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Abstract
This study uses factor mixture modelling of the Short Sensory Profile (SSP) at two time points to describe subgroups of 
young autistic and typically-developing children. This approach allows separate SSP subscales to influence overall SSP 
performance differentially across subgroups. Three subgroups were described, one including almost all typically-developing 
participants plus many autistic participants. SSP performance of a second, largely-autistic subgroup was predominantly 
shaped by a subscale indexing behaviours of low energy/weakness. Finally, the third subgroup, again largely autistic, con-
tained participants with low (or more “atypical”) SSP scores across most subscales. In this subgroup, autistic participants 
exhibited large P1 amplitudes to loud sounds. Autistic participants in subgroups with more atypical SSP scores had higher 
anxiety and more sleep disturbances.

Keywords Autism · Sensory processing · Heterogeneity · Factor mixture modelling · Auditory event-related potentials 
(ERPs) · Auditory P1

Introduction

Sensory processing in Autism Spectrum Development 
(ASD)1 has historically received little attention from clini-
cians and researchers, and indeed sensory processing dif-
ferences were only added to the DSM criteria for autism 
in 2013 (American Psychiatric Association). However, 
research attention to the sensory features of autism has 
dramatically increased in recent years (Ben-Sasson et al., 
2019), and this research emphasizes the importance of this 
domain in the lives of many autistic people. Furthermore, 
external sensory inputs play a central role in negative sen-
sory experiences in autism (see Mostafa, 2008; Madriaga, 
2010), and society’s role in exposing individuals to some of 
these inputs should not be ignored in favour of a sole focus 
on sensory processing within autistic people themselves. 
There are, admittedly, positive aspects to sensory process-
ing in autism, such as experiences of sensory pleasure and 

enhanced performance on some perceptual tasks (Mottron, 
2019). Nevertheless, sensory experiences can be a cause of 
distress for many autistic people (Belek, 2018). Reports of 
atypical sensory processing in autism have been linked to 
anxiety (Mazurek et al., 2013; Neil et al., 2016; Uljarević 
et al., 2016), sleep problems (Hohn, de Veld et al., 2019; 
Mazurek et al., 2019), gastrointestinal problems (Mazurek 
et al., 2013), adaptive functioning (Ausderau et al., 2016; 
Williams et al., 2018a, b), and participation in activities (Lit-
tle et al., 2015). Moreover, sensory over-responsivity may 
divert autistic people’s attention away from social informa-
tion (Green et al., 2018). Perhaps most importantly, not only 
have autistic sensory issues been associated with existing 
measures of quality of life (Lin & Huang, 2019), but they 
have been described as being a factor of quality of life in 
autism in and of themselves (McConachie et al., 2019).
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Heterogeneity of Sensory Features

However, patterns of sensory processing in autism are highly 
heterogeneous (Uljarević et al., 2017). Importantly, if sen-
sory processing patterns differ across individuals, then dis-
similar individuals may require different interventions or 
accommodations to ameliorate sensory-related challenges. 
In an attempt to address the obstacle posed by this sensory 
heterogeneity, researchers have published numerous studies 
using clustering and mixture model analyses to define and 
characterize meaningful subgroups of autistic people with 
different patterns of sensory symptoms. Overall, these stud-
ies suggest that there is a division between an autistic phe-
notype with more typical sensory features and a phenotype 
with larger, more global sensory differences, while results 
regarding other distinctions (e.g., between hypo-responsive-
ness and hyper-responsiveness, between sensory modalities) 
are more inconsistent across studies (DeBoth & Reynolds, 
2017). Along with factors such as the use of different meas-
ures across studies, it seems reasonable to suppose that vari-
ability in the age of participants might have contributed to 
some of these ambiguities; sensory subgroups in some stud-
ies differ in chronological age (Lane et al., 2014; Liss et al., 
2006; Tomchek et al., 2018). Unfortunately, most studies of 
sensory heterogeneity in ASD are limited by their cross-sec-
tional nature; some autistic individuals may not be diagnosed 
until relatively late, potentially preventing their inclusion in 
younger parts of samples and confounding age differences. 
Relatively few longitudinal studies have explored sensory 
subgroups in ASD (cf. Ausderau et al., 2014, 2016; Dwyer 
et al., 2020a). The factor mixture modelling approach that 
is used in the present longitudinal study allows subgroups 
to vary in levels of latent variables over time.

Dimensional and Categorical Models

Theoretically speaking, factor mixture modelling partially 
addresses another limitation of prior studies using clus-
tering and mixture models to explore patterns of sensory 
processing in autism: their implicit assumption that pat-
terns of heterogeneity can be adequately described through 
defining categorical subgroups, rather than through dimen-
sional scores. Whereas conventional latent class and latent 
profile mixture models assume that observed variables are 
independent within each subgroup or class, factor mixture 
models describe patterns of covariation among variables 
(Lubke & Muthén, 2005). In a sense, factor mixture model-
ling offers some degree of synthesis between the categorical 
and dimensional approaches to heterogeneity (Clark et al., 
2013). Factor mixture modelling describes different patterns 
by assigning individuals to different classes on the basis of 
probabilities, but individuals might still vary in their levels 

of the continuous latent variables onto which observed vari-
ables load.

That said, the factor mixture model may not entirely 
resolve the theoretical difficulties involved in subgroup-
ing with potentially continuous data. Notably, as argued by 
Fushing and McAssey (2010), the question of exactly how 
many categorical subgroups exist in a particular dataset–that 
is, the question of what number of classes is “optimal”–may 
be ill-posed unless subgroups are well-separated and non-
overlapping. Notably, such a non-overlapping structure 
might make these subgroups visually obvious, eliminating 
the need for mixture modeling. Thus, the reader should bear 
in mind that the classes defined in the present study may not 
have a discrete existence as the sole subgroups that may be 
validly used to describe the present dataset. There might 
be other subgrouping solutions, with either fewer or more 
classes, that could also provide meaningful information 
about patterns in these data. In other words, mixture model 
classes might be best conceptualized as a descriptive tool 
for illustrating dimensional heterogeneity at a given level, 
rather than as a tool for uncovering discrete categorical enti-
ties. The fit indices offered by mixture models (see Nylund 
et al., 2007) could be seen as a means of identifying particu-
larly informative solutions, as well as of reducing researcher 
degrees of freedom.

Multimodal Measurement

Another obstacle to research on heterogeneity of sensory 
behaviour in ASD is that posed by the improper reliance 
on any single type of measurement. Any specific measure 
indexing individual differences in sensory processing may 
have limitations or may converge poorly with other types of 
measures, and for this reason, researchers have called for 
multimodal investigations of sensory processing heterogene-
ity in ASD (Uljarević et al., 2017). For example, caregiver-
report questionnaires have been criticized on the grounds 
that caregivers lack direct insight into the internal sensory 
experiences of autistic people and can therefore only report 
on external behaviours, which might be misleading (Grandin 
& Panek, 2014). This is concerning, as most studies describ-
ing sensory subgroups in autism have relied on caregiver-
report questionnaires (see DeBoth & Reynolds, 2017), with 
exceptions including a study based on a self-report question-
naire (Elwin et al., 2017) and one based primarily on audi-
tory event-related potentials (ERPs; Dwyer et al., 2020b).

Various studies suggest that continuous associations 
might exist between sensory questionnaire scores and neu-
rophysiological responses such as ERPs and event-related 
fields (e.g., Aoki et al., 2019; Carter Leno et al., 2018; Donk-
ers et al., 2015, 2019; Hudac et al., 2018). Indeed, although 
the subgroups found by Dwyer et al. (2020b) were defined 
on the basis of the strength of their ERPs, they were later 
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compared on auditory subscales of a caregiver-report ques-
tionnaire, Short Sensory Profile (SSP), which provided mul-
timodal evidence that relatively strong brain responses to 
loud sounds in ASD were linked to behavioural auditory 
distractibility/filtering problems. The present study sample 
is drawn from the same project–the Autism Phenome Project 
(APP), a longitudinal study at the UC Davis MIND Insti-
tute–as Dwyer et al., (2020b), but it adopts essentially the 
opposite approach: through factor mixture modelling, sub-
groups are defined on the basis of covariation between SSP 
subscales and latent factors, after which their ERPs can be 
compared. In this approach, the SSP–including non-auditory 
subscales–dictates the formation of subgroups, but the ERPs 
remain available to provide a complementary multimodal 
perspective.

Present Study

The present study uses factor mixture modelling to define 
different subgroups of participants from the APP in terms 
of sensory processing features from the SSP: in different 
models, not only factor loadings but also both longitudi-
nal patterns of change and patterns of covariation between 
time points are allowed to differ across subgroups. Follow-
ing the approach taken by Little et al. (2017) and by Dwyer 
et al. (2020b) both autistic and typically-developing partici-
pants are included in the same mixture model. This allows 
results from both groups to be more clearly placed in context 
against one another than in studies describing subgroups in 
ASD alone, or in studies where non-equivalent subgroups 
are separately defined in ASD and TD. We made the follow-
ing predictions:

1. That a large majority of typically-developing partici-
pants would be assigned, on the basis of posterior prob-
abilities, to a single class, constituting a typical pattern 
of covariation between subscales and overall sensory 
processing as reflected in the latent factor. We expected 
that some, but not all, autistic participants will also be 
assigned to this class on the basis of their posterior prob-
abilities.

2. That other autistic participants will be assigned to one 
or more classes showing a pattern of factor loadings 
differing from the aforementioned typical class. We 
expected very few typically-developing participants to 
be assigned to this class/these classes.

3. That autistic participants in classes with atypical pat-
terns of factor loadings would show higher anxiety, 
poorer sleep, and lower levels of adaptive functioning 
than autistic participants in the class with typical factor 
loadings.

4. That autistic participants in any classes where high lev-
els of auditory distractibility and noise distress make 

major contributions to overall sensory features would 
show stronger brain responses to loud sounds, consistent 
with Dwyer et al. (2020a), and that these participants 
would also show high levels of sensory sensitivity in 
other modalities.

Methods

The study was approved by the UC Davis Institutional 
Review Board and all procedures were in accordance with 
the Declaration of Helsinki.

Participants

Autistic participants in the present study met criteria for a 
pervasive developmental disorder (based on DSM-IV and 
Collaborative Programs of Excellence in Autism Network 
criteria) and passed cut-off scores on the ADOS-G (Lord 
et al., 2000) and, for either Social or Communication sub-
scales, on the ADI-R (Lord et al., 1994). Further details 
regarding the APP and participant recruitment can be found 
in previous publications (e.g., Libero et al., 2016; Nordahl 
et al., 2011). As part of the APP, caregiver-reports of sen-
sory behaviours on the SSP were collected at two time points 
an average of 2.80 years apart (range 1.15–5.31 years). APP 
participants were included in the present study if an SSP 
form was returned at either APP Time 1 (ages 2 through 
4) or APP Time 3 (ages 4 through 9) with complete data 
(i.e., no items missing) on at least one subscale. Note that 
between Times 1 and 3, participants returned for a Time 2 
visit, but neither SSP nor ERP data were collected at Time 
2. A total of 285 participants from the APP were included 
in the present analysis: 190 ASD (160 male, 30 female) and 
95 TD (64 male, 31 female). This included 172 autistic and 
87 typically-developing participants with Time 1 SSP data, 
as well as 87 autistic and 55 typically-developing partici-
pants with Time 3 SSP data. Data were available at both 
time points from 116 participants (69 ASD, 47 TD). Further 
information regarding participants is provided in Table 1.

Measures

Short Sensory Profile (SSP)

The Short Sensory Profile (SSP; McIntosh et al., 1999) is a 
38-item caregiver-report questionnaire that has been widely 
used in research on sensory features in ASD (see, e.g., 
Hand et al., 2017; Lane et al., 2014; Tomchek et al., 2015; 
Uljarević et al., 2016). Higher scores reflect relatively “typi-
cal” sensory behaviours, whereas lower scores are indica-
tive of more “atypical” sensory behaviours, but the SSP 
has a contested subscale structure. McIntosh et al. (1999) 
defined seven SSP subscales, while Tomchek et al. (2014) 
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defined a total of six SSP subscales. More recently, Williams 
et al., (2018a, b) found both of these previous solutions had 
an unacceptable fit, and they defined nine subscales: Low 
Energy/Weakness (LEW), Taste/Smell Sensitivity (TSS), 
Hyperactivity/Inattention (HYI), Tactile Sensitivity (TS), 
Movement Sensitivity (MS), Auditory Distractibility (AD), 
Hypo-responsiveness to Speech (HRS), Visual Sensitivity 
(VS), and Noise Distress (ND). As described below, the pre-
sent study uses the solution offered by Z. J. Williams and 
colleagues. In the present study, the SSP was collected at 
both Time 1 and Time 3.

Mullen Scales of Early Learning (MSEL)

The Mullen Scales of Early Learning (MSEL; Mullen, 1995) 
are a standardized assessment of cognitive ability for chil-
dren under 68 months; in the APP, this measure was col-
lected at Time 1. Four of the five MSEL subscales were 
administered: Visual Reception (VR), Fine Motor (FM), 
Expressive Language (EL), and Receptive Language (RL). 
A ratio full-scale developmental quotient (DQ) was calcu-
lated (as mental age/chronological age ×100), along with 
separate developmental quotients for the verbal (VDQ) and 
nonverbal (NVDQ) domains.

Differential Ability Scales (DAS)

The Differential Ability Scales, Second Edition (DAS-II; 
Elliott, 2007) are a standardized assessment of cognitive 
ability for children aged 2–17 years; in the APP, this meas-
ure was collected at Time 3. The standardized General Con-
ceptual Ability (GCA) score was used as an overall index of 
cognitive ability in the present study. Note that discrepancies 
between MSEL DQ and DAS GCA at Times 1 and 3 should 
be interpreted with caution, as prior research indicates DAS 
GCA and MSEL DQ are not on the same scale; DAS GCA 
scores are often higher than MSEL DQ (Farmer et al., 2016).

Vineland Adaptive Behaviour Scales (VABS)

The Vineland Adaptive Behavior Scales, Second Edition 
(VABS-II; Sparrow et al., 2005) are rating scales intended 
to assess the adaptive functioning of individuals with devel-
opmental disabilities in their natural environments. At Times 
1 and 3 in the APP the VABS was collected as a caregiver-
report questionnaire. The VABS yields a standardized com-
posite adaptive behaviour score, which was employed in the 
present study, as well as standardized scores for communica-
tion, daily living skills, socialization, and motor skills.
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Childhood Behavior Checklist (CBCL)

The Childhood Behavior Checklist (CBCL; Achenbach & 
Rescorla, 2000) is a caregiver-report questionnaire which 
aims to measure problematic internalizing and externalizing 
behaviours. The CBCL’s DSM-oriented anxiety T-score was 
used to index anxiety in this study. At Time 1, this anxi-
ety score was derived from the preschool-age version of the 
CBCL. At Time 3, the preschool-age CBCL was obtained 
from 72 autistic participants and the school-age CBCL from 
15 autistic participants in the present study.

Children’s Sleep Habits Questionnaire (CSHQ)

The Children’s Sleep Habits Questionnaire (CSHQ; Owens 
et al., 2000) is a 45-item questionnaire which asks parents 
to report the weekly frequency of problematic sleep behav-
iours. Although the measure has subscales indexing bedtime 
resistance, sleep onset delay, sleep duration, sleep anxiety, 
night walking, parasomnias, sleep disordered breathing, and 
daytime sleepiness, the composite total sleep disturbances 
questionnaire was used in the present study. Complete data 
were available from 143 autistic participants at Time 1 and 
80 at Time 3.

EEG Task and Processing

EEG data were collected at Time 1 in the APP, when par-
ticipants were aged 2 through 4 years. The EEG task and 
processing procedures employed in the present study have 
been described in greater detail elsewhere (De Meo-Monteil 
et al., 2019; Dwyer et al., 2020b, 2021). Briefly, while par-
ticipants were seated in a caregiver’s lap watching a video 
of their choice, approximately ~ 1200 50 ms complex tones 
(combining multiple frequencies) of four intensities (50, 60, 
70, and 80 dB SPL) were presented binaurally using head-
phones at a random interstimulus interval of 1–2 s. EEG was 
sampled at 1000 Hz using a 61-channel electrode cap (easy-
cap.de). Offline in BESA 5.2 (besa.de), data were average-
referenced and subjected to a low-cut filter of 0.4 Hz (12 dB/
octave). Epochs (− 200 ms to + 900 ms) were extracted and 
bad channels, trials with extreme amplitudes, and trials with 
mechanical artefacts were removed. In order to eliminate 
putatively non-neural signals (e.g., muscle tension and eye 
movements), remaining trials were submitted to second-
order blind source identification (SOBI; Belouchrani et al., 
1997) independent components analysis using a semiauto-
matic artifact removal tool (SMART; see Saggar et al., 2012 
for details). Trials were then averaged for each participant 
and condition and entered into Cartool (Brunet et al., 2011), 
which was used to interpolate data from excluded channels 
using a three-dimensional spline (Perrin et al., 1987), fur-
ther filter the data (second-order Butterworth, 12 dB/octave; 

40 Hz high-cut, 60 Hz notch), and apply baseline correction 
(using the 100 ms immediately prior to stimulus onset). In 
the ASD group from the present study, usable ERP data were 
obtained from 115 participants at Time 1.

Confirmatory Factor Analysis (CFA)

Given the existence of multiple SSP factor solutions (McI-
ntosh et al., 1999; Tomchek et al., 2014), of which that 
described by Z. J. Williams et al., (2018a, b) appeared to 
have the greatest precision, we chose to proceed with a 
confirmatory factor analysis (CFA) to determine whether 
the Williams et al. solution would be acceptable for use in 
the present study. Mplus version 8.2 (Muthén & Muthén, 
1998/2017) was used to estimate separate CFA models at 
each time point, collapsing across groups. A robust, diag-
onally-weighted least squares estimator (“WLSMV”) was 
employed. Items were defined as ordered categorical vari-
ables. Model fit was measured using Root Mean Square 
Error of Approximation (RMSEA), Comparative Fit Index 
(CFI), Tucker-Lewis Index (TLI), and Standardized Root 
Mean Square Residual (SRMR). Hu and Bentler’s (1999) 
criteria (acceptable RMSEA < 0.06, CFI/TLI > 0.95, and 
SRMR < 0.08) were used to evaluate model fit.

Factor Mixture Model (FMM)

As CFA showed acceptable fit (see results section below), 
we proceeded to define a factor mixture model in Mplus 
version 8.2 using the nine SSP subscales proposed by Z. 
J. Williams et al., (2018a, b) as observed variables. In the 
overall model, at each time point, a latent factor was defined 
loading on all nine SSP subscales. This overall latent factor 
is not intended to suggest that the SSP is unidimensional; 
it was defined in order to explore how different subscales 
contribute to the individual’s overall level of sensory behav-
iours and whether these contributions vary across classes 
of individuals. To simplify the model, factor loadings were 
constrained to be equal across the two time-points. Covari-
ances between scores on each SSP subscale at Time 1 and 
the same subscale at Time 3 were estimated, as were covari-
ances between the latent factors at Times 1 and 3. Variances 
of each latent factor were fixed to one. The mean of the 
latent factor at Time 1 was fixed to one, and the means of 
subscales were constrained to be equal across the two time-
points, thereby forcing any longitudinal change in sensory 
processing scores to be expressed through the estimated 
mean of the latent factor at Time 3.

The classes defined in the factor mixture model were 
allowed to vary from the overall model in the loadings of 
each SSP subscale onto the latent factor (although these 
loadings were still constrained to be equal across time-
points). Furthermore, in some models, classes were also 
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allowed to vary in the covariance among the latent factors 
at each time-point (representing the degree to which overall 
Time 1 sensory features predicted Time 3 sensory features) 
and/or in the mean of the latent factor at Time 3 (represent-
ing overall longitudinal changes in levels of total sensory 
features).

Fit indices were used to evaluate and compare models 
(Nylund et al., 2007). These included information criteria: 
Akaike’s Information Criterion (AIC), Bayesian Information 
Criterion (BIC), and sample size-adjusted BIC (SABIC). 
These information criteria endeavour to maximize both the 
parsimony and explanatory power of models; smaller val-
ues indicate better model fit. Furthermore, statistical tests 
were used in an effort to determine whether model fit signifi-
cantly improved with the addition of new classes; these tests 
were the Lo-Mendell-Rubin (LMR) test, the Vuong-LMR 
(VLMR) test, and the bootstrap likelihood ratio test (BLRT). 
Through bootstrapping, the BLRT, unlike the LMR and 
VLMR tests, empirically estimates the shape of the distri-
bution of differences between models. Finally, entropy was 
considered; entropy measures the separation of classes, with 
more separated classes–reflected by higher values–suggest-
ing more powerful models (Celeux & Soromenho, 1996).

Comparisons of Classes

After model selection, exploratory follow-up analyses 
were conducted to determine whether autistic participants 
assigned to separate classes differed in chronological age, 
cognitive ability, adaptive behaviour, anxiety, and scores 
on each SSP subscale at Time 1 or Time 3. If participants 
who lacked SSP data at one time point had other relevant 
scores at that time point, these data were included in the 
analysis. Kruskal–Wallis tests were used for omnibus effects 
and Wilcoxon-Mann–Whitney tests with Bonferroni-Holm 
corrections were used to determine significance of post-
hoc comparisons, which are reported using the effect size 
δ (Cliff, 1993) with a 95% asymmetric confidence interval 
from the orddom R package (Rogmann, 2013). Values of δ 
can range from –1 to + 1, with each extreme value represent-
ing a complete lack of overlap between the ordinal data. In 
contrast, Cliff’s δ values approaching 0 suggest classes are 
indistinguishable on a given dependent variable. η2 effect 
sizes are also reported for Kruskal–Wallis tests (http:// www. 
psych ometr ica. de/ effect_ size. html).

ERP Analysis

ASD participants with usable ERP data at Time 1 were com-
pared across classes using mixed ANOVA with P1 amplitude 
and latency as the dependent variable and stimulus inten-
sity and hemisphere as within-subject factors. The approach 
used to quantify the P1 component in these ERPs has been 

discussed in greater detail in prior research involving the 
present dataset (Dwyer et al., 2021).2 Essentially, in order to 
avoid confounds with individual differences in topography 
or cap positioning, the P1 was measured separately in each 
condition and hemisphere over the fronto-central electrode at 
which the individual exhibited their largest positive voltage, 
as well as immediately adjacent electrodes; electrodes out-
side the pre-defined fronto-central region (see Fig. 1) were 
not included in the analysis. In each condition, the P1 time 
window was defined as the area ± 50 ms on either side the 
greatest positive peak in any channel in the grand-averaged 
data from both diagnostic groups in the full APP ERP data-
set, which was 70–170 ms (50 dB), 59–159 ms (60 dB), 
44–144 ms (70 dB), and 41–141 ms (80 dB). Within this 
time window, latency was measured as 50% fractional area 
latency (see Luck, 2014): that is, latency was defined as the 
point at which the area above and below the curve within the 
aforementioned time window was equalized on either side 
of the latency estimate. Amplitude was measured as area 
amplitude within the P1 time window.

Results

Confirmatory Factor Analysis (CFA)

At both time points, all CFA fit indices examined were 
within acceptable ranges, supporting the SSP factors/sub-
scales defined by Z. J. Williams et al., (2018a, b), at least 
with regard to the data from autistic and typically-develop-
ing children in the present study (Table 2).

Fit Indices and Selection of FMM

As can be seen in Fig. 2, fit indices generally suggested that 
there was no substantial improvement to fit from allow-
ing covariances of factors or the mean of F2 to vary across 
classes, over and above allowing factor loadings to vary 
across classes. For this reason, all models except those 
where only the factor loadings were allowed to vary across 
classes were discarded.

However, fit indices offered somewhat unclear feedback 
regarding the “optimal” number of classes when only fac-
tor loadings were allowed to vary across classes (Fig. 2). 
Smaller values of AIC, BIC, and SABIC are thought to 
indicate better model fit, and both AIC and SABIC con-
tinuously improved as the number of classes was increased 

2 Note that in the present study, participants with small or unclear P1 
responses were included in analyses–unlike in Dwyer et  al. (2021)–
in order to prevent confounding the amplitude analysis; Dwyer et al. 
only measured latency and they did not require complete data for 
ANOVA analyses.

http://www.psychometrica.de/effect_size.html
http://www.psychometrica.de/effect_size.html
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from one to seven. On the other hand, entropy became 
poorer as the number of classes was increased from two to 
three (higher entropy values suggest better fit). The BLRT 
test indicated improvements in fit as the number of classes 
was increased from one to two, p < 0.0001, and from two 
to three, p < 0.0001, but the LMR and VLMR tests found 
no improvement in fit even from one to two classes, with 
each yielding p = 0.26. Meanwhile, BIC improved substan-
tially when the number of classes was increased from one 
to two, and there was a further modest improvement of BIC 
from two to three classes, but BIC afterwards plateaued. 
Overall, the three-class solution may represent somewhat of 
an intermediate position between indices favouring a small 
number of classes (LMR, VLMR) and those favoring a large 
number (AIC, SABIC). Furthermore, the three-class solu-
tion appeared to be clinically and practically meaningful. 
Therefore, the three-class solution was selected. However, as 
discussed previously, multiple solutions with varying num-
bers of classes might each independently convey meaningful 
information about dimensional variability in these data. We 
have therefore presented two- and four-class solutions for 
reference in supplementary materials.

Description of Classes

In the three-class solution, the first class was characterized 
by an extremely high loading of the low energy/weak sub-
scale (LEW) onto the latent factor (Table 3), so that, in this 
class, participants’ overall level of reported sensory behav-
iour as reflected in the latent factor was highly influenced 
by raw scores on the LEW subscale (Supplementary Fig. 1). 
Given the importance of the LEW subscale in shaping the 
latent overall factor in class 1-LEW, and in order to bet-
ter understand this subscale, associations between the LEW 
subscale and other variables were explored in supplementary 
materials (Supplementary Tables 5 and 6).

The second class of participants had more balanced load-
ings, and it is thus referred to as the Generalized Positive 
Loadings (GPL) class. These loadings appeared to reflect 
these participants’ problematic reported sensory features and 
behaviours across a number of different subscales. These 
were most notably Taste/Smell Sensitivity (TSS), Hyperac-
tivity/Inattention (HYI), Tactile Sensitivity (TS), Movement 
Sensitivity (MS) and Auditory Distractibility (AD).

Finally, the third class was characterized by negative 
loadings of the subscales onto the latent factor, and it is 
referred to as the Negative Loadings (NL) class. These load-
ings appeared to reflect the presence of relatively few unu-
sual or problematic sensory features, with notable negative 
loadings on HYI and TSS.

Average posterior probabilities of individuals’ class 
assignments are given in Table 4. The lowest average poste-
rior probability was 89%, suggesting class assignments were, 
for the most part, quite confident.

Fig. 1  Fronto-central channels 
in either hemisphere selected 
as the measurement region for 
the P1 component are indicated 
with a yellow dot. Channel 
positions may appear slightly 
irregular; this is because chan-
nel positions are based on actual 
electrode positions obtained 
from a subset of participants 
using a Polhemus digitizer

Table 2  Fit indices of CFA models at each time-point

Hu and Bentler (1999) suggest that acceptable values for RMSEA 
are < .06, for CFI and TLI > .95, and for SRMR < .08

Timepoint χ2 (df) RMSEA CFI TLI SRMR

Time 1 613.163 (398) .046 .985 .982 .056
Time 3 557.463 (398) .053 .983 .980 .061
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Classes and Diagnostic Groups

The 1-LEW and 2-GPL classes were overwhelmingly domi-
nated by autistic participants, while the 3-NL class was a 
mixed group of typically-developing and autistic participants 
(Table 5). A Fisher’s exact test indicated that the proportions 
of participants from each diagnostic group were not homo-
geneous across classes, p < 0.0001.

Interestingly, a Fisher’s test comparing participants from 
the four largest combinations of class and diagnostic group 
(i.e., excluding TD participants in classes 2 and 3) found a 
lack of homogeneity in the proportions of participants with 
and without Time 3 SSP data, p = 0.006.

Classes and Raw SSP Scores

As very few typically-developing participants were assigned 
to classes 1-LEW and 2-GPL (Table 6), analyses compar-
ing classes on the basis of raw SSP scores were carried out 
within the ASD group. Participants assigned to separate 
classes differed in the raw scores they obtained on a num-
ber of SSP subscales at both Time 1 (Table 7) and Time 
3 (Table 8), confirming that differences in factor loadings 
translated into differences in actual scores. Visualizations 
of participant raw scores and trajectories on each subscale 
are available in supplementary materials (Supplemen-
tary Figs. 1, 2, 3, 4, 5, 6, 7, 8, and 9), as are longitudinal 

Fig. 2  Information criteria (AIC, BIC, SABIC), log-likelihood, and 
entropy fit indices from the various models. Low values of AIC, BIC, 
and SABIC should be interpreted as signs of superior model fit, while 
higher values of entropy and log-likelihood suggest superior fit. Note 

that a model with only factor loadings varying across classes (1, red 
line) was selected. Here, entropy appears to favour a two-class solu-
tion and BIC a three-class solution, while other fit indices appear to 
suggest continued improvements through to seven classes
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comparisons of SSP subscores at Times 1 and 3 within each 
class and group (Supplementary Tables 7, 8, 9, and 10).

In addition, Wilcoxon-Mann–Whitney tests were used to 
determine whether autistic and typically-developing partici-
pants assigned to class 3-NL significantly differed in their 

raw SSP scores at Time 1 and also at Time 3. As shown in 
Table 9, autistic participants in this class had lower (more 
atypical) scores than their typically-developing counterparts 
on almost all subscales.

Table 3  Estimated factor loadings, along with associated standard errors, from each class in the final three-class model

Factors are: Low Energy/Weakness (LEW), Taste/Smell Sensitivity (TSS), Hyperactivity/Inattention (HYI), Tactile Sensitivity (TS), Movement 
Sensitivity (MS), Auditory Distractibility (AD), Hyporesponsiveness to Speech (HRS), Visual Sensitivity (VS), and Noise Distress (ND). Note 
that raw factor loadings were held equal across time points by the model, but standardized loadings show slight differences from Time 1 to Time 
3

Class 1–LEW
Estimate (SE)

Class 2–GPL
Estimate (SE)

Class 3–NL
Estimate (SE)

Raw Standardized Raw Standardized Raw Standardized

Time 1 Time 3 Time 1 Time 3 Time 1 Time 3

LEW 11.164 
(0.819)

0.987 (0.004) 0.966 (0.015) 2.331 (0.873) 0.791 (0.127) 0.614 (0.193) – 0.373 
(0.183)

– 0.202 
(0.078)

– 0.123 
(0.066)

TSS 1.598 (0.723) 0.339 (0.137) 0.340 (0.137) 4.217 (0.893) 0.689 (0.082) 0.691 (0.087) – 2.988 
(0.299)

– 0.558 
(0.047)

– 0.560 
(0.050)

HYI 1.941 (0.624) 0.552 (0.129) 0.503 (0.122) 3.901 (0.621) 0.799 (0.049) 0.760 (0.057) – 4.181 
(0.247)

– 0.819 
(0.023)

– 0.782 
(0.034)

TS 1.580 (0.419) 0.572 (0.106) 0.618 (0.102) 3.964 (0.641) 0.869 (0.040) 0.892 (0.037) – 1.442 
(0.156)

– 0.538 
(0.047)

– 0.583 
(0.046)

MS 1.771 (0.361) 0.735 (0.095) 0.764 (0.084) 3.399 (0.706) 0.901 (0.052) 0.916 (0.043) – 0.140 
(0.119)

– 0.085 
(0.065)

– 0.093 
(0.075)

AD 1.770 (0.358) 0.710 (0.074) 0.634 (0.088) 3.215 (0.503) 0.878 (0.039) 0.830 (0.045) – 1.420 
(0.185)

– 0.629 
(0.049)

– 0.549 
(0.063)

HRS 0.804 (0.235) 0.499 (0.118) 0.492 (0.112) 1.544 (0.363) 0.742 (0.086) 0.735 (0.080) – 1.840 
(0.112)

– 0.796 
(0.030)

– 0.791 
(0.031)

VS 1.612 (0.355) 0.715 (0.081) 0.662 (0.085) 1.848 (0.440) 0.761 (0.081) 0.711 (0.090) – 0.653 
(0.127)

– 0.383 
(0.063)

– 0.337 
(0.060)

ND 0.933 (0.229) 0.472 (0.093) 0.424 (0.096) 2.020 (0.453) 0.757 (0.080) 0.712 (0.080) – 0.881 
(0.174)

– 0.451 
(0.068)

– 0.404 
(0.079)

Table 4  Posterior probabilities 
of assignment to each class, as 
averaged across all participants 
in each class

Columns define actual class assignments, while rows refer to the posterior probabilities of assignment 
within each class for participants in a given column. That is, participants who are actually assigned to Class 
1-LEW have on average a 92.09% posterior probability of assignment to said class, along with a 3.45% 
posterior probability of assignment to Class 2-GPL and a 4.46% posterior probability of assignment to 
Class 3-NL

Actual Assigned Class

Class 1-LEW (%) Class 2-GPL (%) Class 3-NL (%)

Probability of Assignment to… Class 1-LEW 92.09 1.22 4.46
Class 2-GPL 3.45 91.38 6.09
Class 3-NL 4.46 7.40 89.46

Table 5  Count of participants 
in each class and diagnostic 
group, as well as percentage 
of participants from each 
diagnostic group assigned to a 
given class

Class 1-LEW Class 2-GPL Class 3-NL

ASD TD ASD TD ASD TD

Count 53 2 24 1 113 92
Percentage 27.89% 2.11% 12.63% 1.05% 59.47% 96.84%
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Classes and Chronological Age in ASD

Chronological age did not differ across autistic participants 
assigned to separate classes at Time 1, Kruskal–Wallis 
χ2 = 0.22, p = 0.89, η2 = 0.01 (Supplementary Table 11). At 
Time 3, a trend towards an effect did not attain statistical 
significance, Kruskal–Wallis χ2 = 5.78, p = 0.06, η2 = 0.05 
(Fig. 3A; Supplementary Table 12). This trend was driven by 
older age in class 1-LEW than class 3-NL, an effect which 
at post hoc remained significant after Bonferroni-Holm cor-
rection for three comparisons, Wilcoxon p = 0.04, δ = 0.34 
[95% CI 0.06, 0.57].

Classes and Cognitive Ability in ASD

At Time 1, MSEL DQ significantly differed across autis-
tic participants assigned to separate classes, Kruskal–Wal-
lis χ2 = 7.70, p = 0.02, η2 = 0.03 (Fig. 3B; Supplementary 
Table 11). This was driven by higher MSEL DQ scores in 
class 1-LEW (M = 69.26, SD = 0.21.83) than class 3-NL 

(M = 60.42, SD = 19.12), corrected Wilcoxon p = 0.01, 
δ = 0.27 [95% CI 0.07, 0.46]. DAS GCA scores did not differ 
across classes at Time 3, Kruskal–Wallis χ2 = 1.33, p = 0.51, 
η2 = 0.01 (Supplementary Table 12).

Classes and Adaptive Behaviour in ASD

VABS composite scores did not significantly differ across 
autistic participants assigned to separate classes at Time 
1, Kruskal–Wallis χ2 = 0.33, p = 0.85, η2 = 0.01 (Supple-
mentary Table 11), or Time 3, Kruskal–Wallis χ2 = 0.37, 
p = 0.83, η2 = 0.02 (Supplementary Table 12).

Classes and Anxiety in ASD

At Time 1, CBCL DSM-oriented anxiety T-scores sig-
nificantly differed across autistic participants assigned to 
separate classes, Kruskal–Wallis χ2 = 15.09, p = 0.0005, 
η2 = 0.07 (Fig. 3C; Supplementary Table 11). This omnibus 
effect was driven by higher anxiety in class 1-LEW than 

Table 6  Count and proportion 
of participants from each class 
and diagnostic group with 
usable SSP data at each time 
point

Class 1-LEW Class 2-GPL Class 3-NL

ASD TD ASD TD ASD TD

Time 1 48 (90.57%) 2 (100.00%) 20 (83.33%) 1 (100.00%) 104 (92.04%) 84 (91.30%)
Time 3 31 (58.49%) 0

(0.00%)
14 (58.33%) 1 (100.00%) 42 (37.17%) 54 (58.70%)

Table 7  At Time 1, mean and standard deviations of SSP subscale scores from autistic participants assigned to each class, along with results of 
Kruskal–Wallis omnibus tests and corrected post-hoc tests

Values of δ are denoted with * if the corresponding Wilcoxon-Mann–Whitney p value is < .05 after Bonferroni-Holm correction for three com-
parisons, with ** if p < .01, and with *** if p < .001

Mean (SD) By Class Kruskal–Wallis Omnibus Test Cliff’s δ Post-Hoc Effect  Sizea with 95% CI

1-LEW 2-GPL 3-NL χ2 p η2 LEW vs. GPL LEW vs. NL GPL vs. NL

LEW 18.90 (6.45) 27.05 (3.32) 28.83 (1.84) 84.54  < .0001 .49  − .74***
[− .87, − .52]

 − .87***
[− .94, − .73]

 − .31*
[− .55, − .01]

TSS 12.52 (5.07) 9.85 (5.71) 12.65 (5.57) 4.45 .11 .02 .28
[− .05, .56]

 − .02
[− .21, .17]

 − .29
[− .54, − .00]

HYI 13.67 (3.65) 11.90 (3.19) 14.45 (4.59) 7.36 .03 .03 .29
[− .02, .55]

 − .12
[− .30, .07]

 − .36*
[− .56, − .12]

TS 15.57 (3.22) 12.30 (3.42) 16.90 (2.65) 27.84  < .0001 .16 .53**
[.26, .72]

 − .24*
[− .42, − .04]

 − .71***
[− .83, − .52]

MS 12.38 (1.85) 9.85 (3.15) 14.23 (1.26) 61.53  < .0001 .35 .49**
[.15, .72]

 − .59***
[− .73, − .41]

 − .80***
[− .92, − .53]

AD 11.32 (2.12) 9.30 (3.44) 12.05 (2.40) 14.99 .0006 .08 .37*
[.01, .64]

 − .23*
[− .41, − .04]

 − .48**
[− .70, − .16]

HRS 4.92 (1.37) 3.75 (1.62) 4.90 (1.67) 9.79 .007 .05 .44**
[.13, .67]

.01
[− .18, .19]

 − .40**
[− .62, − .13]

VS 6.89 (2.42) 6.15 (2.43) 8.31 (1.70) 21.00  < .0001 .11 .18
[− .13, .45]

 − .34**
[− .52, − .14]

 − .52***
[− 72, − .23]

ND 7.46 (1.54) 5.15 (2.43) 7.95 (2.14) 23.36  < .0001 .13 .57***
[.22, .79]

 − .24*
[− .41, − .06]

 − .59***
[− .78, − .31]
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class 3-NL, corrected Wilcoxon p = 0.002, δ = 0.31 [95% 
CI 0.13, 0.48], and in class 2-GPL than class 3-NL, cor-
rected Wilcoxon p = 0.01, δ = 0.34 [95% CI 0.09, 0.55]. At 
Time 3, a trend towards an effect did not attain statistical 
significance, Kruskal–Wallis χ2 = 5.33, p = 0.07, η2 = 0.04 

(Supplementary Table 12). The strongest post hoc trend at 
Time 3–viz., one towards higher anxiety in class 2-GPL than 
class 3-NL–did not approach significance after Bonferroni-
Holm correction, corrected Wilcoxon p = 0.15, δ = 0.33 
[95% CI –0.02, 0.61].

Table 8  At Time 3, mean and standard deviations of SSP subscale scores from autistic participants assigned to each class, along with results of 
Kruskal–Wallis omnibus tests and corrected post-hoc tests

a Values of δ are denoted with * if the corresponding Wilcoxon–Mann–Whitney p value is < .05 after Bonferroni-Holm correction for three com-
parisons, with ** if p < .01, and with *** if p < .001; n.s. means not significant

Mean (SD) By Class Kruskal–Wallis Omnibus Test Cliff’s δ Post-Hoc Effect  Sizea with 95% CI

1-LEW 2-GPL 3-NL χ2 p η2 LEW vs. GPL LEW vs. NL GPL vs. NL

LEW 16.61 (5.99) 23.79 (6.03) 28.14 (2.83) 48.65  < .0001 .56  − .58**
[− .80, − .22]

 − .93***
[− .97, − .82]

 − .42*
[− .70, − .02]

TSS 12.47 (4.88) 10.79 (6.02) 12.56 (5.42) 0.98 .61 .01 .19
[− .22, .55]

 − .04
[− .30, .23]

 − .14
[− .49, .24]

HYI 14.81 (4.13) 9.71 (2.64) 14.76 (4.79) 15.06 .0005 .16 .71***
[.43, .86]

 − .03
[− .29, .24]

 − .62**
[− .79, − .35]

TS 16.45 (2.38) 13.79 (3.66) 17.63 (2.22) 14.44 .0007 .15 .44*
[.01, .74]

 − .32*
[− .55, − .05]

 − .60**
[− .83, − .20]

MS 12.19 (2.51) 10.23 (2.24) 14.61 (0.77) 40.83  < .0001 .47 .46*
[.11, .70]

 − .62***
[− .78, − .38]

 − .96***
[− .99, − .84]

AD 9.32 (2.63) 8.64 (1.69) 11.17 (2.65) 15.04 .0005 .16 .14
[− .20, .45]

 − .41**
[− .62, − .13]

 − .60**
[− .78, − .33]

HRS 5.45 (1.67) 5.00 (1.66) 5.95 (1.77) 4.29 .12 .03 .13
[− .24, .47]

 − .20
[− .44, .07]

 − .32
[− .60, .02]

VS 7.52 (2.20) 7.07 (2.34) 8.39 (1.96) 5.97 .05 (n.s.) .05 .13
[− .27, .49]

 − .27
[− .50, − .01]

 − .33
[− .63, .05]

ND 6.06 (2.14) 6.07 (2.34) 6.60 (2.29) 1.01 .60 .01  − .03
[− .39, .34]

 − .13
[− .38, .14]

 − .12
[− .44, .23]

Table 9  SSP raw scores of ASD and TD participants assigned to class 3-NL at each time point, along with p-values from Wilcoxon-Mann–
Whitney tests and Cliff’s δ effect size measurements comparing scores from each diagnostic group

a n.s. means not significant

Time 1 Time 3

Mean (SD) p Cliff’s δ Mean (SD) p Cliff’s δ

ASD TD Value 95% CI ASD TD Value 95% CI

LEW 28.83 (1.84) 29.75 (0.92)  < .0001  − .29  − .40, − .17 28.14 (2.83) 29.43 (1.09) .05 (n.s.)a  − .19  − .38, .01
TSS 12.65 (5.57) 17.95 (2.70)  < .0001  − .54  − .66, − .39 12.56 (5.42) 18.15 (3.24)  < .0001  − .67  − .80, − .47
HYI 14.46 (4.59) 19.70 (3.19)  < .0001  − .64  − .75, − .51 14.76 (4.79) 21.59 (3.23)  < .0001  − .76  − .86, − .59
TS 16.90 (2.65) 18.81 (1.65)  < .0001  − .46  − .59, − .31 17.63 (2.22) 19.31 (1.36)  < .0001  − .57  − .73, − .36
MS 14.23 (1.26) 14.13 (1.45) .67 .03  − .12, .18 14.61 (0.77) 14.44 (1.11) .56 .06  − .13, .24
AD 12.05 (2.40) 13.93 (1.17)  < .0001  − .51  − .63, − .36 11.17 (2.65) 13.69 (1.70)  < .0001  − .61  − .76, − .40
HRS 4.90 (1.67) 8.24 (1.49)  < .0001  − .84  − .90, − .74 5.95 (1.77) 8.28 (1.45)  < .0001  − .69  − .81, − .51
VS 8.31 (1.70) 8.92 (1.17) .03  − .18  − .33, − .02 8.39 (1.96) 9.04 (1.50) .09  − .19  − .40, .04
ND 7.95 (2.14) 8.21 (1.65) .75  − .03  − .19, .14 6.60 (2.29) 8.52 (1.83)  < .0001  − .51  − .68, − .28
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Classes and Sleep in ASD

At Time 1, CSHQ total sleep disturbance scores signifi-
cantly differed across autistic participants assigned to 
separate classes, Kruskal–Wallis χ2 = 17.82, p = 0.0001, 
η2 = 0.11 (Fig. 3D; Supplementary Table 11). Caregivers 
of participants assigned to class 2-GPL, corrected Wil-
coxon p = 0.0003, δ = 0.57 [95% CI 0.30, 0.76], and to class 
1-LEW, corrected Wilcoxon p = 0.03, δ = 0.28 [95% CI 0.04, 
0.48], reported more sleep disturbances than caregivers of 
those assigned to class 3-NL. Furthermore, and interestingly, 
caregivers of participants in class 2-GPL reported signifi-
cantly more sleep problems than those in class 1-LEW, cor-
rected Wilcoxon p = 0.05, δ = 0.33 [95% CI –0.00, 0.59]. 
At Time 3, no effect of CSHQ total scores was evident, 
Kruskal–Wallis χ2 = 2.03, p = 0.36, η2 = 0.04 (Supplemen-
tary Table 12).

Classes and ERPs in ASD

Latency

Although a main effect of stimulus intensity (loudness) on P1 
latency was observed, F(3, 336) = 292.22, p < 0.0001, �2G = 
0.43 (Fig. 4; Supplementary Table 13), no main effects or 
two-way interactions involving class approached significance 
in ASD. There was a significant three-way interaction of class, 
intensity, and hemisphere on latency, F(6, 336) = 2.78, 
p = 0.01, �2

G
 = 0.01. However, no post-hoc effects were strong 

enough to survive correction for multiple comparisons. Thus, 
it is not clear that meaningful P1 latency differences emerged 
between classes.

Fig. 3  Boxplots comparing 
autistic participants assigned 
to different classes, overlaid by 
individual participants’ scores. 
From left to right and top to 
bottom: A Chronological age of 
autistic participants in months 
at Time 3; B MSEL DQ of 
autistic participants at Time 1; 
C CBCL DSM-oriented anxiety 
T-scores of autistic participants 
at Time 1; D CSHQ total sleep 
disturbances scores of autistic 
participants at Time 1



3852 Journal of Autism and Developmental Disorders (2022) 52:3840–3860

1 3

Amplitude

Significant main effects of class, F(2, 112) = 4.24, p = 0.02, 
�
2

G
 = 0.03, and stimulus intensity, F(3, 336) = 5.69, 

p = 0.0008, �2
G

 = 0.02, on P1 amplitude were observed 
(Figs.  5, 6, Table  10). The main effect of intensity 
remained significant after Greenhouse–Geisser correction, 
GGε = 0.88, p = 0.001. Amplitudes were higher to 80 dB 
sounds than all other sounds, Bonferroni-Holm corrected 
p ≤ 0.02. Furthermore, follow-up ANOVAs comparing pairs 
of classes indicated that ERP amplitudes were generally 

higher in class 2-GPL than class 1-LEW, F(1, 82) = 6.39, 
Bonferroni-Holm corrected p = 0.03, �2

G
 = 0.06, and in class 

2-GPL than class 3-NL, F(1, 82) = 6.27, corrected p = 0.04, 
�
2

G
 = 0.04.
In addition, however, a two-way interaction between class 

and intensity attained significance, F(6, 336) = 2.38, 
p = 0.03, �2

G
 = 0.01 (Supplementary Fig. 10), and this inter-

action remained significant after Greenhouse–Geisser cor-
rection for sphericity violation, GGε = 0.88, p = 0.04. Due 
to the presence of this interaction, the original omnibus main 
effects of class and intensity should be regarded with 

Fig. 4  Boxplots compar-
ing P1 ERP latencies across 
autistic participants assigned 
to different classes, overlaid 
by individual participants’ 
latency values. A significant 
three-way ANOVA interaction 
of stimulus intensity (loud-
ness), hemisphere, and mixture 
model class was observed. 
Uncorrected tests suggested P1 
latencies might be shorter over 
the right hemisphere in class 
1-LEW in the 80 dB condition 
as well as in class 2-GPL in 
the 70 dB condition, but these 
effects were modest and did not 
survive correction for multiple 
comparisons

Fig. 5  Boxplots comparing P1 
ERP amplitudes across autistic 
participants assigned to different 
classes, overlaid by individual 
participants’ amplitude values. 
Note that P1 amplitudes in the 
80 dB condition remained sig-
nificantly larger in 2-GPL than 
other classes after correction 
for multiple comparisons and 
after removal of the outlying 
participant in class 2-GPL (viz., 
the participant with ampli-
tude > 6 μV)
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caution. Follow-up ANOVAs comparing pairs of classes at 
each intensity level indicated that ERP amplitudes in autistic 
participants, after Bonferroni-Holm correction for twelve 
comparisons, were only significantly higher in class 2-GPL 

than class 1-LEW, and than class 3-NL, in the 80 dB condi-
tion (Table 11).

Fig. 6  Scalp plots depicting 
spherically-splined P1 auditory 
response voltages of autistic 
participants in each class during 
separate 51 ms time windows 
from the centre of the P1 meas-
urement window in each condi-
tion, or 95–145 ms (50 dB), 
84–134 ms (60 dB), 69–119 ms 
(70 dB), and 66–116 ms 
(80 dB). The conditions are 
arrayed in columns from left to 
right (i.e., 50 dB at left; 80 dB 
at right), while the classes are 
arrayed in rows: 1-LEW at top, 
2-GPL in middle, and 3-NL at 
bottom. The scale in microvolts 
(μV) is given at the far right. 
Note the increased response 
amplitude at 80 dB for the 
2-GPL class

Table 10  At Time 1, in autistic 
participants only, means and 
standard deviations of P1 area 
amplitude over each hemisphere 
and for each intensity level and 
SSP-derived class

Class 1-LEW
Mean (SD)

Class 2-GPL
Mean (SD)

Class 3-NL
Mean (SD)

Left Right Left Right Left Right

50 dB 1.62
(0.87)

1.62
(0.99)

2.02
(1.07)

2.08
(1.52)

1.62
(0.99)

1.85
(0.97)

60 dB 1.71
(0.69)

1.75
(0.81)

1.95
(1.00)

1.86
(0.85)

1.78
(0.89)

1.72
(0.79)

70 dB 1.81
(0.97)

1.84
(0.77)

2.26
(1.08)

2.16
(1.14)

1.73
(0.85)

1.72
(0.78)

80 dB 1.84
(0.76)

1.70
(0.56)

2.70
(1.44)

2.81
(1.50)

1.95
(0.73)

1.85
(0.79)

Table 11  At Time 1, in autistic participants only, main effects of class in 2 × 2 follow-up mixed ANOVAs with P1 area amplitude as the depend-
ent variable, comparing each pair of classes as the between-subjects variable, and with hemisphere as the within-subjects variable

To aid in statistical inference, p-values are provided both without correction and, for values that attained significance before correction, with 
Bonferroni-Holm corrections for twelve multiple comparisons

1-LEW vs. 2-GPL 1-LEW vs. 3-NL 2-GPL vs. 3-NL

F(1,46) p p(cor) �
2

G
F(1,96) p p(cor) �

2

G
F(1,82) p p(cor) �

2

G

50 dB 2.08 .16 N/A .04 0.94 .34 N/A .01 1.14 .29 N/A .01
60 dB 0.60 .44 N/A .01 0.02 .89 N/A .00 0.52 .47 N/A .00
70 dB 2.13 .15 N/A .04 0.38 .54 N/A .00 5.03 .03 .28 .05
80 dB 11.88 .001 .01 .18 0.95 .33 N/A .01 13.56 .0004 .005 .12
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Discussion

The present study found clear evidence of meaningful het-
erogeneity of SSP scores within autism. A total of three sub-
groups were described, each with different loadings of SSP 
subscales onto latent factors. The significance and mean-
ingfulness of these subgroups is emphasized by findings 
that cognitive ability, anxiety, sleep quality, and auditory 
event-related potential amplitudes differed across autistic 
participants assigned to separate classes.

Notably, allowing levels of the latent factor to vary over 
time did not appear to improve model fit, in contrast to 
results obtained by Dwyer et al. (2020a) in the same sample. 
This may reflect the very limited number of participants with 
atypical trajectories observed by Dwyer et al., coupled with 
the greater complexity of the factor mixture model used in 
the present study.

Class 3‑NL

As predicted by the first hypothesis, almost all participants in 
the TD group were assigned to a single class: namely, class 
3-NL. The first hypothesis accurately predicted that many 
autistic participants would be assigned to this class as well, 
although the fact that the majority of autistic participants 
would be assigned to the class was not necessarily antici-
pated. However, it would not be appropriate to say that autis-
tic participants in class 3-NL had typical sensory processing, 
or that class 3-NL is defined by typical sensory processing 
per se. Indeed, autistic participants in class 3-NL were found 
to have significantly lower (i.e., more atypical/problematic) 
scores than typically-developing participants on every SSP 
subscale except for the one indexing movement sensitivity 
at one or both of the time points from the present study. 
The autistic participants in class 3-NL did have higher SSP 
scores on many subscales than autistic participants in other 
classes, but their SSP scores clearly differed from those of 
most TD participants. It might be more accurate to say that 
SSP subscales of autistic participants assigned to class 3-NL 
covaried with the latent factors in a manner more similar to 
the bulk of typically-developing participants than to autistic 
participants in other classes. The overall level of sensory 
processing indexed by the latent factor itself could still be 
atypical in some participants from class 3-NL.

Class 1‑LEW

The second hypothesis predicted that many autistic partici-
pants would be assigned to other classes. This too was sup-
ported. Two other classes besides class 3-NL were described: 
class 1-LEW and class 2-GPL. Factor loadings indicate that 
the LEW subscale of the SSP exercised an outsized influence 

over the overall SSP performance of participants in class 
1-LEW, and indeed, autistic participants in class 1-LEW 
showed markedly lower raw SSP LEW scores than autistic 
participants in other classes. Its dominant role in this sub-
group emphasizes the importance of understanding the LEW 
subscale, as does the fact that the LEW subscale is found not 
only in the factors defined by Williams et al., (2018a, b), but 
also the subscales presented by McIntosh et al. (1999) and 
Tomchek et al. (2014). Prior studies also suggest the LEW 
subscale may have a large role in sensory heterogeneity in 
ASD (Hand et al., 2017; Lane et al., 2014).

Exploratory analyses presented in supplementary mate-
rials do note some associations between LEW scores and 
other SSP subscales, which might imply that the LEW sub-
scale is partly related to individual differences in overall 
sensory processing. However, correlations between the LEW 
subscale and the SSP were generally fairly modest, such that 
it may not fully or even primarily index sensory process-
ing. Furthermore, the LEW scale does not seem to primar-
ily measure sleep; notably, autistic participants in the LEW 
class had better sleep quality than those in class 2-GPL.

Another possibility may be that LEW scale taps into 
hypotonia and/or physical inactivity. Analyses suggested 
that lower levels of energy and higher levels of weakness 
on the SSP were associated with worse fine and gross motor 
adaptive skills (as measured on the VABS). Although prior 
research did not find significant correlations between LEW 
scores and motor performance in ASD (Tomchek et al., 
2015), prior research suggests physical activity levels and 
motor skills may be independent in autistic preschoolers 
(Ketcheson et al., 2018), which raises intriguing questions 
regarding what factors might drive individual differences in 
physical activity in these children. Further research may be 
necessary to explore that question, as well as whether the 
LEW scale might be more associated with autistic children’s 
actual levels of exercise and mobility than with their motor 
skills.

Interestingly, low (more atypical/problematic) LEW 
scores were also related to increased verbal and nonverbal 
cognitive abilities at Time 1, and indeed, autistic participants 
in class 1-LEW were observed to have higher MSEL DQ 
at Time 1 than participants in other classes. Tomchek et al. 
(2015) might be read as implying that sedentary behaviour 
in ASD could be linked to better opportunities for language 
learning.3 If this is the case, it is notable that LEW scores 
in the present sample were far lower (i.e., more “atypical”) 
in class 1-LEW autistic participants than typically-devel-
oping participants; the LEW phenotype could therefore 

3 In fact, Tomchek et  al. appear to suggest the opposite, but their 
discussion seems to reverse the direction of an observed association 
between SSP LEW scores and language outcomes.
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represent a protective developmental mechanism in ASD 
that is not evident in TD. However, the possible benefits 
of low energy/weakness should not be over-emphasized, as 
low energy and high weakness were also related to internal-
izing problems. It is also noteworthy that cognitive ability 
effects in the present study were not significant at Time 3, 
though it is possible that this could partly reflect the more 
limited range of the DAS compared to the MSEL. Moreo-
ver, in prior research, autistic toddlers with hypotonia have 
been reported by parents to have lower quality of life, not 
only in the physical domain but also psychosocially (Lopez-
Espejo et al., 2021). Autistic children with hypotonia also 
have more autistic characteristics than those without (Lopez-
Espejo et al., 2021), and although not all autistic behaviours 
are weaknesses (Russell et al., 2019), current measures of 
autistic behaviour are based on a pathology paradigm and 
accordingly do focus on areas of challenge (Timini et al., 
2019). Thus, evidence regarding whether hypotonia and low 
energy/weakness are protective or problematic seems mixed.

Although the LEW subscale is emphasized in discussion 
of class 1-LEW due to the sheer extent of its influence, it 
should be borne in mind that loadings on other subscales 
were positive, in contrast to the negative loadings in class 
3-NL. In keeping with this, autistic participants in class 
1-LEW had significantly lower raw scores than those in 
class 3-NL on tactile sensitivity, movement sensitivity, and 
auditory distractibility at both time points, as well as visual 
sensitivity and noise distress at Time 1 only. Thus, class 
1-LEW is not solely defined by the LEW subscale.

Class 2‑GPL

However, it appears that class 2-GPL might be relatively 
more influenced by these other subscales. Class 2-GPL is 
defined primarily be generalized positive loadings across 
SSP subscales, with comparatively balanced loadings sug-
gesting no single subscale is largely responsible for this 
pattern. The LEW subscale aside, autistic participants in 
class 2-GPL showed the lowest raw SSP scores. Scores were 
even lower than SSP scores in class 1-LEW on (at both time 
points) the tactile and movement sensitivity subscales; (at 
Time 1) the auditory distractibility, hypo-responsiveness to 
speech, and noise distress subscales; and (at Time 3) the 
hyperactivity/inattention subscale.

This phenotype of hyper-reactivity, hyper-activity, and 
at least social/linguistic hypo-responsiveness was linked to 
P1 auditory ERPs, providing evidence of multimodal con-
vergence of caregiver-report questionnaire patterns with 
a neurophysiological response. Specifically, among ASD 
participants, main effects and interactions could be taken to 
suggest generally higher P1 amplitudes and particularly high 
amplitudes in the 80 dB condition in class 2-GPL. Admit-
tedly, the main effect should be interpreted with caution 

due to the interaction, and only one of nine main effects 
comparing autistic participants in different classes achieved 
significance outside the 80 dB condition even before multi-
ple comparison correction. However, the interaction effect 
involving the 80 dB condition appears quite consistent with 
prior associations observed in the present sample between 
relative 80 dB response strength in the P1 latency range 
and auditory distractibility and noise distress (Dwyer et al., 
2020b). A novel contribution of the present study is the find-
ing that these patterns appear linked to atypical sensory pro-
cessing in other modalities besides hearing alone, perhaps 
due to central nervous system influences on sensory process-
ing (such as attention or excitation-inhibition balances) that 
might hold across modalities.

Anxiety and Sleep

Autistic participants in classes 1-LEW and 2-GPL–that 
is, those with relatively low SSP scores, suggesting more 
unusual or problematic sensory processing–were found to 
have significantly more anxiety and more sleep disturbances 
than autistic children in class 3-NL at Time 1. Differences 
between classes were not significant at Time 3. As there 
was still a strong trend towards a between-class difference in 
anxiety at Time 3, it is not clear that developmental changes 
removed between-class differences; attrition between Time 
1 and Time 3 may simply have reduced power to detect such 
effects. In any case, the findings at Time 1 appear broadly 
consistent with prior research linking sensory processing 
to sleep (Tzischinsky et al., 2018) and anxiety (Mazurek 
et al., 2013; Neil et al., 2016; Uljarević et al., 2016) in ASD. 
Prior longitudinal research (Green et al., 2012) suggests 
that sensory processing differences might have contributed 
towards the development of anxiety in these individuals. 
In particular, sensory sensitivities could cause individuals 
to fear environments or stimuli that might evoke sensory 
distress. However, it does not seem impossible that the 
association could also be bidirectional; anxious vigilance 
might make distressing sensory stimuli more salient. Quali-
tative research does note that anxiety exacerbates sensory 
challenges in autism (Landon et al., 2016). Meanwhile, it 
seems plausible that sensory processing differences could 
drive later sleep disturbances, but further analyses would 
be necessary to empirically explore this. Overall, despite the 
lack of differences in adaptive functioning between autistic 
participants in different classes, the effects of anxiety and 
sleep (both of which are relevant to quality of life in ASD; 
see Adams et al., 2019; Deserno et al., 2019; Smith et al., 
2019) emphasize the importance of sensory processing in 
the lives of autistic people.
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Limitations

The present study has a number of strengths. These notably 
include its use of a large, well-characterized longitudinal 
sample, as well as its inclusion of a neurophysiological 
measure–namely, P1 auditory event-related potentials–to 
complement caregiver reports of sensory behaviours. How-
ever, it is not without limitations.

One limitation is the loss of some participants between 
Time 1 and Time 3 of the study. Although some level of 
attrition is only to be expected in a longitudinal study, it is 
noteworthy that autistic participants in class 3-NL seemed 
to be less likely to be retained at Time 3. It is not impossible 
that the factor loadings characteristic of class 3-NL were 
relatively uncommon in ASD at Time 3, such that the fit of 
the classes may have differed across time points and groups.

Although the present study sample is large, the compu-
tational demands of the factor mixture modelling approach 
used here prevented us from splitting the sample or using 
resampling to evaluate the stability of the classes. This 
makes it difficult to claim that the classes described in the 
present study exist as clear categorical groups that could be 
reliably replicated by future studies using similar methods; 
however, we view these classes primarily as a descriptive 
technique for exploring data patterns and variability. We 
remain open to the possibility that other subgrouping solu-
tions might illuminate different patterns and variability.

Another limitation of the present study is the lack of mul-
timodal measures indexing non-auditory domains of sensory 
processing, such as touch or vision. Although auditory neu-
rophysiological hyper-reactivity to loud sounds converged 
in the present study with a caregiver-reported phenotype of 
sensory sensitivity, as well as hyporesponsiveness to speech 
and hyperactivity/inattention, the present study cannot estab-
lish whether and how caregiver reports of sensory behav-
iours from the present study would have converged with 
neurophysiological measures outside the auditory modal-
ity. In addition, the present study relies on only a single 
caregiver-report questionnaire, the SSP, and thus lacks the 
“parallel validation” that could be offered by including other 
similar measures (Agelink van Rentergem et al., 2021). We 
also lack other relevant types of sensory measure, such as 
perceptual acuity measures.

Furthermore, although the present study indicated that 
autistic participants’ levels of anxiety and sleep differed 
across classes, suggesting associations between these vari-
ables and sensory processing, the present study does not 
resolve the directionality these associations. Additionally, 
the present study does not determine whether specific SSP 
subscales accounted for a relatively larger degree of vari-
ance in anxiety and sleep than other subscales. Thus, further 
research will be necessary to explore associations between 

sensory processing scores and the variables of anxiety and 
sleep.

One final limitation of the present study is that the SSP 
subscale solution proposed by Williams et al., (2018a, b) and 
employed here has not been tested for measurement invari-
ance across samples of autistic and non-autistic children. 
However, the factor mixture modelling approach used in 
this study arguably is in some ways related to questions of 
measurement invariance, insofar as it examines inter-indi-
vidual differences in how the separate SSP factors converge 
with overall SSP performance. Indeed, whereas measure-
ment invariance analyses may in practice be used to jus-
tify the exclusion or elimination of particular subscales that 
might, due to their very differential function across groups, 
be of considerable substantive interest, the present study’s 
approach simply highlights subgroups of individuals whose 
SSP scores on a particular subscale contribute to overall 
SSP performance in a manner disproportionate to other 
subgroups.

Summary

The present study suggests that there are multiple different 
patterns of relative contributions of different SSP subscales 
towards overall SSP performance in ASD, as indicated by 
differences in factor loadings across classes. The present 
study also finds a single pattern–that of class 3-NL–that is 
characteristic of most typically-developing individuals. The 
largest single group of autistic participants also exhibited 
this pattern, as reflected by their membership in class 3-NL, 
although autistic participants in this class still had lower 
mean SSP scores on most subscales than their typically-
developing counterparts. Other autistic participants were 
sorted into two classes characterized by different patterns of 
factor loadings. In each class, these loadings corresponded 
to even more atypical SSP subscores on various subscales. 
However, while one of these classes–viz., 2-GPL–was char-
acterized by generally atypical sensory processing, factor 
loadings suggested that overall SSP performance in class 
1-LEW was heavily shaped by the SSP’s LEW subscale, 
though raw scores on other subscales were low as well. The 
finding that LEW subscores can so heavily influence overall 
SSP performance suggests that clinicians and researchers 
should exercise caution in interpreting the SSP and closely 
examine not only overall scores but also scores on each sub-
scale. Unfortunately, the meaning of the LEW subscale is 
somewhat unclear; low LEW scores in ASD were weakly 
to moderately associated with low scores on other SSP sub-
scales, with poor motor skills, with high internalizing, and 
with high cognitive abilities.

The present study also provides evidence that caregiver-
reported sensory processing on the SSP converges with 
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auditory event-related potential amplitudes in ASD. Specifi-
cally, neural hyper-reactivity to loud sounds was observed 
in class 2-GPL, which was characterized by low SSP scores, 
including high levels of sensory sensitivity in various sen-
sory modalities such as touch and hearing. Thus, neural 
hyper-reactivity to loud sounds appeared to be associated not 
only with hyperacusis but also sensory processing in other 
modalities. Broadly speaking, the present study’s finding of 
convergence between neural and caregiver-report measures 
furthers progress towards understanding the relationships 
among different types of sensory processing measures in 
ASD.

Finally, the present study found increased anxiety and 
sleep disturbances among autistic participants in classes 
1-LEW and 2-GPL, both characterized by more positive fac-
tor loadings and lower SSP subscores, relative to class 3-NL. 
Given the importance of anxiety and sleep in the daily expe-
riences of individuals, this result emphasizes the importance 
of understanding the heterogeneous sensory phenotypes and 
experiences of autistic people.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10803- 021- 05256-6.
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