 Real data analysis
To demonstrate the differences between the evaluated methods in

the analysis of real data, we investigated a dataset of 50 baboons

with measured relatedness values and methylation levels at 438 311

sites, which were tested for association with age. This dataset was

previously described in Lea et al. (2015), where it was analyzed by

MACAU. Here, we reanalyzed this dataset using MALAX with

multiple variance components, which can potentially control for

Fig. 1. QQ plots of the evaluated methods, computed using only sites not directly associated with the phenotype, under simulated datasets with population struc-

ture and with various proportions of DM sites. Each figure aggregates the results of 10 simulated datasets. The 95% CI of the expected null distribution is shaded

in gray. The mean and SD of the genomic control inflation factor of each method is shown next to its name. all methods suffer from some degree of inflation in

the presence of severe confounding, but MALAX-2 always controls for type I error as well as or better than the alternative methods. The three methods that do

not control for confounding due to methylation similarity become increasingly less calibrated as the percentage of DM sites increases

Fig. 2. The detection power of the evaluated methods under simulated datasets with various proportions of DM sites. All results are averaged over 10 simulated

datasets. The three methods that control only for genetic confounding are more powerful than the other ones in the absence of DM sites, but MALAX-2 and

MALAX-1m become increasingly more powerful as the percentage of DM sites increases

Fig. 3. Box plots describing the running times of the evaluated methods in the presence of simulated datasets with varying proportions of DM sites and sample

sizes (n), and with 10 000 sites. The flat boxes at the bottom represent the BB method

EWAS via a Laplace approximation i329
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additional sources of confounding, such as cell-type composition

(Jaffe and Irizarry, 2014).

MALAX-1g used a single variance component associated with

genetic kinship, MALAX-1m used a single variance component

associated with mehylation similarity, and MALAX-2 used two

variance components associated with the two matrices. The genetic

kinship matrix was computed via microsatellite data, as described

in Lea et al. (2015). The methylation similarity matrix was com-

puted as described in Section 3.3.1, with a selected value of b ¼ 80

(indicating that 80 sites were used for estimating methylation

similarity). The covariates included sex, sample age and efficiency

of the bisulfite conversion rate estimated from the lambda phage

spike-in.

3.3.1 Construction of methylation-based similarity matrix

To control for sources of confounding that can be captured in the

real methylation data, we applied methodology similar to the one

previously proposed in (Zou et al., 2014). Namely, we first

computed a P-value for every site via a BB model, and then con-

structed a similarity matrix using the b sites most associated with

the phenotype.

One difficulty in applying this approach in the presence of

bisulfite-sequencing data is that construction of the matrix is not

straightforward, as some sites have many more reads (and thus

provide a greater degree of confidence in their methylation levels)

than others. Therefore, naively using the proportion of the number

of methylated to observed reads will lead to highly inaccurate

estimates.

To address this challenge, we first estimated the (logit of the)

methylation level of every individual i in every site k, l̂
i

k, using the

Laplace approximation of MALAX. Afterwards, we defined the

methylation similarity between individuals i,j as
P

k2Tb
l̂
i

kl̂
j

k=b, where

Tb is the set of the b sites with the smallest P-values according to a

BB model.

The parameter b was determined by maximizing the out of sam-

ple log likelihood of the phenotype on held-out data when using the

similarity matrix described earlier, using a 10-fold cross-validation

with a standard LMM, as in (Zou et al., 2014). Formally, the pheno-

type x was modeled as x � Nða; r
2
l

b

P
k2Tb

blk
blT

k þ r2
e IÞ; where blk is a

vector of estimated methylation levels in logit space.

The individuals were divided into 10 random equally sized folds.

For each evaluated value of b, the parameters a; r2
l and r2

e were esti-

mated via a standard LMM maximum likelihood procedure for each

combination of 9/10 of the folds, and the likelihood of the left-out

fold conditional on the others was computed using the estimated

model, under varying values of b. The selected value of b was the

value that maximized the average out of sample likelihood across

the 10 folds. The list of estimated values of b was [1,2,3. . .50,

60,70,80. . .250, 275,300,325. . .,500, 600,700. . .,1000].

3.3.2 Real data results

We first verified that all methods perform comparably with regards

to type 1 error control, indicating a limited degree of genetic con-

founding in this data (Fig. 5). Interestingly, MALAX-1g often esti-

mated slightly lower P-values than MACAU, despite the close

similarity of the models used by the two methods. Nevertheless, the

P-values computed by MALAX-1g and by MACAU were highly cor-

related (Pearson correlation ¼ 0.953, Spearman correlation ¼
0.924), leading to very similar rankings of the sites according to the

two methods.

Next, we examined the effect of adding a second variance com-

ponent, by comparing the results of MALAX-2 and MACAU. The

correlation between the P-values computed by MALAX-2 and by

MACAU (Pearson correlation ¼ 0.889, Spearman correlation ¼

Fig. 4. The correlation between the P-values computed by MALAX-1g and by MACAU across simulated datasets. The sites are sorted according to the P-values

computed by MALAX-1g. The shown values q are the Pearson correlation between the P-values (in log scale)

Fig. 5. A QQ plot of the P-values obtained by the evaluated methods in the

analysis of the baboons data
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0.835) was substantially lower than between MALAX-1g and

MACAU, as expected based on the difference between their underly-

ing models. Additionally, there were several substantial differences

between the top ranking P-values computed by MALAX-2 and by

MACAU (Fig. 6, Table 1). Namely, 2 of the 10 sites ranked highest

by MACAU were ranked substantially lower by MALAX-2, pos-

sibly indicating spurious results. Notably, the site ranked highest

by MACAU (chr17, locus 8 779 721) obtained a non-significant

P-value of 0.15 by MALAX-2. In contrast, the 10 sites ranked high-

est by MALAX-2 all received P-values < 8 � 10�5 by MACAU, and

were among its 700 top ranking sites. Although these results are sug-

gestive that inclusion of a second variance component can be benefi-

cial, additional in-depth analysis is required to verify the results

obtained by the two methods.

We also evaluated the performance of two recently proposed

methods for GLMM approximations (Chen et al., 2016; Jiang et al.,

2016), and found that their reported top sites were substantially dif-

ferent from each other and from the top sites reported by MALAX

and MACAU, which likely indicates low power on this dataset (re-

sults not shown).

Finally, we evaluated the run time of the evaluated methods. The

BB model completed the analysis in 4 hours, MALAX-2, MALAX-

1g and MALAX-1m completed the analysis in 8.2, 7.45 and 7.77 h,

respectively, and MACAU with default parameters competed the

analysis in 23.6 h. These results demonstrate that MALAX can re-

duce the running time required to perform an epigenome-wide ana-

lysis by over 50%.

4 Discussion

We presented MALAX, a novel method for association testing for

count data, which is especially useful for analysis of data generated

by bisulfite-sequencing. MALAX adopts the probabilistic model ini-

tially proposed by MACAU, but unlike MACAU, it can be used in

the presence of multiple variance components representing diverse

sources of confounding. Additionally, MALAX directly approxi-

mates the likelihood function via a Laplace approximation, and is

thus both conceptually simpler and computationally faster than

MACAU, which adopts a Bayesian framework and requires expen-

sive MCMC-based analysis.

Long read-sequencing technologies, such as the Pacific Biosciences

and the Oxford Nanopore platforms (Goodwin et al., 2016), may

eventually replace bisulfite sequencing for EWAS purposes. However,

analysis of methylation data via MALAX will remain useful as long

as these technologies cannot probe methylation at a very high cover-

age at reasonable costs. We further point out that MALAX is a gen-

eral technique for GLMM approximation. Consequently, MALAX

can be readily adapted to other settings with non-normally distributed

responses, such as analysis of gene expression data obtained via RNA

sequencing (Sun et al., 2016).

In recent years, several methods for GLMM approximations

have been proposed in statistical genetics and other domains:

GMMAT (Chen et al., 2016) and CARAT (Jiang et al., 2016) are

somewhat similar to MALAX but use simpler approximations,

which lead to lower statistical power (Supplementary Material).

Variational approximation and Expectation Propagation are two

methods which approximate the likelihood of GLMMs in a different

manner than MALAX (Nickisch and Rasmussen, 2008), but are

much slower and do not provide an advantage over MALAX in

practice (results not shown). Finally, INLA (Rue et al., 2009),

adopts a Bayesian framework similarly to MACAU, but approxi-

mates the likelihood analytically similarly to MALAX. Our results

indicate that such a Bayesian framework is not required for associ-

ation testing, but we note that INLA might be useful should one

Fig. 6. A Manhattan plot of the P-values obtained by the evaluated methods

in the analysis of the baboons data. The axis labels for several chromosomes

are omitted to improve clarity

Table 1. The top 10 sites found by MALAX-2 and MACAU in the analysis of the baboons data

MALAX-2 MACAU

rank chr pos P-value alt. rank alt. P-value rank chr pos P-value alt. rank alt. P-value

1 10 19 531 653 5.10 � 10–12 3 1.09 � 10–10 1 17 8 779 721 9.57 � 10–12 108 947 1.53E-01

2 10 76 782 787 8.61 � 10–11 4 1.30 � 10–10 2 13 127 550 470 2.23 � 10–11 5 1.92 � 10–10

3 4 43 268 737 1.37 � 10–10 5 2.92 � 10–10 3 10 19 531 653 1.09 � 10–10 1 5.10 � 10–12

4 15 4 962 834 1.81 � 10–10 11 2.18 � 10–8 4 10 76 782 787 1.30 � 10–10 2 8.61 � 10–11

5 13 127 550 470 1.92 � 10–10 2 2.23 � 10–11 5 4 43 268 737 2.92 � 10–10 3 1.37 � 10–10

6 10 13 480 448 3.75 � 10–10 42 2.93 � 10–7 6 20 67 348 840 3.57 � 10–10 14 1.06 � 10–8

7 13 118 109 650 6.02 � 10–10 47 3.62 � 10–7 7 7 19 570 278 1.27 � 10–9 11 2.98 � 10–9

8 3 33 299 965 1.47 � 10–9 115 2.59 � 10–6 8 20 67 035 039 4.88 � 10–9 50 3.13 � 10–7

9 16 48 764 429 2.18 � 10–9 10 1.63 � 10–8 9 5 100 757 817 8.39 � 10–9 8043 2.75 � 10–3

10 10 31 702 787 2.27 � 10–9 696 7.58 � 10–5 10 16 48 764 429 1.63 � 10–8 9 2.18 � 10–9

For each top site, we report its chromosome (chr), position (pos), rank and P-value under the main method and its rank and P-value under the alternative

method.
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wish to adopt a Bayesian framework without resorting to expensive

MCMC computations.

Although MALAX can be over 50% faster than MACAU, both

methods have the same computational bottleneck of having to invert

or compute determinants of matrices of size n � n, whose computa-

tion scales cubically with the sample size under standard implemen-

tations. Therefore, both methods cannot currently be used with

samples of thousands of individuals. In the future, we intend to in-

vestigate the possibility to accelerate MALAX via low rank matrix

approximations, using techniques such as the Nyström method

(Drineas and Mahoney, 2005), incomplete Cholesky factorization

(Fine and Scheinberg, 2001) or Bregman matrix divergence kernel

learning (Kulis et al., 2009).

In this work, we evaluated several implementations of MALAX,

which are differentiated by using different combinations of variance

components. In practice, the use of MALAX requires domain know-

ledge in order to select the set of variance components that can con-

trol for all the sources of confounding in a given dataset, similarly to

the use of LMMs in practice.

Finally, the experiments in this paper used the technique of (Zou

et al., 2014) to construct a matrix of methylation similarities, which

can potentially capture sources of confounding such as cell-type

composition. Recently, another technique has been demonstrated to

improve control for cell-type composition by first selecting a subset

of the methylation sites, and then incorporating the top principal

components of the selected sites as covariates (Rahmani et al.,

2016). However, both methods suffer from the caveat that there is

currently no analytical proof or empirical evidence that they are

suitable for the analysis of bisulfite-sequencing data. Specifically, a

major difficulty is that computation of methylation similarity matri-

ces and of their principal components is unreliable in the presence of

a small number of reads. Adapting one of the above techniques for

bisulfite-sequencing data therefore remains a future endeavor.
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