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Partial melting of deeply subducted eclogite
from the Sulu orogen in China
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Junpeng Wang2,5, Hao Deng2,5 & Jianmin Fu2,5

We report partial melting of an ultrahigh pressure eclogite in the Mesozoic Sulu orogen,

China. Eclogitic migmatite shows successive stages of initial intragranular and grain boundary

melt droplets, which grow into a three-dimensional interconnected intergranular network,

then segregate and accumulate in pressure shadow areas and then merge to form melt

channels and dikes that transport magma to higher in the lithosphere. Here we show, using

zircon U–Pb dating and petrological analyses, that partial melting occurred at 228–219 Myr

ago, shortly after peak metamorphism at 230 Myr ago. The melts and residues are

complimentarily enriched and depleted in light rare earth element (LREE) compared with the

original rock. Partial melting of deeply subducted eclogite is an important process in deter-

mining the rheological structure and mechanical behaviour of subducted lithosphere and its

rapid exhumation, controlling the flow of deep lithospheric material, and for generation of

melts from the upper mantle, potentially contributing to arc magmatism and growth of

continental crust.
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D
ocumenting partial melting processes in the deep crust
and mantle is important for understanding deep litho-
spheric rheology, as well as the origin and genesis of arc

magmas, continental and oceanic crust1. Numerous studies have
described the partial melting processes in felsic gneiss-forming
migmatites1–4, some of which may generate melts that coalesce to
form plutons5–7. However, the partial melting of eclogite at the
microscopic to field scales has never been clearly documented. If
the partial melting of eclogite can be clearly demonstrated, then
there will be clear evidence that subducted oceanic slabs and
deeply subducted continental crust can melt. It would then be
important to determine how these melts escaped from their
nucleation points to form networks, dikes or plutons that could
buoyantly rise to higher in the crust, contributing to arc
magmatism and the formation of continental crust.

The Sulu orogen of eastern China was born during rifting of
the Rodinian supercontinent about 800 Myr ago, leading to
formation of an ocean basin, and grew during subduction of this
oceanic lithosphere, evolving to maturity with the collision of the
Yangtze and North China cratons and deep subduction of
intervening continental material8. Most of the orogen preserves
greenschist- to amphibolite-facies mineral assemblages, but
detailed studies9,10 documenting the U–Pb ages of zircons with
coesite inclusions from granitic gneiss and marble cropping out
together with coesite-bearing eclogite indicate earlier ultrahigh
pressure (UHP) metamorphism in the Late Triassic at about 230
Myr ago11–13. Intergranular coesite and clinopyroxeneþ rutileþ
apatite exsolutions within garnet in eclogite at Yangkou in the
central Sulu orogen14,15 indicate subduction of this eclogite to
B200 km. Most researchers attribute the origin of the eclogites to
the subcontinental lithospheric mantle (SCLM)16. Felsic gneiss,
the country rock of UHP eclogites in the whole Sulu orogen,
has experienced decompressional partial melting during
exhumation7,17–20. Some evidence for limited partial melting of
UHP eclogite and quartzite has been proposed based on the
presence of multiphase solid (MS) inclusions within UHP
minerals and anatectic zircons and interstitial cuspate
K-feldspar along quartz grain boundaries21,22. In addition,
high-pressure experimental petrology has demonstrated that
phengite-bearing eclogite can undergo partial melting
during decompression under conditions of P¼ 1.5–2.0 GPa and
Tr800–850 �C (refs 23,24). However, before this study, no field
evidence has been documented to show multiscale partial melting
of eclogite, resulting in eclogitic migmatites that feed larger-scale
felsic dikes, which intrude the continental crust.

This contribution represents the first documented example of
field, microstructural, geochemical and geochronological evidence
in the world for partial melting of deeply subducted eclogite,
using exposures in the UHP Sulu Orogen, China, showing that
these mafic rocks were subducted to 4120 km depth at 230 Myr
ago, then partially melted during their early retrograde path to the
surface 228–219 Myr ago. Several different stages of melt
segregation are delineated, starting from the formation of initial
melt droplets along grain boundaries to the coalescence of these
melt droplets along an interconnected three-dimensional (3D)
intergranular network of microveins, then along foliation planes
and extensional shear zone surfaces. The melt then flowed into
the thin macroscopic veins that ballooned in low-stress areas such
as pressure shadows, particularly along fold hinges between the
units with different competence. Melt-enhanced deformation
next aided the melt pockets to merge into 1–2-m wide melt
channels spaced every 10–20 m in the host eclogite, where melts
form about 50% of the rock, and eclogitic residue forms boudins
and isolated complex folds. The melt channels eventually
combine forming several-metre-wide dikes, which served as
conduits bringing the melt to higher levels of the lithosphere.

The partial melting of deeply subducted eclogite has several very
important implications. First, the melt channels that are spaced
every 10–20 m represent significant seismic velocity anomalies
that should be accounted for in analysis of seismic data for
geophysical models of the lithosphere25,26 Second, the process of
melting and melt aggregation from the subgrain scale to the
pluton-feeding dike scale can be shown to be closely linked with
structural processes, and the melt-enhanced deformation shows
how deformation, melting and metamorphism are closely
linked27–29. Third, recognizing melt channels in eclogite is
important for understanding mid-to-lower crustal and mantle
flow: the melt channels have a much lower viscosity than the
surrounding eclogite and can accommodate large amounts of
strain, allowing translation of intervening blocks. Melt-enhanced
deformation and flow in melt channels documented here may be
an exhumed example of the deep crustal flow channels
accommodating continental escape from continental collision
zones such as eastern Asia30–32, and also, be important in
lubricating the borders of slices of UHP blocks, allowing the UHP
rocks to be rapidly exhumed along the low-viscosity flow
channels33,34.

Results
The General’s Hill eclogite. The General’s Hill eclogite is located
in the central Sulu orogen on the Shandong Peninsula, eastern
China, a few kilometres south of the famous exposures of the
world’s most deeply subducted and exhumed eclogites at Yang-
kou (Fig. 1a–c) and about 1 km north of a village called Diao-
longzui. After initial field observations suggested that the eclogites
at Yangkou and General’s Hill may have experienced partial
melting, we documented the processes at several different
scales. The first step was targeted 1:1,500–1:200 scale mapping
(Figs 1c and 2) of continuously exposed coastal outcrops of
deeply subducted and exhumed rocks at Yangkou Bay35,36, and
newly discovered outcrops near General’s Hill, Diaolongzui
village (Fig. 1b,c). The exposures consist of strongly foliated
and complexly folded retrogressed eclogitic migmatite (Fig. 2)
with the partial melt veins feeding channels of dominantly felsic
leucosome (leucosome is the light-colored part of migmatite,
consisting mostly of K-feldsparþ plagioclaseþ quartz, interpreted
to be the crystallized melts derived from the partially melted
eclogite, which is now the residue, the darker part of the
migmatite). Next, we used a multiscale multidisciplinary approach
including structural analysis, microstructural petrology and
scanning electron microscope (SEM) fabric analysis, geo-
chronology and geochemistry, which verify that the Yangkou
and General’s Hill eclogites underwent partial melting, and the
melts migrated out of the system to interact with other rocks and
melts in the deep lithosphere.

Outcrop and microscale structures that show the progressive
process of partial melting of eclogite are systematically docu-
mented. Three typical stages characterize the different processes
of partial melting, demonstrating how melt starts from miniscale
droplets along grain boundaries, coalesce into veins that merge
into melt channels, which then feed dikes where eclogite-derived
melts interact with melts derived from the country gneisses, and
transport large volumes of magma from deep levels of the crust/
mantle, to higher in the crust (Fig. 1c).

Stage I. The earliest stages of partial melting are preserved as
beaded droplets of leucosome composed of quartz-plagioclase-K-
feldspar along grain boundaries in the eclogite, as revealed by
high-power photomicroscope and SEM imagery (Figs 3a and 4h,i).
Near fold hinges and along cross-cutting extensional shear
zones these droplets of leucosome merge to form veins
2–3 mm wide along the foliation of the folded eclogite. These thin
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veins then merge along these structures where the melt flowed
towards low-pressure regions in hinges of isoclinal folds (Fig. 1c,
location I; Fig. 3a, stage I). The leucosome is composed of quartz
and minor plagioclaseþK-feldsparþ Phengite/Biotite. The
quartz grains have wavy extinction under polarized light and
contain abundant fluid inclusions. The quartz grains are anhedral
with clear triple junction texture, indicating high temperature
recrystallization without high shear stress (Fig. 4j). The irregular
boundary between leucosome and residue supports a magmatic
partial melting genesis37 (Fig. 3a). The residue has various
mineral compositions that show different stages of retrogression
at different sample locations since the process of partial melting is
inhomogeneous and is accompanied by different levels of
retrogression. Phengite and mica disappear in the residue. The
least retrogressed eclogite assemblage consists of GrtþOmpþ
QzþRtþ Sym (HbþPl), with symplectite forming a vein-net
texture cutting through garnet grains, with HbþPlþMgt within
the veins (Fig. 4g). All the mineral abbreviations in this paper
follow the standard of Whitney & Evans38. Garnet and
Omphacite are typically strongly elongated. The garnet
amphibolites have garnet partially preserved due to
retrogression, and omphacite is nearly completely replaced by
symplectite composed of fine grained plagioclaseþ hornblende.

Stage II. Melt begins to aggregate within thin veins and
extensional shear bands, then it starts to flow along foliation
planes in the eclogite and becomes interlayered with the residue
layers and symplectite of the retrogressed minerals from the
eclogite. The leucosome forms melt channels where it occupies
about 50% of the rock, bounded by relatively less retrogressed
eclogite. Most channels are about 0.5–1 m wide and spaced every
10–20 m. The leucosome flows and becomes folded together with

the remnant rootless isoclinal folds of eclogite and is further
concentrated within fold hinges, indicating that the partial
melting and deformation were contemporaneous, with the melt
enhancing the deformation, and the deformation aiding the
concentration of melt in low-stress regions (Fig. 1c, location II;
Fig. 3b, stage II).

In stage II, the mineral composition of the leucosome
is quartzþ biotite/phengiteþ plagioclaseþK-feldsparþminor
amphibole, epidote and apatite. There is no clear shape-preferred
orientation, and garnet has gradually reduced from the residue,
replaced by needle-shaped or clustered amphibole, plagioclase
and biotite. The eclogite shows more intensive symplectite
developed along the garnet grain boundaries. The grain size of
garnet decreases and the symplectite forms a cross-cutting
network containing small round-shaped garnet relicts.

Stage III. In this stage, the leucosome becomes more concen-
trated and finally forms thick felsic dikes, which may have
interacted with melts derived from the country gneisses (Fig. 1c,
location III; Fig. 3c, stage III). The eclogite is totally retrogressed
and epidote amphibolite facies residue dominates the outcrop,
becoming another end-member of this partial melting process. In
this stage, the original eclogite is completely reconstituted into
two new rock types: felsic dikes and cpx-bearing amphibolite.

Mineral assemblages of felsic leucosome are coarser grained,
consisting of biotite/phengiteþ quartzþ plagioclaseþK-feldspar,
showing no clear shape-preferred orientation, but instead a
euhedral to sub-euhedral granular texture. The quartz grain
boundaries are different from stage I and II, they are very rich in
fluid inclusions, characterized by dynamic recrystallization and
subgrain boundary migration, indicating a high temperature
fabric. The epidote-bearing amphibolite is composed of
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Figure 1 | Geological map of Yangkou bay and General’s Hill. (a) Simplified geological map of the Sulu orogen and its location in China. Scale bar, 100 km

at 50-km intervals. (b) Geological map of Mt. Laoshan and the structural setting of Yangkou Bay and General’s Hill35. Scale bar, 1 km at 0.5 km intervals.

(c) Map of continuously exposed coastal outcrops at General’s Hill. Scale bar, 30 m at 15–m intervals. Our detailed 1:1,500 scale mapping delineates

strongly foliated and complexly folded retrogressed eclogite, cut by channels of dominantly felsic leucosome. The most weakly retrogressed part of the

eclogite body consists of strongly foliated isoclinally folded eclogitic gneiss, interlayered with foliated felsic leucosome and retrogressed eclogite (now

garnet-bearing amphibolite). In other places the eclogite is preserved as sheared boudins with leucosome and quartz veins in pressure shadows of the

eclogitic boudins. Mapping by L. Wang, T. Kusky, S. J. Wang, J. P. Wang and Y. Ding.
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amphiboleþ plagioclaseþminor epidote and minor ilmenite,
apatite and sphene.

Whole-rock and rare earth element (REE) analyses of the
leucosome indicate that they are dacitic to rhyolitic in composi-
tion with calc-alkaline arc affinities (Fig. 5, see Supplementary
Data Set 1 and 2).

Microanalysis and P–T–t path. Detailed petrological phase
analyses were made on UHP eclogites and residue from Yangkou
Bay and General’s Hill. At least four stages of metamorphism are
identified and their metamorphic pressure–temperature (P–T)
conditions are estimated based on electron probe data
(Supplementary Data Set 3) and shown as a P–T–time (P–T–t)
path in Fig. 6. Microstructural evidence of partial melting of
eclogite is also evident in these four types of eclogite (Fig. 4).

UHP stage-1 eclogite: mineral assemblage is GrtþOmpþCoe/
QzþRt, coesite occurs as intergranular crystals (Fig. 4a) and as

inclusions in garnet and omphacite. Coesite with higher relief has
partially been transformed to quartz with lower relief in the rim,
which shows a typical palisade texture. Coesite was identified
microscopically and confirmed by Raman spectroscopy
(Supplementary Fig. 1). The mineral assemblage is similar to
the type of massive eclogite reported elsewhere in the Dabie–Sulu
UHP metamorphic belt39. The UHP stage-1 metamorphic
temperature is estimated to have been 834–890 �C based on
the geothermometer of Ravna40, when the pressure is set at
3.5–4.5 GPa (Fig. 6). The lower limit for the pressure is 3.5 GPa,
since intergranular coesite occurs in both two types of UHP
eclogite (UHP stage-1 and 2 as described in the next paragraph).
The maximum pressure is set as 4.5 GPa for this study in Fig. 5,
although the possible maximum pressure can reach to 6 GPa
(T¼ 970 �C, see Supplementary Data Set 3) based on reports of
mafic slabs that were subducted to 4200 km depth from
Yangkou Bay15. MS inclusions consisting of KfsþAbþEpþ
BrtþPhþBt are present in garnet (Fig. 4d). The MS inclusion
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Figure 2 | Structural map of melt channels at General’s Hill. Multiple leucosome veins, melt pockets and melt channels merging to form dikes at

General’s Hill are shown within the map (see Fig. 1c for location, noting the difference in orientation of maps). Most eclogite is retrogressed into garnet-

bearing amphibolite deformed into rootless isoclinal and less-common sheath folds, and disaggregated into boudins surrounded by leucosome. Their strong

foliation is mostly defined by biotite and amphibole. These folds typically have thicker hinges than limbs (ptygmatic folds) or are strongly sheared and

boudinaged along their limbs. In some locations, the hinges of the isoclinal folds are also sheared, thinned and broken into boudins with felsic leucosome

flowing into the boudin necks and pressure shadows behind fold hinges of layers with stronger competence than surrounding layers. Once the melt was

present in these regions, the melt enhanced the deformation, further localizing strain and melt concentration in these locations. The melts appear as a

leucocratic matrix and flows around the retrogressed eclogite layers. The axial planes are almost coincident with the NW-striking foliation that dips steeply

to the NE. 7E, geochronological sample location of melted eclogite as shown in Fig. 7c (stage II). Stage III, location of last stage of melting process as shown
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illustrated is connected by a veinlet with another phengite
inclusion in omphacite, which is breaking down into biotite and
fills in melting pods along the veinlet. This is clear evidence for
in situ partial melting of phengite inclusions in UHP eclogite.
Intergranular multi-solid phase of KfsþQz is preserved in this
stage with the quartz replacing some of the previous intergranular
coesite and the Kfs filling fractures, which cut through the
eclogite, or fill in the radial cracks surrounding the intergranular
KfsþQz (Fig. 4b,c). This indicates that the Kfs veins are a later
stage of the melting process, carrying fluid that promotes the
retrogression of coesite to quartz.

UHP stage 2 eclogite. In this stage, the mineral assemblage is
GrtþOmpþQz/CoeþPh (o5%)þRt. With the appearance of
phengite, the amount of preserved intergranular coesite is
obviously reduced. Phengite is developed along the penetrative
foliation planes in the eclogite. The mineral assemblage is similar
to the type-2 foliated eclogite reported in the Dabie–Sulu UHP
metamorphic belt39. The P–T estimation is P (average)¼ 3.5 GPa
and T (average)¼ 733 �C based on the barometer of Waters and
Martin41 and the thermometer of Green and Hellman42. Phengite
has 3.5–3.6 Si atoms per formula unit. MS inclusions similar to
those in UHP stage-1 eclogite are present in stage-2 eclogite
as well.

Quartz eclogite. The mineral assemblage in this stage is Grtþ
OmpþQzþ Ph (B10–15%)þRt, with higher amounts of
phengite. Coesite has completely changed to quartz in this stage.
Our P–T estimation for this stage is P¼ 1.5–2.8 GPa (lower and
upper pressure limits for eclogite facies after coesite transfers into
quartz) and T¼ 693–761 �C based on the geothermometer of
Ravna40. In situ phengite dehydration melting resulted in MS
inclusions of Kfsþ barium-bearing KfsþPl in garnet, connected
by 4–10mm wide veinlets consisting of BtþKfsþ Pl next to the
phengite (Fig. 4e). MS inclusions of KfsþQz (Fig. 4f) and cross-
cutting Kfs veins are also present in this stage.

Eclogitic residue. In this terminal stage, most of the melted eclogite
shows evidence of strong amphibolite-facies retrogression. The
best preserved mineral assemblage of eclogitic residue is Grtþ
OmpþQzþRt, with large amounts of symplectite replacing
omphacite, and phengite completely disappears from this phase.
The P–T estimation for this stage is P¼ 0.8–1.4 GPa, T
(average)¼ 669–703 �C based on the geothermometer of Ravna40.
MS inclusions of KfsþQz sit in garnet from eclogitic residue in
General’s Hill (Fig. 4g). Interstitial cuspate veinlets of
plagioclaseþK-feldspar with very low dihedral angles first form
isolated ‘strings of beads’ of melt along grain boundaries and
triple junctions of quartz (Fig. 4h, i), and with higher degrees of
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melting, eventually forming interconnected 3D networks along
grain boundaries in the leucosome at General’s Hill (Fig. 4j–l),
allowing the melt to escape from the intergranular realm and
collect in low-stress areas as documented at the macroscopic scale
in stages I–II above.

MS inclusions within omphacite and garnet from UHP eclogites
have been recently reported as limited evidence for local and minor
phengite dehydration-related melting of UHP eclogite22,43–45.
We provide further and stronger evidence from the closely
related outcrops at Yangkou and General’s Hill (Fig. 1). The MS
inclusions at these two locations range from K-feldsparþ quartz to

intermediate types consisting of K-feldspar (including barium-
bearing K-feldspar)þ quartz±silicate (plagioclase, epidote or
diopside)±barite within omphacite and garnet from four
metamorphic stages of eclogite. Our new microstructural evidence
from Yangkou and General’s Hill demonstrates more advanced
melting of eclogite.

First, in situ phengite dehydration melting formed MS
inclusions in UHP eclogite and HP quartz eclogite (Fig. 4d–f),
suggesting in situ melting and coexistence of aqueous fluids with
hydrous melts under HP eclogite facies condition44 when
retrogression of phengite and omphacite were promoted by
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within omphacite with radial fractures. (g) YK128-15, eclogitic residue with mineral assemblage of GrtþOmpþQz from General Hill; sym represents

symplectite replacing previous omphacite. MS inclusion of KfsþQz developed within garnet, surrounded by Hbþ PlþMgt rim. (h,i) YK128-15, cuspate

veinlets of Kfsþ Plþ Ep (melt droplets) with low dihedral angles, and form ‘strings of beads’ along grain boundaries between quartz and at triple junctions.

(j) 09PMS-1A, leucosome sample from Fig. 1d, inset photo of stage I, clear triple junction texture developed at grain boundaries of quartz grains, with

K-feldspar filling in the triple junction. (k,l) YK128-16a, leucosome sample, more advanced stages of partial melting where the melt droplets (Kfsþ Pl) along

grain boundaries have merged and formed an interconnected 3D network along grain boundaries and micro-cracks enabling the melt to drain out of the

intergranular areas into low-stress regions in the leucosome. Scale bars, 15mm in e,f and 50mm in a–d and g–l. a and j are microscope photographs under

cross-polarization, the rest are all back-scattered electron images. Ab, albite; Ap, apatite; Bt, Biotite; Coe, coesite; Grt, garnet; Hb, hornblende; Kfs,

K-feldspar; Mag, magnetite; Omp, omphacite; Ph, phengite; Pl, plagioclase; Qz, quartz.
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partial melting. Second, MS inclusions in garnet from eclogitic
residue and interstitial cuspate veinlets of plagioclaseþK-
feldsparþ epidote merged to form interconnected 3D networks
along grain boundaries in the residue and leucosome at General’s
Hill (Fig. 4g–l), allowing the melt to escape from the intergranular
realm and collect in low-stress areas as documented at the
macroscopic scale in stages I–II and shown in Fig. 1. Third,
intergranular multi-solid phase K-feldsparþ quartz in UHP stage
1 and 2 eclogite are surrounded by radial fractures and cut
through by K-feldspar veins (Fig. 4b,c). This indicates that later
stage of veins produced by melting cross-cutting the UHP
eclogites, with limited fluid/melt accompanying this event,
replacing the earlier intergranular coesite with KfsþQz. All of
these features are diagnostic of partial melting6,38,46, indicating
clearly that the UHP eclogite at Yangkou and residue in General’s
Hill melted in progressive multiple stages during their retrograde
ascent from UHP conditions.

Experimental work on the partial melting of phengite-bearing
eclogite indicates that the P–T condition of melting was B1.5–
2.0 GPa, Tr800–850 �C (ref. 24). However, in situ partial melting
of phengite in natural samples is observed at the quartz eclogite
metamorphic stage when all the coesite completely transformed
into quartz, which is between the UHP stage and amphibolite-
facies stage. Therefore, melting started from quartz-eclogite stage
(lower limit, P¼ 1.5–2.8 GPa, T¼ 760 �C, about 90–50 km depth)
and continued through lower-grade conditions (amphibolite
facies, about 30 km depth) for about 9 Myr (Fig. 6), involving
higher degrees of melting, and eventual interaction with melts
derived from the country rocks. On the basis of the geochronological
estimation of UHP and amphibolite facies metamorphic stages12,
this timing is between 230 and 215 Myr ago, corresponding to the
age of 228–219 Myr ago we report from zircon dating of leucosome,
and residue samples (Fig. 7a–c) from General’s Hill.

Thus, evidence from microscopic to outcrop scales at Yangkou
and General’s Hill clearly shows that partial melting of the
eclogite began at the intergranular scale as imaged in SEM, the
melts merged along a 3D grain boundary network then flowed
along micro cracks (Fig. 4e–i), then into macroscopic structures
such as extensional shear bands and pressure shadow regions in
folds. These melt pockets were then able to coalesce into melt
channels and dikes, releasing the melt from the system during
widespread partial melting of the eclogite.

Geochronology and geochemistry of melting eclogite. Zircons
from leucosome (YK128-19a, same as leucosome 2 in Fig. 7d),

residue (YK128-20b, same as residue 3 in Fig. 7d) and mixture
(10Y-7E, stage II) show euhedral and prismatic shapes, exhibit
distinct core-rim structures in cathodoluminescence (CL) images
(Fig. 7). Cores are characterized by oscillatory zoning and rims
show grey unzoned luminescence in CL images (Fig. 7). U–Pb
ages of zircons analyzed by laser ablation-inductively coupled
plasma mass spectrometer (LA-ICP-MS) are summarized in
Supplementary Data Set 4 and shown in Fig. 7a–c. Most of the
inherited cores record concordant U–Pb ages that yield a
weighted average 206Pb/238U age of 770–780 Myr ago (Fig. 7),
and zircon rims from the leucosome show concordant U–Pb ages
and yield a concordia age of 228±3.0 Myr ago (1s, n¼ 11)
(Fig. 7a), although a few scattered data have ages of ca. 400, 500
and 700 Myr ago. The latter few ages might be related to Pb loss
due to incomplete resetting before zircon experienced peak
metamorphism3. Rims from the mixture sample yield an age of
219.3±2.6 Myr ago (1s, n¼ 9) (Fig. 7b), and zircon rims from
the residue yield an age of 224±1.9 Myr ago (1s, n¼ 13)
(Fig. 7c). We interpret these ages to mean that the protolith has
an age of 780 Myr and the partial melting stages lasted about 9
Myr ago from 228 to 219 Myr ago, shortly after UHP
metamorphism at circa 230 Myr ago12,13.

A wide spectrum of REE patterns and variations in major and
trace element abundances in both the leucosome and residue
suggest a continuous melting event (Fig. 7d; Supplementary Data
Set 1 and 5; Supplementary Fig. 2) that lasted about 9 Myr,
consistent with the field and microstructural data presented
above. We interpret the peak eclogite sample as the closest
representative of the mafic protolith that was subducted,
metamorphosed and partially melted. This eclogite is character-
ized by a LREE-enriched pattern (La/Smcn¼ 1.97; Gd/
Ybcn¼ 1.94; La/Ybcn¼ 4.09) and negative Nb (Nb/Nb*¼ 0.39)
but positive Pb (Pb/Pb*¼ 2.71) anomalies (Supplementary
Fig. 2). It is difficult to distinguish between eclogite melting in
subducted mid-ocean ridge basalt and eclogite melting in the
SCLM. However, depletion of Nb (negative Nb anomaly) is more
consistent with a SCLM source than subducted mid-ocean ridge
basalt. Normalized Gd/Yb values imply that garnet residue in the
source with partial melting likely have taken place above the
garnet stability field47. Alternatively, superchondritic Gd/Ybcn

ratios might also have been inherited from the SCLM source.
Two enriched end-members of leucosome (leucosomes 2

and 3) and two-depleted end-members of residue (residues 2 and
3) have complementary REE patterns (Fig. 7d). The leucosome
end-members have the following trace element characteristics:
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(1) strongly enriched LREE patterns (La/Ybcn¼ 26.4–42.7); (2)
large negative Nb (Nb/Nb* ¼ 0.07–0.08) and Ti (Ti/Ti*¼ 0.05–0.14)
anomalies; and (3) positive Pb anomalies (Pb/Pb*¼ 2.9–6.2)
(Fig. 7d and Supplementary Data Set 1 and 5). In addition, the
leucosome is strongly enriched in SiO2 (70.9–76.8 weight percent
(wt.%)) and large ion lithophile elements (LILE) but depleted in
MgO (0.98–1.74 wt.%) and transition metals (Cr, Ni and Co), in
comparison with the residue and peak eclogite (MgO¼ 5.32
wt.%) (Supplementary Data Set 1). Compositionally, the leuco-
some is comparable to the upper continental crust48, suggesting
a genetic link between subduction zone geodynamic and
petrogenetic processes and the origin of continental crust.

The residual end-members display strongly depleted LREE
(La/Smcn¼ 0.15–0.16; La/Ybcn¼ 0.03–0.04) patterns and positive
Nb (Nb/Nb*¼ 12.2–58.3) and Ti (Ti/Ti*¼ 1.20–2.36) anomalies,
consistent with extraction of LREE by melts and retention of Nb
and Ti by rutile in the residue (Fig. 7d and Supplementary Data
Set 1). In addition, the residue gained MgO (6.3–6.8 wt.%),
transition metals and heavy REE relative to peak eclogite.
Collectively, REE systematics of leucosome and residue are
consistent with extraction of leucosome melts in the garnet and/
or hornblende stability field47.

Discussion
Documentation of partial melting of eclogite has important
implications for global tectonic processes. Here, we outline a few
of the salient implications for lithospheric tectonic processes.

The presence of rheologically weak melt channels in eclogite
subducted to 4200 km depth significantly changes current ideas
about the strength of eclogitic slabs in deep continental or oceanic
subduction zones49. These melt channels allow flow and
movement between different 10 to 20 m scale lenses of eclogite,
and when integrated over the thickness of the entire subducting
slab allow significantly different behaviour than expected for
unmelted eclogite. For instance, if eclogite in the deep lithosphere
is partially melted with melt channels, and in the lower crust or
upper mantle, then lateral flow of deep crust/upper mantle might
be accommodated along melt channels. Lower-crustal flow
channels have been postulated to exist in several places
including eastern Asia, allowing deep crust to laterally escape
from the India-Asia collision zone26,50. We suggest that the
mechanism that allows this flow is the formation of melt channels
similar to those documented here, significantly changing the
rheology of the lower crust and upper mantle.

Further, the presence of thin melt channels in deeply
subducted lithosphere can significantly change the conditions
for exhumation of UHP metamorphic rocks. There has been a
long-standing debate about how thin slices of UHP rocks can be
exhumed from 200 km to the surface without being retrogressed
to lower grade assemblages. The melt channels in eclogite may
have lubricated the edges of exhumed slices of UHP rocks (Fig. 8),
allowing them to be rapidly transported to the surface without
time to transform into lower grade mineral assemblages33.

Peak UHP metamorphism in Sulu eclogites (recording depths
of possibility up to 200 km) occurred about 230 Myr ago12,13, and
the partial melts we report here have ages of 228–219 Myr ago,
showing that the melting occurred shortly after the peak
UHP event, while the eclogites were still at great depth and
began their rapid exhumation to the surface (Figs 6 and 8).
A persistent controversy in geosciences is whether or not
subducted slabs can partially melt, and generate magmas such
as adakites that contribute to arc magmatism51,52. Our study at
General’s Hill represents the first documented case in the world
where deeply subducted eclogites can be conclusively shown with
field, microstructural and geochemical evidence to have
undergone partial melting, generating felsic magmas that
migrated upwards, potentially contributing to arc magmatism
and the formation of continental crust at convergent plate
boundaries. The felsic melts have a dacitic composition (see
Fig. 5), consistent with melting from both a subducted slab and
the SCLM. Interestingly, Late Triassic plutons with ages similar to
the age of melting eclogite in this study crop out 150 km to the
northeast of the study area, and have geochemical affinities
consistent with derivation by melting of mafic and felsic rocks of
the deeply subducted north margin of the Yangtze craton53.
We suggest that the source of these and other related plutons has
now been identified (Fig. 8).
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One of the enigmatic features of some deep-crustal seismic
reflection profiles is the presence of ‘bright zones’ interpreted to
represent areas of melt, high fluid content or unusual rock
compositions25,26. The deeply subducted, partially melted eclogites
from General’s Hill show that eclogites can develop regularly spaced
melt channels, a metre or two thick, that would act as significant
seismic anomalies (Figs 1c, 2, and 8). Field observations from
General’s Hill thus resolve a long-lived controversy in seismology
and provide a link between field geology, structural analysis,
geophysics, geochronology and crustal evolution.

Methods
Mineral major element analyses. Mineral major element analyses were
performed on JEOL JXA-8800 and JEOL JXA-8100 electronic microprobes (EMPs)
at the Institute of Mineral Resources, Chinese Academy of Geological Sciences and
the Key Laboratory of Submarine Geosciences, State Oceanic Administration,
respectively. The working conditions of both were as follows: 15 kV acceleration
voltage with 20 nA beam current and 5 mm beam spot.

Whole-rock major and trace element analyses. Whole-rock samples were
crushed in a corundum jaw crusher (to 60 meshes). About 60 g of each sample
was powered in an agate ring mill to 4200 meshes for major and trace elements.
Two samples, including UHP stage-1 eclogite (12YK5-2) and stage-2 eclogite
(12YK8-1) were analyzed in the Comprehensive Rock and Mineral Test Center,
Wuhan, China. Other rock samples were analyzed at the State Key Laboratory
of Geological Processes and Mineral Resources (GPMR), China University of

Geosciences (Wuhan). Whole-rock major element compositions were measured
by a Shimadzu XRF-1800 sequential X-ray fluorescence spectrometer, the detailed
experimental processes and conditions are described by Ma et al.54 The major
elements were analyzed by a wet chemical method according to the GB/T
14506.28-1993 standard, whereas the analytical standards of the H2Oþ , CO2

and LOI were measured according to the GB/T14506.2-1993 standard, the GB
9835-1998 standard and the LY/T 1253-1999 standard, respectively.

Whole-rock trace elements were analyzed by an Agilent 7500a ICP-MS, the
detailed sample-digestion procedure for ICP-MS analyses, analytical precision and
accuracy for trace elements including REE, HFSE, LILE and transition metals
following the protocols of Liu et al.55 About 50 mg samples were digested by
HFþHNO3 in Teflon bombs for ICP-MS analysis. Sample dissolution was
conducted under super clean lab conditions. International standards AGV-2,
BHVO-2, BCR-2, RGM-1 and GSR-1 were used as reference materials to estimate
analytical precision. All the REE plot figures are chondrite normalized, the
normalized value is based on Sun and McDonough56.

Mineral identification and zircon CL imaging. Back-scattered electron imaging,
X-ray energy dispersive spectroscopy for mineral identification and zircon CL
imaging were acquired on a FEI Quanta 450 field emission gun SEM with an
attachment of Oxford SDD Inca X-Max 50 energy dispersive spectroscopy and
Gatan Mono CL4þ CL system. The working conditions for SEM imaging were
20 kV with a spot size of B6.0 mm and working distance of B12 mm. For zircon
CL imaging, the working conditions were set to be 10 kV with a spot size of B5 mm
and working distance of B14 mm.

Raman spectra analyses. Raman spectra on the intergranular coesite were obtained
by a Renishaw RM 1000 Raman Spectrometer with 3.4 mV of 514 nm Ar laser exci-
tation at room temperature. The beam size for Raman spectroscopy was about 1.5mm.
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LA-ICP-MS U–Pb dating. LA-ICP-MS U–Pb dating, zircon U–Pb dating and
trace element analyses were conducted synchronously by LA-ICP-MS, and
detailed operating conditions for the laser ablation system and the ICP-MS
instrument, analytical procedures and data processing are the same as
described by Liu et al.55,57 Laser sampling was conducted using a GeoLas 2005
System with a spot size of 32 mm. Laser repetition rate was set at 6 Hz with energy
density of 60 mJ. Each analysis includes B20–30 s background acquisition,
followed by 30–50 s data acquisition from zircon samples. The zircon standard
91500 was used as an external standard to calibrate isotope fractionation,
which was analyzed twice for every five analyses. Zircon standard GJ-1 was
analyzed as an unknown. NIST610 was also applied to correct the time-
dependent drift of sensitivity and mass discrimination for the trace element
analysis. Off-line selection, integration of background and analytical signals,
time-drift correction and quantitative calibration were conducted by the software
of ICPMSDataCal55.
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