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Abstract

Iron deficiency chlorosis (IDC) is a yield limiting problem in soybean (Glycine max (L.) Merr) production regions with
calcareous soils. Genome-wide association study (GWAS) was performed using a high density SNP map to discover
significant markers, QTL and candidate genes associated with IDC trait variation. A stepwise regression model included
eight markers after considering LD between markers, and identified seven major effect QTL on seven chromosomes. Twelve
candidate genes known to be associated with iron metabolism mapped near these QTL supporting the polygenic nature of
IDC. A non-synonymous substitution with the highest significance in a major QTL region suggests soybean orthologs of
FRE1 on Gm03 is a major gene responsible for trait variation. NAS3, a gene that encodes the enzyme nicotianamine synthase
which synthesizes the iron chelator nicotianamine also maps to the same QTL region. Disease resistant genes also map to
the major QTL, supporting the hypothesis that pathogens compete with the plant for Fe and increase iron deficiency. The
markers and the allelic combinations identified here can be further used for marker assisted selection.
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Introduction

Iron (Fe) is an essential element for multiple plant functions

including photosynthesis, respiration, chlorophyll biosynthesis, and

redox reactions in plants, and is a structural component in heme,

the Fe-sulfur cluster, and Fe-binding sites. To avoid toxicity, plants

control the uptake, utilization, and storage in response to Fe

availability [1]. Despite its abundance in the soil, Fe is only slightly

soluble under aerobic conditions, especially in high-pH and

calcareous soils [2]. Under these conditions, iron deficiency leads

to developmental defects, including chlorosis, growth retardation,

and reduced crop productivity [3]. Iron deficiency chlorosis (IDC)

is an important yield-limiting factor for soybeans (G. max) grown

on calcareous soils that have a high percentage of calcium

carbonate and soluble salts. This soil type is common in the north-

central regions of the United States [4] where soybean is widely

grown. In these soils, interactions of high pH, carbonate and high

field moisture content at planting leads to early IDC symptoms

that effect yield. It is estimated that the current revenue losses due

to IDC in soybean are $260 million [5].

IDC results from the inability of susceptible genotypes to

efficiently mobilize iron into the plant when it is growing in high

pH calcareous soils. In these soils, ferrous iron is not readily

released from soil particles, and subsequently iron availability is

limited. Based on its response to Fe availability, soybean is

considered a Strategy I plant [6] that reduces ferric chelates at the

root surface and absorbs ferrous ions across the plasma membrane

of the root [2]. Other processes involved in Strategy I include

excretion of proton and phenolic compounds from the roots to the

rhizosphere, which increases the solubility of ferric ions and

support the reducing capacity of ferric Fe on the root surface [2].

Strategy I plants also increase root hair formation, thereby

increasing the surface area available for iron uptake [7]. Once iron

enters the root, membrane transporters move Fe into the xylem

where it chelates with citrate. The chelated form of iron then

moves through the xylem stream to growing leaves. Iron is then

remobilized from the leaves, forms a complex with nicotianamine,

and is transported via the phloem to younger leaves and seeds.

Excess water leads to an elevated concentration of bicarbonates in

the root apoplast that impedes the Fe3+– chelate reductase activity

necessary for the conversion of Fe3+ to Fe2+. Bicarbonates also

immobilize the movement of iron to young leaves once it is

absorbed at the root level [8].

Given the many physiological mechanisms associated with iron

metabolism, it is not surprising that IDC is a complex quantitative

trait with multiple genetic factors [9]. In addition to the genes

involved in Fe acquisition, translocation and compartmentaliza-

tion within the organelles, there are other genes involved in Fe

transcriptional and post transcriptional changes that are ex-
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pressed/repressed under deficient and excess conditions or affect

iron homeostasis pathways [10–17].

Genetic experiments using bi-parental mapping populations

have identified multiple quantitative trait loci (QTL) associated

with IDC in soybean [11–12]. O’Rourke et al. [13] identified

several genes induced under iron-limiting conditions using a

microarray study. Severin et al. [14] discovered multiple

introgressed genomic regions responsible for IDC in near isogenic

lines, and Stec et al. [15] further refined these introgression

regions. Recently, Peiffer et al. [5] evaluated candidate genes on

Gm03.

A genome-wide association study (GWAS) is an excellent

approach to discover genetic factors in a population because of the

high number of recombinant events the population represents.

GWAS uses the linkage disequilibrium (LD) pattern in a large

population of unrelated individuals [16] to map significant effect

loci. Since IDC is a complex trait, utilizing GWAS can identify

major factors controlling the IDC response in soybean. Previously,

Wang et al. [17] used GWAS to identify simple sequence repeat

(SSR) markers associated with IDC in two independent popula-

tions. Later, nine shared SNP were discovered and confirmed by

Mamidi et al. [9] in two separate populations. The objective of this

study was to identify QTL and genes involved in IDC of soybean

using a GWAS population and a new high density SNP map

obtained through genotype-by-sequencing (GBS). Those results

were then translated into SNP markers that can be used for

marker assisted selection (MAS).

Materials and Methods

Phenotype and genotyping
Two plant populations consisting of unique set of advanced

soybean breeding lines developed for the north-central region of

the US were grown in years 2005 (n = 132) and 2006 (n = 138).

IDC screening protocols and DNA isolation procedures were

described previously [9]. The trait was rated on a scale of 1 to 5,

where 1 indicates no chlorosis and a normal green plant, 2

indicates slight yellowing of upper leaves and the leaf veins, 3

indicates interveinal chlorosis in the upper leaves with no stunning

of growth or death of tissue (necrosis), 4 indicates interveinal

chlorosis of the upper leaves along with some apparent stunning of

growth or necrosis of tissue, and 5 indicates severe chlorosis plus

stunned growth and necrosis in the youngest leaves and growing

points [9]. Phenotypic data was adjusted based on least squares

means for each population independently.

GBS libraries were prepared and analyzed at the Institute for

Genomic Diversity (IGD), Cornell University, according to Elshire

et al. [18], using the enzyme ApeKI. The GBS analysis pipeline

[3.0.128], an extension of the Java program TASSEL [19], was

used to call SNPs from the sequenced GBS library. Reads were

aligned to the soybean reference genome v1.1 [20] using BWA

0.6.1 [21]. VCFtools (v0.1.8) [22] was used to summarize the SNP

data.

The data was analyzed by combining the two populations

(which are of similar size) to account for unique alleles that are at a

low frequency in one or both populations. These low frequency

alleles can have a significant phenotypic effect in a small set of

genotypes, but that effect cannot be detected in a normal statistical

framework [16].

Genome-wide association study
Imputation. fastPHASE 1.3 [23], a likelihood-based impu-

tation software, was used with default settings to impute missing

data for the combined population. Imputation analysis was

performed to increase the power of the study and fine map the

causal variant [24]. A minor allele frequency (MAF) of 0.05 was

used as cutoff, since variants at low frequency have little power to

detect association with the phenotype [16].

Linkage disequilibrium (LD). The LD between markers

was estimated as the partial squared allele frequency correlation

(r2) using CORR procedure in SAS 9.3. Three principal

components (PC) that explain about 25% of cumulative variation

were used as cofactors. We used a partial correlation because

unlinked loci can be in LD simply because of population structure

[25–26]. The decay of r2 with physical and/or genetic distance

between loci is often used to determine the density of markers to

use in whole genome association scans [27] whereas local LD on

chromosomes is used to account for genes/QTL associated with

trait variation. Overestimation of LD can lead to misinterpreta-

tions either on the extent of LD decay or on the size of the QTL

[26]. LD decay graphs were plotted with physical distance (Mbp)

vs. r2 for all intra-chromosomal comparisons using nonlinear

regression as described by Remington et al. [28]. The expected

decay of LD was estimated as described by Pyhajarvi et al. [29].

We fit this equation into a nonlinear regression model using NLIN

procedure in SAS 9.3.

Population structure, kinship, and model testing. A

principal component analysis was utilized to control for population

structure [30]. PCs were estimated using the PRINCOMP

procedure in SAS 9.3. The PCs that explained 25% (PC25) and

50% (PC50) cumulative variation were selected for the analysis. In

addition an identity-by-state matrix [31] was used to control for

relatedness estimated as a centered relatedness matrix in Gemma

0.92 [32]. Gower’s similarity coefficient was calculated using the

DISTANCE procedure in SAS 9.3 to measure the relatedness by

state of the individuals.

To test for marker-trait associations, the MIXED procedure in

SAS for the three linear models that do not have kinship (Naı̈ve,

PC25 and PC50) was used. Since approximate tests compromise the

analysis of complex genetic architectures when one genetic factor

masks another [33], we used the exact test implemented in

Gemma 0.92 to estimate marker significance [32] for the other

three models with kinship (Kinship, PC25+kinship, PC50+kinship).

As the standard errors follow a uniform distribution [34], we used

a rank based mean squared difference (MSD) for model selection

as described in Mamidi et al [9].

Marker-trait associations. Markers are defined as signifi-

cant at two levels, within 0.01 percentile, and 0.1 percentile tails of

the empirical p-value distribution of 10,000 bootstraps. This

method of using an empirical distribution of data as a replacement

for a population with an unknown distribution has the advantage

of simplicity and provides an efficient and precise estimation [35–

36]. This approach is similar to choosing an arbitrary value but

instead it is based on choosing a predefined percentile tail from an

empirical distribution. Here, the confidence intervals for an

empirical distribution were obtained from 10,000 bootstraps over

,35,000 markers distributed throughout the genome. We chose

this approach over a cutoff because p-value is dependent on the

distribution of phenotype, the variation explained by the marker,

structure and relatedness of the population, and heritability of the

trait.

The means for the alleles were calculated using MEANS

procedure in SAS. The percent of variation explained by the

marker is calculated using a simple regression (GLM procedure) in

SAS. The additive effect of the variant allele is calculated as half

the difference between IDC mean of the variant allele and IDC

mean of the reference allele.

Iron Deficiency Chlorosis in Soybean
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To determine the minimal number of SNPs independently

associated with IDC, stepwise regression analysis was applied to all

significant markers from a single-SNP analysis at a significance

level of 0.1 percentile [37]. In addition, a multiple R2 value for all

these loci was also estimated [9]. A significant p-value of 0.05 was

necessary for both marker and model for stepwise inclusion of the

marker in REG procedure in SAS 9.3.

Annotation of SNP. To characterize SNPs as intergenic,

UTR, intron, or coding site, snpEFF 3.3 [38] was used. Coding

sites were further differentiated into synonymous or non-synony-

mous substitutions based on amino acid changes. Coding regions

were also differentiated into transitions and transversions based on

changes between or among purines and pyrimidines.

Significant QTL and genes. A QTL region is defined as the

region around significant stepwise markers that has a partial LD

(r2) .0.6 with the adjacent marker (corresponds to partial

correlation of 0.77). Adjacent blocks were combined if the distance

is less than 10 kb and includes up to four markers that are not in

LD with either of the block. Candidate genes for iron homeostasis

were identified from the research literature, and gene symbols are

used from the annotation file available at phytozome (http://www.

phytozome.net/soybean.php). A candidate iron gene is considered

to be significant in our population if the gene is within the QTL

region.

Epistatic interactions. To detect epistatic interactions

between significant markers, we used a general linear model with

both significant markers and their interaction term in the model.

We used PC25 as covariates in the regression model and an

interaction term was considered significant at a p-value of#1E-03.

Genes that are in LD with these significant markers are used to

identify the gene-by-gene interactions.

Significant allelic combinations. We compared the allelic

combinations of the significant markers (0.1 percentile) that were

included in stepwise regression. Allelic combinations with a mean

IDC,2.5 were termed tolerant, and those with a mean IDC.3.5

were considered susceptible. We chose these values based on

standard genotypes grown in the field instead of a statistical

approach of mean differentiation, because not all allelic combi-

nations are present in the population. With this approach, the

phenotypic distribution does not need to be continuous, where

statistically two allelic combinations can be considered significantly

different in the absence of intermediate phenotypes.

Results

Phenotype and genotyping
For the combined population, the range of IDC is 1.46 to 3.84

with an average of 2.76. IDC scores were normally distributed

with a p-value of 0.15 for Kolmogorov–Smirnov test (Figure 1).

An average of 1,645,563 reads was obtained for each genotype,

and ,92% of reads mapped to the reference genome. A total of

79,000 putative SNPs that are bi-allelic were identified in the

population using the TASSEL-GBS analysis pipeline after

removing SNPs that have greater than 50% missing data. The

mean coverage depth for each identified SNP was 6.8562.72.

Association Mapping
Imputation. Missing data (37.5%) was estimated using

imputation. Of the 79,000 SNPs, 34,428 had a MAF.0.05

(Table S1). Based on the genome size of Glycine max, a

polymorphic marker was located, on average, every 31 kbp. In

addition, the maximum distance between two adjacent markers

did not exceed 500 Kbp providing a good coverage of the SNPs.

Of these polymorphic SNPs, 6,520 mapped to a coding region,

6,898 are located in the non-coding region of a gene model and

21,010 are in an intergenic region. The transition to transversions

ratio was 1.67.

Linkage Disequilibrium Decay. A nonlinear regression

model that fits the partial r2 of pairwise intra-chromosomal

comparisons to physical distance was developed. The average

decay of LD (r2) in terms of physical distance declined to r2 = 0.7 at

,500 kb (Figure S1). The physical distance at which r2 = 0.2 is

3.2 Mbp and at r2 = 0.1 was 8.0 Mbp.

Population structure, Kinship and model selection. For

the population, three and 13 PC explained 26.8% and 50.5% of

the cumulative genotypic variation. Based on the first two PCs,

two distinct clusters of populations were observed which indicated

the presence of a subpopulation structure (Figure 2). In the

population, 80% of the Gowers similarity coefficients are within

the range of 0.6 to 0.7 (Figure 3) indicating the presence of

relatedness among individuals. This is expected given the narrow

genetic base of the breeding population. For the six models tested,

the best linear model for the population included 13 PCs (PC50)

and kinship matrix (MSD = 6.06E-06; Figure 4).

Marker Trait associations. Five markers were significant at

the 0.01 percentile level (p#4.0E-05). One located on Gm03 at

45.03 Mbp, one on Gm05 at 8.82 Mbp and three on Gm11 at

0.53 Mbp (Table 1, Fig. 5). The variation explained by these

markers ranged from 5% to 16%, and the mean allelic difference is

between 0.31 and 0.38. Stepwise regression included three

markers (one from each of the chromosome). Together these

three markers explained 23.2% of phenotypic variation.

At a significance level of 0.1 percentile (p#2.12E-04), 33

significant markers were distributed on 10 of the 20 chromosomes

(Table 1, Figure 5). Eight of these markers included in stepwise

regression are on Gm03 (45.03 Mbp), Gm05 (8.87 Mbp), Gm07

(6.39 Mbp), Gm11 (0.53 Mbp), Gm16 (27.30 Mbp), Gm17

(25.85 Mbp), Gm18 (28.14 Mbp), and Gm19 (40.19 Mbp). These

markers together explained 46.3% variation.

Annotation of SNP. Of the significant markers at 0.1

percentile, five SNP are present in a coding region (three are

transitions and two are transversions), 11 in introns, two in 39UTR

regions, and 15 in intergenic regions. Of the five SNPs from a

coding region, two are non-synonymous substitutions. For FRE1

(Glyma03G38620), one of these amino acid changes is associated

with both a polarity and a charge change of the protein. This SNP

at position 44,927,455 bp of Gm03 changes an asparagine to

aspartic acid. The R-square explained by this marker alone is

15.2% for the population. The variant allele ‘A’ is more tolerant

than reference allele. The other non-synonymous substitution is

located in the gene model (Glyma03g39151) close to the above

non-synonymous substitution at 45,343,612 bp. This SNP ex-

plains about 18.85% of the phenotypic variation in the population

and has a partial r2 of 0.80 with the above marker. These two

markers together explain 19.0% of phenotypic variation.

Significant QTL and genes. At the significance level of 0.01

percentile, three markers were included in the stepwise regression.

One of these marker is in LD (r2$0.6) with the adjacent markers,

and the QTL is located on Gm03 between 44.798 Mbp and

47.140 Mbp (Table 2; Figure 5; Figure 6). The two major

candidate genes in this QTL are phytochrome A (FRE1;

Glyma03g38620) and nicotianamine synthase 3 (NAS3; Gly-

ma03g39050). In addition to these genes, nitrate transporter 1:2

(NRT1:2; Glyma03g38640) and ammonium transporter 2

(AMT2; Glyma03g40700), each with a role in iron homeostasis,

are also located within the QTL region. The QTL around the

significant marker on Gm05 is between 7.837 and 10.627 Mbp

(Table 2; Figure 5; Figure 6). The candidate genes in this QTL
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include stabilizer of iron transporter (AGO10, PNH, ZLL;

Glyma05g08170), RAS-related nuclear protein-1 (RAN1; Gly-

ma05g08260) and H (+)-ATPase 11 (AHA11; Glyma05g01460).

The third significant marker on Gm11 is located in the 59 UTR

region of the CVP2 like 1 gene (CVL1; Glyma11g00990). The

marker is not in LD with any of the adjacent markers.

At a significance level of 0.1 percentile, eight markers are

included in the stepwise regression model. These eight markers are

located in eight QTL regions. The QTL on Gm03, Gm05 and

Gm11 are the same as the ones identified at the 0.01 percentile

level. The other QTL at this significance level include Gm07

(6.074 Mbp–7.101 Mbp), Gm16 (26.914–27.597 Mbp), Gm17

(25.629–27.007 Mbp), Gm18 (27.547–29.978 Mbp), and Gm19

(39.831–41.320 Mbp) (Table 2; Figure 5; Figure 6). On Gm07,

the significant candidate genes include ferric reduction oxidase 2

(FRO2; Glyma07g07380), and signal recognition particle receptor

Figure 1. Phenotypic distribution of iron deficiency chlorosis (IDC). The rating of IDC (1–5) is on x-axis and the number of genotypes having
the IDC score (represented as density) are presented as y-axis. The curve over the histogram represents the normal distribution of the IDC scores in
the population.
doi:10.1371/journal.pone.0107469.g001

Figure 2. A graph of the first two principal components obtained from all the 34,428 polymorphic SNPs. This graph explains the
similarities between the two independent populations and the overall population structure.
doi:10.1371/journal.pone.0107469.g002
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protein on chloroplast (FRD4; Glyma07g08240). On Gm16, the

significant candidate gene ferrodoxin NADP (+) oxidoreductase 1

(FNR1, Glyma16g23710) is within the QTL region. On Gm19,

heavy metal atpase-5 (HMA5; Glyma19g32190), and oligopeptide

transporter-5 (OPT5; Glyma19g32401) are significant.

Other than the genes involved in iron metabolism, several genes

involved in disease resistance are also identified in the QTL

regions. For example, QTL on Gm03 has two RING/U-box

superfamily proteins that have a role in plant defense. Similarly on

Gm05, two CC-NBS-LRR, one NBS and one LRR genes are

present. On Gm07 within the QTL region, three NBS genes are

present. On Gm16, seven LRR proteins, and on Gm19, six NBS

proteins, two LRR and one RING/U-box superfamily proteins

are present.

Epistatic interactions. With 33 significant markers at 0.1

percentile, 528 two way interactions were tested with a population

structure component, and five interactions were significant at p-

value,0.001. Three of these interactions are between Gm07

(around 6.4 Mbp) and Gm18 (59.28 Mbp). The other significant

interactions are between Gm16 (27.30 Mbp) and Gm18

(59.28 Mbp), Gm02 (46.939) and Gm15 (21.42 Mbp). The genes

within LD regions include cytochrome P450 like protein

(Glyma18g50051) on Gm18 with FRO2 (Glyma07g07380) on

Gm07 and FNR1 (Glyma16g23710) on Gm16. The genes on

Gm02 include AUX1 (Glyma02g42290) and FER4 (Gly-

ma02g43040) which interact with CCC1 (Glyma15g22520) on

Gm15.

Significant Marker Allelic combinations. Allelic combi-

nations of SNPs can be used to infer the tolerant/susceptible

phenotype of a genotype. For the significant markers (0.1

percentile) that were included in stepwise regression in the

population, 14 allelic combinations are predicted as tolerant

(IDC mean#2.5) and 6 allelic combinations indicate susceptibility

(IDC mean$3.5) (Table 3).

Discussion

A higher marker density facilitates identification of high

resolution QTL and gene discovery [39,40]. One method of

generating a high frequency of SNPs is next generation sequencing

[41,42]. Using GBS, we identified ,35,000 polymorphic markers

with a minor allele frequency.0.05. This provided good coverage,

one marker at every 31 kb. This density is useful for characterizing

most genetic factors responsible for soybean IDC given that LD

decayed here to r2 = 0.7 at 500 kbp.

LD decay assesses the depth of markers required for GWAS.

Partial LD was calculated using population structure as a cofactor,

and as expected we observed a variation in LD decay when

including this as a cofactor. For example, LD decay for the

population is at 10 Mbp at r2 = 0.1 whereas adjustments for

confounding effect of population structure reduced LD decay to 7

Mbp. The use of partial LD (r2) helps overcome the bias between

adjacent markers and leads to smaller QTL regions.

The population consisted of breeding lines developed by public

and private programs targeting the north central states of the US.

The germplasm is expected to be narrow given the limited range

of maturity group (0–1), the short history of soybean breeding in

USA, and the limited number of traits selected in the breeding

Figure 3. Heatmap of Gower’s similarity distance among the individuals of the population. Based on the colors distribution, it is evident
that relatedness can have a major effect on identifying associations to IDC in the population.
doi:10.1371/journal.pone.0107469.g003
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programs. Here we used multiple mixed models [31,34,43–45]

that control for confounding effect of population structure and

population relatedness [16,46].

The percentile p-value cutoffs derived from empirical distribu-

tion were all within the p = 0.001 error level, and the significant

markers were distributed on eleven of the twenty chromosomes.

This is expected given the complex nature of iron homeostasis in

plants. At a significance level of one percentile (p#2.12E-04),

many more markers were significant (345 markers) and explained

the majority of the phenotypic variation in the population

(R2 = 85%). However, owing to the complexity of the trait, we

limited the interpretations to the 0.1 percentile to find the major

QTL effects.

To determine if any significant SNP is a potential causal variant,

we searched for non-synonymous substitutions. One was discov-

ered in Far red elongated 1 (FRE1) which encodes a protein that

increase reductase activity and provides a higher level of tolerance

in high pH calcareous soils [47–49]. The other non-synonymous

substitution was discovered in a gene with no known function

related to iron homeostasis. This can be expected because the

functions of many genes are still unknown [50–52].

Stepwise regression facilitates the selection of markers that have

a major effect in a QTL region and simultaneously masks the

effects of other minor QTL. As an example, the QTL regions on

Gm02 and Gm15 that have a significant interaction were not

included in the stepwise regression given these QTL have a minor

effect. Additionally, the partial LD between the 33 significant

markers is 0.09 (60.247). But for the eight markers included in

stepwise regression, partial LD (r2) is 0.008 (60.021). This subset

of markers included in stepwise regression explains 23.2% and

46.3% of the 0.01 and 0.1 percentile, respectively. This is similar

to the variation explained by all significant markers (23.2% and

48.6% at the 0.01 and 0.1 percentile, respectively).

Comparing with independent populations, the combined

population analysis was able to identify markers from eight

addition QTL regions that are not discovered in independent

populations at significance level of 0.1 percentile. Only six QTL

regions are common with either one of the population. Further

using a stepwise regression to identify major effect QTL, the

combined analysis was able to identify three unique QTL regions

(On Gm05, Gm17, and Gm18) that were not identified in the

independent populations. Of the other five QTL regions, two are

common with 2005 population (on Gm03, Gm11) and three are

common with 2006 population (Gm07, Gm16, Gm19).

For the population, we identified seven QTL on seven

chromosomes. Given the complex quantitative nature of iron

metabolism, multiple QTL distributed throughout the genome are

expected. The region on Gm03 is in the same region identified

earlier by Severin et al. [14] and Stec et al. [15] using an

introgression analysis and is a significant QTL in many biparental

studies [53–55]. In addition to this major QTL, other QTL

regions were also identified earlier. For example, QTL region on

Gm05 were identified earlier by Severin et al. [14]. The QTL on

Gm16 is close to an introgression region identified earlier [14,15].

Similarly Lin et al. [53] identified QTL on Gm18 and Gm19 and

Lin et al.[56] identified QTL on Gm18. Most of these regions

were also identified earlier using the same population with about

1000 polymorphic markers [9]. The major difference of this study

from the previous one is the ability to narrow the QTL region and

the ability to study the entire genome given a polymorphic marker

every 31 kb. In addition we were able to identify significant SNP

markers within the candidate genes.

Figure 4. QQ plot for the six models tested. P-value observed is plotted on the y-axis and P-expected is plotted on the x-axis. Each color
represents a model of regression used. The best model is the one that is close to the diagonal line.
doi:10.1371/journal.pone.0107469.g004
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Iron is a structural component of many important processes in

plants, and multiple physiological steps are used by strategy-I

plants, such as soybean, to manage plant growth and development

in iron-deficient conditions [56]. Protons release results in the

acidification of the rhizosphere which increases the solubility of

iron. Ferric iron is reduced at the root surface, and ferrous iron

uptake increases [57–59]. Here we discovered multiple genes

located in major QTL associated with these major activities.

AHA11 (Gm05) is an abundant protein found in the seedlings

and leaves [60] and limits the transport of iron to leaves resulting

in chlorotic plants. Ferric-chelate reductase oxidase (FRO2;

Gm07) is expressed in the epidermal cells of Fe-deficient roots

and is one of the main Fe (III) chelate reductase proteins. It

reduces iron at the cell surface before transport into roots [61].

FRO2 also interacts with IRT1 under Fe sufficiency conditions to

increase iron uptake [62,63]. FRE1 (Gm03) increases reductase

activity and tolerance to high pH in calcareous soils [47,48]. Based

on transgenic lines in Oryza, Ishimaru et al. [47,48] suggested that

this gene is regulated by the IRT1 since transgenic lines have a

higher level of Fe uptake and enhanced tolerance to low Fe

availability in both hydroponic culture and calcareous soils.

Ferric chelate reductase defective (FRD4; Gm07) is a gene that

acts post-translationally and reduces Fe (III) chelate reductase

activity in response to iron deficiency [56]. In addition, frd4
mutants are chlorotic, grow more slowly, have smaller chloro-

plasts, and possess fewer thylakoid membranes and grana stacks.

Map-based cloning revealed that this gene encodes a component

that is responsible for the insertion of proteins into the thylakoid

membranes of the chloroplast [56]. Ferredoxin NADP reductase 1

(FNR1; Gm16) is an enzyme that catalyzes reversible electron

transfer in photosynthetic electron transport. In iron stress

conditions, its activity is decreased resulting in reduced chlorophyll

biosynthesis [64].

Nicotianamine (NA) is an iron chelator involved in iron (Fe)

acquisition, transport, and homeostasis [65,66], and NA is

synthesized by nicotianamine synthase that is encoded by NAS3
(Gm03) gene. Overexpression of NAS genes in rice increased Fe

and Zn uptake by at least twofold [67,68]. Nicotianamine synthase

genes are induced by nitrate levels [69,70]. Ammonium and

nitrate transporters (Gm03) increase the uptake of nitrate from

rhizosphere and increase the concentration of nitrate in plants and

lead to increased growth and extension of roots [71,72]. In

addition, nitrates enhance H+ extrusion and acidify the rhizo-

sphere leading to increased bioavailability of Fe [71–75].

Several transporters such as RAN1 (Gm05), OPT5 (Gm19), and

HMA (Gm19) are in the significant QTL regions. RAN1 is

involved in copper trafficking and iron transport [76]. OPT5, an

oligopeptide transporter is highly expressed in multiple organs of

adult plants [77], and HMA sequesters Cd, Zn, and Ni in vacuoles

under Fe deficiency to maintain metal balance and to detoxify

heavy metals [78–80].

Argonaute (AGO) like proteins are down-regulated under

conditions of low Fe and phosphorus [81]. Vaucheret [82]

suggested that these genes have functions in both development

and stress response by regulating gene expression at various levels

and has additional functions including chromatin remodeling,

DNA methylation, translational repression, and RNA cleavage.

One such AGO gene, AGO10 (Gm05) is in a major QTL.

Disease resistant genes (R genes) are distributed throughout the

G.max genome and are a key component of gene interactions

between plants and pathogens [83]. We identified multiple R

genes in IDC QTL regions. Iron is an important element for all

living organisms and pathogens and hosts actively compete for

available metals. Plants need metals for defensive generation of
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reactive oxygen species (ROS) and other plant defenses that limit

pathogen growth whereas pathogens use low-metal conditions as a

signal to recognize and respond to the host environment [84].

Pathogens have developed sophisticated strategies to acquire metal

during plant growth that include production of multiple side-

rophores. Chen et al. [85] studied the interaction IDC and

soybean cyst nematode (SCN) resistance and discovered SCN

susceptible varieties had higher IDC rating. Since there exists a

significant interaction between diseases and IDC, selecting for

disease resistance may improve IDC tolerance.

For many traits, estimating epistatic interactions in plants

[86,87] has been restricted to bi-parental populations [50,88–90].

For the population, FRO2, a proton with reductase activity

interacts with Cytochrome P450 like proteins. Cytochrome P450

Figure 5. Manhattan plots with significant QTL that are associated with IDC. Chromosomes (1–20) ordered on x-axis and each chromosome
is represented by a different color. The –log10(p-value) is presented on the y-axis. The cutoff horizontal lines indicate 0.01 and 0.1 percentile tails of
the empirical distribution obtained using 10,000 bootstraps. Vertical grey blocks indicate QTL regions that have major effect on IDC trait identified by
stepwise regression. The boundaries of the QTL region (based on the position of markers) and significant candidate genes are represented on the top
of QTL.
doi:10.1371/journal.pone.0107469.g005

Table 2. Significant QTL regions associated with IDC that have Candidate iron genes.

Gene Model* Chrom Start End
Gene
symbol* Annotation* Function

Gm03: 44.798–47.140

Glyma03g38620 Gm03 44,925,730 44,930,360 FRE1 Phytochrome A Increased reductase activity and better tolerance
in high pH soils [47–48].

Glyma03g38640 Gm03 44,943,759 44,948,193 NRT1:2 Nitrate Transporter 1:2 Increase concentration of nitrate in plants and lead
to increased growth and root extension [71–72].

Glyma03g39050 Gm03 45,279,743 45,281,178 NAS3 Nicotianamine Synthase 3 Synthesis of iron chelator, nicotiamine [67–68].

Glyma03g40700 Gm03 46,372,699 46,374,428 AMT2;1 Ammonium Transporter 2 Increase concentration of nitrate in plants and lead
to increased growth and root extension [71–72].

Gm05: 7.837–10.627

Glyma05g01460 Gm05 960,779 967,307 AHA11 H(+)-ATPase 11 Limits transport of iron in plants [60].

Glyma05g08170 Gm05 8,130,422 8,137,850 AGO10 Stabilizer of iron transporter
SufD/Polynucleotidyl transferase

Stress response [82].

Glyma05g08260 Gm05 8,219,986 8,222,377 RAN1 RAS-related nuclear protein-1 Involved in iron transport [76].

Gm07: 6.074–7.101

Glyma07g07380 Gm07 6,059,979 6,064,461 FRO2 Ferric reduction oxidase 2 Reduce iron at cell surface before transport [61]

Glyma07g08240 Gm07 6,837,072 6,844,618 FRD4 Signal recognition particle
receptor protein,
chloroplast (FTSY)

Reduces iron in response to iron deficiency [56].

Gm16: 26.914–27.597

Glyma16g23710 Gm16 27,560,086 27,563,676 FNR1 Ferrodoxin NADP (+)
oxidoreductase 1

Decreased chlorophyll biosynthesis [64].

Gm19: 39.831–41.320

Glyma19g32190 Gm19 39,950,268 39,955,547 HMA5 Heavy Metal Atpase 5 Maintain metal balance under Fe deficiency [78–80].

Glyma19g32401 Gm19 40,141,923 40,144,157 OPT5 Oligopeptide transporter 5 Oligopeptide transporter [77].

*Gene Model, gene symbol and annotation obtained from phytozome (www.phytozome.net/soybean, V8.0).
doi:10.1371/journal.pone.0107469.t002
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proteins accumulate in response to iron deficiency [91]. If iron

uptake is limited by the function of FRO2, it would lead to iron

deficiency and limit AUX1 and initiate cytochrome P450

activities. Similar to Cytochrome P450 proteins, activity of FNR

is reduced under iron deficient conditions [64]. AUX1 is a gene

that is involved in auxin transport, a plant hormone that

Figure 6. Heatmap of major QTL regions. QTL that has known candidate gene are only represented. Only significant markers at the 0.1
percentile bootstrapped empirical distribution were included in the figure. Significance of the markers is indicated as *** if fall in the 0.01 percentile
tail and ** if fall in the 0.1 percentile tail of the bootstrapped empirical distribution. The stepwise included markers are marked in blue. r2 values are
represented in different colors. Marker pairs with r2 values.0.6 are considered to be in linkage disequilibrium. a) is the QTL on Gm03 (44.798 Mbp–
47.140 Mbp), b) is the QTL on Gm05 (7.837 Mbp–10.627 Mbp), c) is the QTL on Gm07 (6.074 Mbp–7.101 Mbp), d) is the QTL on Gm16 (26.914 Mbp–
27.597 Mbp) and e) is QTL region on Gm19 (39.832 Mbp–41.320 Mbp).
doi:10.1371/journal.pone.0107469.g006
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accumulates in Fe-deficient Arabidopsis roots and acts upstream of

nitric oxide [92]. FER4 is a gene responsible for cellular iron

homeostasis and subcellular iron trafficking [93]. CCC is a

transporter molecule that transports iron [94]. If the activity of the

transporter is reduced, auxin accumulates more and the activity of

FER4 is reduced.

Evaluating allelic combinations of markers can define appro-

priate groups of markers for MAS. It is well understood, that there

is no single universal marker that is significant in all populations.

This is because of the altered effect of the genes and the QTL. It is

the combination of these markers that have a significant difference

on the phenotype. Of the many allelic combinations possible for

multiple SNP (2n, where n is the number of biallelic markers), only

a few of them represent the extremes of phenotype. We provide

allelic combination details for the extreme phenotypes for the

significant markers that are included in the stepwise regression.

Conclusion

We used a high density GBS data set with a large plant GWAS

population to map genes/QTL involved in IDC of soybean.

Stepwise regression was used to select a subset of markers that

have a major effect on IDC. We identified several significant QTL

and candidate iron genes confirming the polygenic nature of the

trait. Among these, a non-synonymous substitution identifies

FRE1 as a candidate gene. Stepwise regression was effective for

selecting the subset of markers that have major effect. This subset

of markers can further be used for validation and testing in other

populations. A high throughput study on expression differences of

genes and the variants responsible for these differences would

further help breeders identify varieties tolerant to IDC.

Supporting Information

Figure S1 Genome-wide linkage disequilibrium (LD)
decay plot for the population. Linkage disequilibrium,

measured as partial R2, between pairs of polymorphic marker

loci (intra-chromosomal comparisons) is plotted against the

physical distance (Mbp).

(PDF)

Table S1 Detailed information of SNPs used in the
study. SNP postions, alleles based on soybean reference genome

V1.1 (phytozome.org) and minor allele frequency for this

population (in %).
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Table 3. Allelic combinations and IDC means for the allele combinations that have a mean,2.5 (Tolerant) and.3.5 (Susceptible).

Allelic combination1 # of genotypes IDC

Minimum Maximum Mean Standard Deviation

CTTATTGA 3 1.63 2.23 1.88 0.31

TGTATTGA 7 1.46 2.58 2.17 0.37

CGTAGTGA 2 2.18 2.34 2.26 0.11

CTTATTGC 6 1.96 2.86 2.29 0.33

TTTATTGA 11 1.95 3.25 2.32 0.40

CGCATTGA 9 2.08 2.83 2.38 0.26

CTCGTTAA 1 2.4 2.4 2.40

CTTATTAA 2 2.16 2.66 2.41 0.35

CTCATTGA 26 1.8 3.01 2.41 0.33

CTTGTTGC 2 2.16 2.69 2.43 0.37

CTCATTGC 9 2.11 3.03 2.44 0.33

CGTATTGA 5 2.31 2.57 2.47 0.13

CTTATCGC 2 2.42 2.52 2.47 0.07

CGTATTGC 1 2.5 2.5 2.50

TTCGTTAC 1 3.56 3.56 3.56

TTCAGTAC 1 3.58 3.58 3.58

TGCAGCGC 1 3.68 3.68 3.68

TGCGTTGC 1 3.7 3.7 3.70

TGCGTTAA 1 3.72 3.72 3.72

TGCGTTAC 1 3.79 3.79 3.79

1The order of the markers for the allelic combination are Gm03_45031929, Gm05_8877264, Gm07_6397319, Gm11_530116, Gm16_27300116, Gm17_25859992,
Gm18_28141888, and Gm19_40193564.
doi:10.1371/journal.pone.0107469.t003
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