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Mosquito species identification 
using convolutional neural 
networks with a multitiered 
ensemble model for novel species 
detection
Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, 
Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, 
Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, 
David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2*

With over 3500 mosquito species described, accurate species identification of the few implicated 
in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered 
by limited global taxonomic expertise and specimen damage consistent across common capture 
methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image 
database requirements restrict practical implementation. Using an image database of 2696 specimens 
from 67 mosquito species, we address the practical open-set problem with a detection algorithm 
for novel species. Closed-set classification of 16 known species achieved 97.04 ± 0.87% accuracy 
independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed-set classification 
of 39 species produces a macro F1-score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, 
and practical computer vision solution to identify wild-caught mosquitoes for implementation in 
biosurveillance and targeted vector control programs, without the need for extensive image database 
development for each new target region.

Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year 
with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile 
Virus1. Mosquito control programs, currently the most effective method to prevent mosquito borne disease, 
rely on accurate identification of disease vectors to deploy targeted interventions, which reduce populations and 
inhibit biting, lowering transmission2. Vector surveillance—assessing mosquito abundance, distribution, and 
species composition data—is critical to both optimizing intervention strategies and evaluating their efficacy2,3. 
Despite advances in vector control, mosquito borne disease continues to cause death and debilitation, with cli-
mate change4, insecticide resistance5, and drug resistant pathogens6,7 cited as exacerbating factors.

Accurate mosquito identification is essential, as disparate taxa exhibit distinct biologies (e.g. host preference, 
biting patterns), and innate immunities, which influence vector competencies and inform effective intervention 
strategies3. Typically, mosquito surveillance requires the microscopic screening of thousands of mosquitoes 
per week and identification to species using dichotomous keys8–10—a technical, time-intensive activity that is 
difficult to scale. One of the most substantial barriers to effective biosurveillance activities is the delayed data-to-
decision pathway, caused by the identification bottlenecks centered on severely limited global expertise in insect 
identification11,12. In order to address this global taxonomic impediment13 and to increase the pace of reliable 
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mosquito species identification, several automated methods have been explored, including analysis of wingbeat 
frequencies14,15, traditional computer vision approaches16, and most notably using deep Convolutional Neural 
Networks (CNNs) to recognize mosquito images17–20.

Computer vision holds promise as a scalable method for reliable identification of mosquitoes, given that—
like mosquito taxonomists—it relies on visual (morphological) characters to assign a definitive taxon name. 
Using CNNs, Park et al. showed an impressive 97% accuracy over eight species19, two of which were sourced 
from lab-reared colonies. However, morphologically similar species were grouped together, with all species 
from the genus Anopheles considered as one class19 [herein, a class is described as a distinct output category of a 
machine learning model for a classification task]. Couret et al. achieved 96.96% accuracy with CNNs amongst 
17 classes20, including differentiation of closely related cryptic species in the Anopheles gambiae species complex 
as independent classes. For ease of gathering mosquito specimens for acquiring image data, both studies relied 
heavily on available colony strains. This invokes criticism of the field utility of this approach by mosquito work-
ers as (1) species comparisons used do not reflect naturally occurring biodiversity in a given location, (2) inbred 
colonies can quickly lose or fix unique phenotypes that are not maintained in field caught specimens, and (3) the 
colony material is pristine compared to the battered samples typically collected using suction traps in the field, 
raising doubts as to whether the technology is field transferrable. Nonetheless these initial studies have shown 
the potential for CNNs to automate species identification, which, if expanded and based on expertly identified 
material, would facilitate near real-time vector control and critical biosurveillance activities across the globe.

While previous works17–20 have proven the utility of deep learning for recognizing mosquito species, they have 
not addressed the substantial impediments caused by field-collected specimens. In real-world scenarios, identifi-
cation is a noisy problem amplified by high inter- and intra-specific diversity, and by the recovery of aged, often 
damaged specimens missing key identifying features (scales, setae) or body parts during trapping, storage (dry/
frozen) and transportation. Addressing the increased complexity of identifying wild-caught mosquito specimens 
is essential for developing a practical computer vision solution usable by mosquito control programs. Mosquito 
identification can be challenging, with many species of similar morphology. While some previous work has gone 
beyond genus-level classification to identify species, most have tested morphologically dissimilar species19, or 
pristine specimens readily available from laboratory colonies20, rather than environmental specimens.

Reliance on laboratory reared specimens aside, all computer vision methods for mosquito classification to 
date have been limited to closed-set classification of no more than 17 species. There are currently 3570 formally 
described species and 130 subspecies in the 41 genera that comprise the family Culicidae21, and many new species 
detected genetically that await formal descriptions. Given this, a close-to-complete dataset of all mosquitoes is 
unlikely and any computer vision solution must be able to recognize when it encounters a species not represented 
in the closed-set of species as previously unencountered, rather than forcing incorrect species assignment: an 
open set recognition, or novelty detection, problem. The novelty detection and rejection problem has been 
addressed in previous computer vision work, though most successful methods are applied to non-fine-grained 
problems represented by ImageNet22, CIFAR23, and MNIST24 datasets25, such as the generalized out-of-distri-
bution image detection (ODIN) of Hsu et al.26 and multi-task learning for open set recognition of Oza et al.27.

Given the fine-grained morphological diversity between closely related mosquito species and the intra-specific 
variability (of both form and acquired damage) between wild-caught specimens, this problem is succinctly 
defined as a noisy, fine-grained, open set recognition object classification problem. Defining the problem as such 
is necessary for practical implementation, and has not yet been addressed, nor has this type of problem been 
sufficiently solved in the wider computer vision literature. Herein, we present a convolutional neural network-
based approach to open set recognition, designed for identifying wild caught mosquito specimens. When pre-
sented with an image, our algorithm first determines whether its species is known to the system, or is novel. If 
known, it classifies the specimen as one of the known species. The novelty detection algorithm was evaluated 
using 25-fold cross validation over 67 species, and the final classification CNN using fivefold cross-validation 
over 20 potentially known species, using 16 of these species as known for each fold, such that each known spe-
cies is considered unknown for one of the five folds of the CNNs. The data used for evaluation included species 
which can be devised into three distinct groups: (1) known species, which the closed-set CNN is trained on 
for species classification; (2) unknown species used in training, which are used to train other components of 
the novelty detection algorithm to distinguish unknown species from known species; and (3) novel unknown 
species, which are not used in training and are completely novel to the CNN. Thus we test a representation of 
the real-world practical use of such an algorithm. All specimens used in the study were expertly identified (by 
morphology or by DNA barcoding), thus reference to known or unknown species in this context is indicative 
of whether the CNN has prior knowledge of the species presented. We also provide an evaluation of 39 species 
closed-set classification and a comparison of our methods to some common alternatives. The image database 
developed for training and testing this system consists of primarily wild caught specimens bearing substantial 
physical damage, obfuscating some diagnostic characters (see Fig. 1).

Results
System overview.  To address the open-set novel species detection problem, our system leverages a two-step 
image recognition process. Given an image of a mosquito specimen, the first step uses CNNs trained for species 
classification to extract relevant features from the image. The second step is a novelty detection algorithm, which 
evaluates the features extracted by the CNNs in order to detect whether the mosquito is a member of one of the 
sixteen species known to the CNNs of the system. The second step consists of two stages of machine learning 
algorithms (tier II and tier III) that evaluate the features generated in step one to separate known species from 
unknown species. Tier II components evaluate the features directly and are trained using known and unknown 
species. Tier III evaluates the answers provided by the tier II components to determine the final answer, and is 
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trained using known species, unknown species used for training tier II components, and still more unknown 
species not seen by previous components. If the mosquito is determined by tier III not to be a member of one of 
the known species, it is classified as an unknown species, novel to the CNNs. This detection algorithm is tested 
on truly novel mosquito species, never seen by the system in training, as well as the species used in training. If a 
mosquito is recognized by the system as belonging to one of the sixteen known species (i.e. not novel), the image 
proceeds to species classification with one of the CNNs used to extract features.

Unknown detection accuracy.  In distinguishing between unknown species and known species, the algo-
rithm achieved an average accuracy of 89.50 ± 5.63% and 87.71 ± 2.57%, average sensitivity of 92.18 ± 6.34% and 
94.09 ± 2.52%, and specificity of 80.79 ± 7.32% and 75.82 ± 4.65%, micro-averaged and macro-averaged respec-
tively, evaluated over twenty-five-fold validation (Table 1). Here, micro-average refers to the metric calculated 
without regard to species, such that each image sample has an equal weight, considered an image sample level 
metric. Macro-average refers to the metric first calculated within a species, then averaged between all species 
within the relevant class (known or unknown). Macro-average can be considered a species level metric, or a spe-
cies normalized metric. Macro-averages tend to be lower than the micro-averages when species with higher sam-
ple sizes have the highest metrics, whereas micro-averages are lower when species with lower sample sizes have 
the highest metrics. Cross validation by mixing up which species were known and unknown produced variable 
sample sizes in each iteration, because each species had a different number of samples in the generated image 
dataset. Further sample size variation occurred as a result of addressing class imbalance in the training set. The 
mean number of samples varied for each of the 25 iterations because of the mix-up in data partitioning for cross-
validation (see Table 1 for generalized metrics; see Supplementary Table 1, Datafolds for detailed sampling data).

Differences within the unknown species dictated by algorithm structure.  The fundamental aim 
of novelty detection is to determine if the CNN in question is familiar with the species, or class, shown in the 
image. CNNs are designed to identify visually distinguishable classes, or categories. In our open-set problem, 
the distinction between known and unknown species is arbitrary from a visual perspective; it is only a product 
of the available data. However, the known or unknown status of a specimen is a determinable product of the 
feature layer outputs, or features, produced by the CNN’s visual processing of the image. Thus, we take a tiered 
approach, where CNNs trained on a specific set of species extract a specimen’s features, and independent classi-
fiers trained on a wider set of species analyze the features produced by the CNNs to assess whether the CNNs are 
familiar with the species in question. The novelty detection algorithm consists of three tiers, hereafter referred to 
as Tier I, II, and III, intended to determine if the specimen being analyzed is from a closed set of species known 
to the CNN:

Tier I: two CNNs used to extract features from the images.
Tier II: a set of classifiers, such as SVMs, random forests, and neural networks, which independently process 

the features from Tier I CNNs to distinguish a specimen as either known or unknown species.
Tier III: soft voting of the Tier II classifications, with a clustering algorithm, in this case a Gaussian Mixture 

Model (GMM), which is used to make determinations in the case of unconfident predictions.

Figure 1.   Example image database samples of wild-caught mosquitoes. Field specimens were often considerably 
damaged, missing appendages, scales, and hairs, like specimens captured during standard mosquito surveillance 
practice.

Table 1.   Micro- and macro-averaged metrics of the novelty detection algorithm on the test set using 50-fold 
validation. a Micro-average refers to the metric calculated without regard to species as an independent class: 
each sample has an equal weight. b Macro-average refers to the metric calculated first within each species as 
an independent class, then averaged between species for the known or unknown classes, in order to address 
imbalance of samples between species. c This indicated the number of species in the known or unknown classes 
for each macro-average.

Known samples (avg (min–
max))

Unknown samples (avg 
(min–max)) Average accuracy Unknown sensitivity/recall Unknown specificity Unknown precision

Micro-average a 519.44 (409–694) 2216.12 (1043–3557) 89.50 ± 5.63% 92.18 ± 6.34% 80.79 ± 7.32% 94.21 ± 3.76%

Macro-average b 15.8 (15–16)c 29.84 (25–34)c 87.71 ± 2.57% 94.09 ± 2.52% 75.82 ± 4.65% 79.66 ± 3.24%
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The tiered architecture necessitated partitioning of groups of species between the tiers, and an overview of the 
structure is summarized in Fig. 2A. The training schema resulted in three populations of unknown species: set 
U1, consisting of species used to train Tier I, also made available for training subsequent Tiers II and III; set U2, 
consisting of additional species unknown to the CNNs used to train Tiers II and III; and set N, consisting of spe-
cies used only for testing (see Fig. 2B). Species known to the CNNs are referred to as set K. It is critical to measure 
the difference between these species sets, as any of the species may be encountered in the wild. U1 achieved 
97.85 ± 2.81% micro-averaged accuracy and 97.34 ± 3.52% macro-averaged accuracy; U2 achieved 97.05 ± 1.94% 
micro-averaged accuracy and 97.30 ± 1.41% macro-averaged accuracy; N achieved 80.83 ± 19.91% micro-averaged 
accuracy and 88.72 ± 5.42% macro-averaged accuracy. The K set achieved 80.79 ± 7.32% micro-averaged accuracy 
and 75.83 ± 5.42% macro-averaged accuracy (see Table 2). The test set sample sizes for each of the twenty five 
folds are as follows, (formatted [K-taxa,K-samples;U1-taxa,U1-samples;U2-taxa,U2-samples;N-taxa,N-samples]): 

Figure 2.   The novelty detection architecture was designed with three tiers to assess whether the CNNs were 
familiar with the species shown in each image. (A) Tier I consisted of two CNNs used as feature extractors. 
Tier II consisted of initial classifiers making an initial determination about whether the specimen is known or 
unknown by analyzing the features of one of the Tier I CNNs, and the logits in the case of the wide and deep 
neural network (WDNN). In this figure, SVM refers to a support vector machine, and RF refers to a random 
forest. Tier III makes the final classification, first with soft voting of the Tier II outputs, then sending high 
confidence predictions as the final output and low confidence predictions to a Gaussian Mixture Model (GMM) 
to serve as the arbiter for low confidence predictions. (B) Data partitioning for training each component of the 
architecture is summarized: Tier I is trained on the K set of species, known to the algorithm; Tier I open-set 
CNN is also trained on the U1 set of species, the first set of unknown species used in training; Tier II is trained 
on K set, U1 set, and the U2 set of species, the second set of unknown species used in training; Tier III is trained 
on the same species and data-split as Tier II. Data-split ratios were variable for each species over each iteration 
(Xs,m where s represents a species, m represents a fold, and X is a percentage of the data devoted to training) for 
Tiers II and III; Xs,m was adjusted to manage class imbalance within genus across known and unknown classes. 
Testing was performed on each of the K, U1, and U2 sets, as well as the N set, the final set of unknown species 
reserved for testing the algorithm, such that it is tested on previously unseen taxa, replicating the plausible 
scenario to be encountered in deployment of CNNs for species classification. Over the twenty-five folds, each 
known species was considered unknown for at least five folds and included as novel for at least one-fold.
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[16,683;8,51;10,536;13,456], [16,673;8,51;9,537;13,485], [16,673;8,51;8,523;13,508], [16,673;8,46;6,159;11,869], 
[16 ,694 ;8 ,51 ;7 ,483 ;10 ,548] ,  [15 ,409 ;9 ,62 ;11 ,2906 ;8 ,546] ,  [15 ,456 ;9 ,62 ;9 ,2458 ;12 ,1024] , 
[15,456;10,67;13,2359;9,1115],  [15,456;9,62;8,3189;12,306],  [15,456;10,67;10,2874;10,601], 
[16,543;10,56;12,1450;10,1052], [16,484;9,52;11,2141;10,312], [16,492;10,54;11,2185;12,263], 
[16,512;8 ,45;15,2292;10,189] ,  [16,480;9 ,49;9 ,1652;13,790] ,  [16,442;9 ,44;11,1253;11,665] , 
[16,494;10,54;14,1727;10,228] ,  [16,442;9 ,55;13,1803;10,96] ,  [16,538;10,60;8 ,1509;9 ,502] , 
[16,489;10,60;13,1764;9 ,184] ,  [16,462;8 ,47;13,1415;11,452] ,  [16,437;8 ,54;9 ,1548;11,320] , 
[16,447;8,55;11,654;10,1193], [16,547;8,44;9,1437;11,531], [16,548;7,52;7,1464;11,499]. See Supplementary 
Table 1, Datafolds for more detailed sample information.

Subsequent species classification.  Following the novelty detection algorithm, species identified as 
known are sent for species classification to the closed-set Xception model used in Tier I of the novelty detection 
algorithm. Figure 3A shows the species classification results independently over the five folds of Tier I, which 
achieved a micro-averaged accuracy 97.04 ± 0.87% and a macro F1-score of 96.64 ± 0.96%. Figure 3B shows the 
species classification cascaded with the novelty detection methods where all unknown species are grouped into 
a single unknown class alongside the known classes in an aggregated mean confusion matrix over the twenty-
five folds of the full methods, yielding a micro-averaged accuracy of 89.07 ± 5.58%, and a macro F1-score of 
79.74 ± 3.65%. The confusion matrix is normalized by species and shows the average classification accuracy and 
error distribution. The independent accuracy for classifying a single species ranged from 72.44 ± 13.83% (Culex 
salinarius) to 100 ± 0% (Aedes dorsalis, Psorophora cyanescens), and 15 of the 20 species maintained an average 
sensitivity above 95%. Test set sample size for each species were as follows (formatted as species, [fold1,fold2,fol
d3,fold4,fold5]): Ae. aegypti: [127,0,133,132,126]; Ae. albopictus: [103,90,0,99,102]; Ae. dorsalis: [43,41,42,0,41]; 
Ae. japonicus: [162,159,154,156,0]; Ae. sollicitans: [57,0,60,58,60]; Ae. taeniorhynchus: [0,25,27,25,24]; Ae. vex-
ans: [50,48,0,46,49]; An. coustani: [29,21,18,0,22]; An. crucians s.l.: [56,58,61,61,0]; An. freeborni: [87,0,77,79,80]; 
An. funestus s.l.: [158, 174,0,173,175]; An. gambiae s.l.: [182,178,178,0,166]; An. punctipennis: [0,36,31,34,33]; 
An. quadrimaculatus: [0,28,28,28,30]; Cx. erraticus: [47,47,44,49,0]; Cx. pipiens s.l.: [212,0,218,219,205]; Cx. sali-
narius: [25,26,0,26,25]; Ps. columbiae: [66,59,67,0, 64]; Ps. cyanescens: [0,55,56,54,56]; Ps. ferox: [40,31,41,34,0].

Many of the species which were a part of the unknown datasets had enough data to perform preliminary 
classification experiments. Thirty-nine of the 67 species had more than 40 image samples. Species classification 
on these 39 species yielded an unweighted accuracy of 93.06 ± 0.50% and a macro F1-score of 85.07 ± 1.81% (see 
Fig. 4A). The average F1-score for any one species was plotted against the number of specimens representing the 
samples in the species, which elucidates the relationship between the training data available and the accuracy 
(see Fig. 4B). No species with more than 100 specimens produced an F1-score below 93%.

Test set sample size for each species in the 39 species closed-set classification were as follows (formatted as 
species, [fold1,fold2,fold3,fold4, fold5]): Ae. aegypti: [131,127,127,124,133]; Ae. albopictus: [99,99,107,97,95]; 
Ae. atlanticus: [15,13,14,14,15]; Ae. canadensis: [17,21,21,21,20]; Ae. dorsalis: [42,41,43,40,43]; Ae. flaves-
cens: [13,14,14,14,14]; Ae. infirmatus: [17,15,19,18,16]; Ae. japonicus: [155,153,151,160,150]; Ae. nigromac-
ulis: [6,6,5,5,5]; Ae. sollicitans: [63,61,58,57,60]; Ae. taeniorhynchus: [30,25,27,25,25]; Ae. triseriatus s.l.: 
[14,16,17,14,13]; Ae. trivittatus: [28,24,25,24,23]; Ae. vexans: [46,58,57,51,50]; An. coustani: [25,32,27,33,27]; 
An. crucians s.l.: [64,57,60,59,62]; An. freeborni s.l.: [85,77,82,74,89]; An. funestus s.l.: [181,187,166,175,161]; An. 
gambiae s.l.: [191,182,178,185,194]; An. pseudopunctipennis: [10,8,12,9,9]; An. punctipennis: [32,28,38,32,32]; An. 
quadrimaculatus: [30,33,26,37,35]; Coquillettidia perturbans: [31,29,30,32,35]; Cx. coronator: [10,9,10,11,10]; Cx. 
erraticus: [48,51,49,53,50]; Cx. nigripalpus: [14,14,13,13,13]; Cx. pipiens s.l.: [205,203,216,208,216]; Cx. restuans: 
[12,13,12,14,12]; Cx. salinarius: [24,25,24,23,24]; Cus. incidens: [9,9,9,9,8]; Cus. inornata: [9,9,8,9,9]; Deinocer-
ites cancer: [10,10,10,10,9]; De. sp. Cuba-1: [16,14,15,14,15]; Mansonia titillans: [15,16,15,14,13]; Ps. ciliata: 
[29,26,24,23,28]; Ps. columbiae: [62,59,63,60,61]; Ps. cyanescens: [55,54,57,55,55]; Ps. ferox: [32,48,31,36,34]; Ps. 
pygmaea: [24,25,25,24,25].

Comparison to alternative methods.  Some intuitive simplifications of our methods, along with some 
common direct methods for novel species detection, are compared to our full methods. All compared meth-
ods were found to be statistically different from the full methods using McNemar’s test. The compared meth-

Table 2.   Accuracy metrics for the known, unknown, and novel unknown species sets over twenty-five-fold 
validation. a Set K species are known to the closed-set CNNs. Set U1 unknown species are used in training for 
Tiers I, II & III. Set U2 unknown species are used to train Tier II&III. Set N unknown species are novel to all 
tiers and reserved for testing. b The extreme variation in the test set was due to class balancing the Tier II&III 
training data, such that whenever a genus was represented in the K set a similar number of specimens from 
that genus were available for the unknown training set, whenever possible. Some of the U2 species were only 
used during training due to limited numbers of specimens in particular species.

Accuracy, macro-average Accuracy, micro-average
Number of species tested within 
set (avg (min–max))b

Number of samples within set 
(avg (min–max))b

Set Ka 75.83 ± 4.65% 80.79 ± 7.32% 15.8 (15–16) 519.44 (409–694)

Set U1a 97.34 ± 3.52% 97.85 ± 2.81% 8.8 (7–10) 54.04 (44–67)

Set U2a 97.30 ± 1.41% 97.05 ± 1.94% 10.28 (6–15) 1612.72 (159–3189)

Set Na 88.72 ± 5.42% 80.83 ± 19.91% 10.76 (8–13) 549.36 (96–1193)



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13656  | https://doi.org/10.1038/s41598-021-92891-9

www.nature.com/scientificreports/

Figure 3.   Mean normalized confusion matrices for species classification shows the distribution of error within 
species. The species classification in these confusion matrices was performed by the Tier I CNN, the closed-
set Xception model. The confusion matrix conveys the ground truth of the sample horizontally, labels on the 
left, and the prediction of the full methods vertically, labels on the bottom. Accurate classification is across the 
diagonal, where ground truth and prediction match, and all other cells on the matrix describe the error. Sixteen 
species were known for a given fold, and 51 species were considered unknown for a given fold, with each of the 
twenty known species considered unknown for one fold. (A) The species classification independent of novelty 
detection shows an average accuracy of 97.04 ± 0.87% and a macro F1-score of 96.64 ± 0.96%, calculated over 
the five folds of Tier I classifiers, trained and tested over an average of 7174.8 and 1544.6 samples. Of the error, 
73.5% occurred with species of the same genus as the true species. (B) The species classification as a subsequent 
step after novelty detection yielded 89.07 ± 5.58% average accuracy, and a macro F1-score of 79.74 ± 3.65% 
trained and tested on an average of 7174.8 and 519.44 samples, evaluated over the twenty-five folds of the 
novelty detection methods. First, a sample was sent to the novelty detection algorithm. If the sample was 
predicted to be known to the species classifier, which was the closed-set Xception algorithm used in Tier I, then 
the sample was sent to the algorithm for classification.
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ods tested, along with their macro F1-score, standard deviation, and p-value as compared to the full meth-
ods, were as follows: (1) soft voting of all Tier II component outputs, without a GMM arbiter (86.87 ± 3.11%, 
p < 0.00001); (2) the Random Forest Tier II component, appended to the closed set classification CNN from Tier 
I (82.80 ± 3.84%, p < 0.00001); (3) the SVM Tier II component, appended to the closed set classification CNN 
from Tier I (82.68 ± 4.51%, p < 0.00001); (4) the WDNN Tier II component, appended to the closed set classifica-
tion CNN from Tier I (81.87 ± 4.53%, p < 0.00001); (5) the softmax of the closed-set Xception logits, producing 
an unknown prediction for those specimens where no probability exceeded a threshold determined during 
training (72.38 ± 4.43%, p < 0.00001); (6) using the predicted class of the open-set Xception model, but remap-
ping any genus level class and the general mosquito class to the unknown class (72.72 ± 4.28%, p < 0.00001); 
(7) ODIN paired with the closed-set Xception to recognize out of distribution classifications (49.58 ± 26.02%, 
p < 0.00001). Our full novelty detection methods are significantly different from each alternative method tested 
on these twenty-five folds, but with macro F1-score and standard deviation (86.24 ± 2.48%) similar to the simpli-
fied methods. The difference is noticeable in a higher macro-averaged unknown sensitivity for the full methods, 
seen in Table 3, the advantages of which are discussed in the discussion.

Discussion
The novelty detection algorithm presented achieves an accuracy of 89.50 ± 5.63% in identifying unknown species 
using field mosquito specimens, outperforming other common methods in terms of unknown sensitivity and 
F1-score. Cascaded with closed-set classification, the overall classification accuracy is 89.07 ± 5.58%. Closed-set 
classification on 16 known species achieves 97.04 ± 0.87% accuracy and a macro F1-score of 96.64 ± 0.96%. A wid-
ened closed set of 39 species classification achieves 93.06 ± 0.50% accuracy and a macro F1-score of 85.07 ± 1.81%. 

Figure 3.   (continued)
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This work represents two landmarks in the field of computer vision-based mosquito recognition: (1) the use 
of wild caught specimens with highly variable physical condition for classification across a wide set of species, 
including morphologically similar species; and (2) accurate detection of species novel to the classification algo-
rithm, such that practical deployment need not be limited to regions where all mosquito species are included in 
the database. The high accuracy species classification paired with novel species detection validates the practical 
use of computer vision for mosquito identification and demonstrates its potential as a reliable identification 
method even between species of similar morphology. Most important, the introduction of a novelty detection 
algorithm tested on species of similar morphology to those in the known species distribution offers a practical 
path to deployment of these algorithms in the field in the face of otherwise impractical database requirements, 
to supplement and fill gaps in current vector surveillance programs globally. In short, we have demonstrated a 
viable computer vision solution to the noisy, fine-grained, open-set classification problem of mosquito species 
identification.

A major roadblock to developing a field ready machine learning-based mosquito identification algorithm is 
amassing a database sufficient to recognize any one of the over 3500 mosquito species. This is difficult not only 
due to the distribution of these species around the world, but also the difficulty of capturing many of these spe-
cies, and of taxonomists’ ability to recognize them, as most taxonomists only learn the species of a region relevant 
to their work. By introducing the unknown category, we can focus on training algorithms to identify common 
and medically relevant species, with confidence that species outside of our dataset will be categorized as an 
unknown species. Furthermore, classification with 39 species of limited data shows that species with more than 
100 specimens produce confident classifications above 90%. Some reduction in classification accuracy may be 
due to extreme class imbalance in this case despite implementing focal loss to control for this. Regardless, though 
some species may be more distinct than others, enabling high accuracy with smaller datasets, 100 specimens 
may be used as a guideline for data requirements for mosquito species classification with computer vision, until 
more thorough research on this question has been done. This work defines and dramatically reduces the data 
necessary for mosquito classification with computer vision as a useable tool, clarifying a viable path forward for 
practical use by vector control organizations for disease prevention.

Although the overall accuracy of the 16 species classification is high (97.04 ± 0.87%), performance was mark-
edly lower for certain species. However, 73.5% of the error occurred within the genus of the sample. Though the 
error for identifying Culex salinarius was high, with 20.6% of samples confused with Culex erraticus and 6.1% 
confused with Culex pipiens sl, similar error within a genus is also more common among human experts, par-
ticularly within Culex. The authors attribute the error which lies outside genera to three compounding factors: 
(1) the limited amount of data available, given that 97% of the species normalized error that occurred outside 
of genus involved species with fewer than 100 specimens; (2) the stochastic nature of training deep neural net-
works, which in the face of limited data may produce unexpected error distribution; (3) and the highly damaged 
nature of many of the specimens in the image database produced for this work, which may also be minimized 
by increasing training dataset size. Future work should investigate novelty detection as a broader application of 
distinguishing both novel species and low confidence specimens from closed-set classifications. Furthermore, 
other variables could be distinguished alongside species identification, such as mosquito sex, age, and feeding 
state. Analysis of these attributes may impact species identification accuracy, as well as provide additional value 
to mosquito control organizations. Given the diversity of species in different regions, inclusion of geographical 
and temporal information for time and place of capture may improve classification accuracy, as was recently 
done for butterfly classification28, another fine grained insect classification problem.

The novel, or unknown, species detection method in this work is important both to mosquito identification 
and to the field of computer vision. Previous work in recognizing novel classes, such as Outlier detection in 
neural networks (ODIN) and others described in the review by Geng et al. on open set recognition methods, has 
been focused on novel classes far outside the distribution of known classes26. However, these algorithms do not 
perform well on extremely fine-grained tasks, such as that presented in this work. Closed-set computer vision 
algorithms, such as those presented in previous works on mosquito classification, can only classify species on 
which they have been trained. This is similar to current entomological practice which relies on dichotomous keys 
that typically only contain a select group of species common to a particular region. If a mosquito belongs to a 
species not in the key, a technician will either mistakenly label it as a species they know, or they will recognize the 
anomaly and set the specimen aside for further analysis. Accurately identifying unknown species is a challenging 
problem because there is no visual or morphological reason for the distinction; it is an artificial product of what 
the user, or algorithm, is familiar with. Since a species’ unknown status is not necessarily indicative of visual 
characteristics far distinguished from the known species, the differences may not be an abstraction of the images 

Figure 4.   Species classification across 39 species shows the strength of CNNs for generalized mosquito 
classification, and elucidates a guideline for the number of specimens required for confident classification. 
Classification achieved unweighted accuracy of 93.06 ± 0.50% and a macro F1-score of 85.07 ± 1.81%, trained, 
validated, and tested over an average of 9080, 1945, and 1945 samples over five folds. (A) The majority of the 
error in this confusion matrix shows confusion between species of the same genera. Some of the confusion 
outside of genera is more intuitive from an entomologist perspective, such as the 10.2% of Deinocerites cancer 
samples classified as Culex spp. Other errors are less intuitive, such as the 28.61% of Culiseta incidens samples 
classified as Aedes atlanticus. (B) This plot of average F1-score of a species against the number of specimens 
which made up the samples available for training and testing shows the relationship between the available data 
for a given specimen and classification accuracy. When following the database development methods described 
in this work, a general guideline of 100 specimens’ worth of data can be extrapolated as a requirement for 
confident mosquito species classification.

◂
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themselves, but an abstraction of the features generated by a CNN processing the image in attempting species 
classification. This theory is the basis for the tiered approach of the novelty detection algorithm as presented in 
this work, where the features are analyzed by tiers of classifiers which are trained after the initial training of the 
CNNs. Disjointing the learning of feature extraction from the novelty detection portions of the methods and 
isolating feature extraction learning to species classification enables the later tiers to be independent arbiters of 
the novelty of the species in question. Future work should attempt to improve upon these methods, testing them 
on similar many-class fine-grained classification problems with inherent class imbalance issues.

The markedly lower performance of N set as compared to U1 set and U2 set is expected given that the CNNs 
did not train on the N set species. The difference between the micro-averaged and macro-averaged accuracies 
of N set (80.83 ± 19.91% and 88.72 ± 5.42%) indicates that the species within N set which contain the most 
specimens also tend to be the species most distinct from the K set, despite species mix-up with cross-validation. 
However, it is notable that the U2 set species achieved high micro-averaged and macro-averaged accuracies 
(97.05 ± 1.94% and 97.30 ± 1.41%). Many of the U2 species contained only a few samples. This suggests that if only 
a few specimens are obtained from otherwise unknown species, the species can be included in U2, and thereafter 
provide little threat of error regarding our unknown algorithms. The novelty detection accuracy for the K set 
known species was lowest of the species sets (80.79 ± 7.32% micro-averaged and 75.83 ± 4.65% macro-averaged). 
Though some of the compared novelty detection methods exceeded the full methods in known recall, or known 
sensitivity, the full methods are preferable from an entomologist perspective because they bias answers towards 
unknown. Mosquito taxonomists are conventionally trained to only provide confident answers. For example, if 
they think a specimen in question may be Culex erraticus but they are unsure, they are encouraged to call the 
specimen Culex spp. if they are confident of the genus, or to family Culicidae if they are not. In this way, the full 
methods, and in particular the inclusion of the GMM arbiter in Tier III, are preferable to the simpler alternatives, 
as they bias answers towards unknown, rather than known.

A potential application of this technology is in the recognition of malaria vectors. A major challenge to 
malaria elimination is weak surveillance, monitoring, and evaluation29. Although long-lasting insecticide nets and 
indoor residual spraying efforts have yielded progress, malaria elimination has been set back in many countries 
by insecticide resistance, the misuse of interventions, host behavior (such as cooking outdoors in the early even-
ing) and adaptive vector behavior (such as biting earlier in the evening, before humans are under the protective 
cover of bed nets). In sub-Saharan Africa, the primary malaria vectors are Anopheles gambiae s.l. and Anopheles 
funestus s.l., species complexes that are often difficult to distinguish from each other and other Anopheles species. 
Ideally, public health systems should know the density, composition, and distribution of the mosquito species 
in a finite region, allowing them to optimize interventions to a particular area2. If an affordable computer vision 
system were to be deployed in the field, organizations without access to specially trained taxonomists could obtain 
these composition and distribution patterns in a more standardized and timely manner.

The implications of this work for the prevention of mosquito borne diseases are vast. The first step towards 
implementing an effective control program is obtaining high quality data on the disease vectors in an area3,30. 
Without robust vector surveillance, emerging vector-borne disease threats cannot be addressed. Current global 
vector surveillance systems are unstandardized, burdensome on public health systems, and threatened by the 
global paucity of entomologists. Such a computer vision system could empower non-experts to accurately and 
rapidly identify disease vectors in the field, increasing programmatic capability and capacity with minimal 
training and cost.

Methods
Image database development.  A diverse database of mosquito images was developed primarily from 
desiccated mosquito specimens from field sites across Africa and North America, but was supplemented by lab 
colony specimens from species for which field specimens were difficult to obtain. Specimens ranged in condi-

Table 3.   Comparison of our methodology to simpler alternative methods. a A high chi-squared (χ2
1) value 

dictates a low p-value, which indicates a statistically significant difference with the full methods.

McNemar’s Test, χ2
1 Macro F1-score

Macro unknown recall/
sensitivity Macro unknown precision

Full methods 86.24 ± 2.48% 94.09 ± 2.42% 79.66 ± 3.24%

Soft voting of all T2 compo-
nents

χ2
1 = 332 a

p < 0.00001 86.87 ± 3.11% 88.55 ± 3.58% 85.36 ± 3.93%

T2–closed-set Random Forest χ2
1 = 920

p < 0.00001 82.80 ± 3.84% 83.79 ± 4.86% 81.97 ± 4.23%

T2 – closed-set SVM χ2
1 = 1120

p < 0.00001 82.68 ± 4.51% 82.93 ± 5.68% 82.58 ± 4.60%

T2–closed-set WDNN χ2
1 = 905

p < 0.00001 81.87 ± 4.53% 87.34 ± 5.96% 77.11 ± 3.93%

Softmax with a threshold χ2
1 = 12,151

p < 0.00001 72.38 ± 4.43% 61.81 ± 4.31% 87.43 ± 5.47%

Open-set re-mapped χ2
1 = 24,656

p < 0.00001 72.72 ± 4.28% 58.03 ± 5.52% 98.02 ± 1.98%

ODIN χ2
1 = 6414

p < 0.00001 49.58 ± 26.02% 68.87 ± 42.70% 82.02 ± 5.77%
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tion from fully intact to missing appendages with badly damaged head and/or body (see Supplementary Fig. 1, 
Image Database Preview). Each mosquito was identified by either genetic identification or human expert iden-
tification under a microscope. Expert identification was only used when genetic identification was unavailable, 
or the mosquito was grown in a lab colony. The molecular identification approach used was DNA-barcoding 
performed by Walter Reed Biosystematics Unit (WRBU), where DNA signatures are compared against the gold-
standard Mosquito Barcoding Initiative reference libraries31–33, or identified using specific nuclear DNA ITS2 
assays where available34,35. All DNA barcodes generated for mosquitoes imaged in this study are publicly avail-
able through GenBank. Associated data and raw chromatograms are hosted on the Barcode of Life Database 
(BOLD; www.​bolds​ystems.​org), under the container JHUSM and project codes SMARU, SMARV, SMARW and 
SMARX. Each mosquito was imaged at multiple random orientations on a white background, resulting in 4–10 
images per mosquito. By this process, 12,977 photos of 2,696 specimens from 67 species were generated, (see 
Supplementary Table 2, Image Database Details). Of the 2696 specimens, 53.1% were identified using DNA and 
86.4% were wild caught, and of the 67 species, 95.5% consisted solely of wild-caught specimens. The number 
of images for each species were as follows: Ae. aegypti 921, Ae. albopictus 692, Ae. atlanticus 80, Ae. canadensis 
128, Ae. cantator 8, Ae. condolescens 10, Ae. dorsalis 288, Ae. fairfax-1 6, Ae. flavescens 72, Ae. hendersoni 16, 
Ae. infirmatus 106, Ae. japonicus 1093, Ae. mediovittatus 84, Ae. melanimon 20, Ae. nigromaculis 42, Ae. sier-
rensis 8, Ae. sollicitans 414, Ae. spilotus 4, Ae. sticticus 4, Ae. taeniorhynchus 184, Ae. tortilis 21, Ae. triseriatus s.l. 
87, Ae. trivittatus 143, Ae. vexans 364, An. cf-coustani 21, An. coustani 142, An. crucians s.l. 278, An. freeborni 
570, An. funestus s.l. 1210, An. gambiae s.l. 1160, An. maculipalpis 30, An. pharoensis 6, An. pretoriensis 12, An. 
pseudopunctipennis 53, An. punctipennis 212, An. quadrimaculatus 195, An. rufipes 12, An. squamosus 13, An. 
tenebrosus 6, An. ziemanni 35, Co. perturbans 204, Cx. antillummagnorum 28, Cx. bahamensis 4, Cx. coronator 
61, Cx. erraticus 343, Cx. nigripalpus 74, Cx. pipiens s.l. 1503, Cx. restuans 80, Cx. salinarius 163, Cx. tarsalis 14, 
Cx. territans 13, Cu. incidens 45, Cu. inornata 46, Cu. melanura 5, De. cancer 39, De. cuba-1 72, Mansonia titillans 
93, Orthopodomyia signifera 18, Ps. ciliata 169, Ps. columbiae 423, Ps. cyanescens 390, Ps. discolor 10, Ps. ferox 231, 
Ps. howardii 17, Ps. pygmaea 149, Ps. signipennis 23, Uranotaenia sapphirina 10.

Specimens were photographed with a handheld, USB microscope (Zarbeco MiScope Handheld Digital Micro-
scope—MiSC-s2) set at 40X zoom, producing images of 640 × 480 pixels. The resolution of the microscope at 40X 
zoom was measured at 28 line pairs/millimeter, or 18 resolvable microns, characterized using the United States 
Air Force 1951 Resolution Chart. During training, images were made square by adding a patch of background 
color to the top and bottom of each image, by taking the mean of each channel for the top 5 and bottom 5 rows 
of the image. After being made square, the images were down sampled to 299 × 299 pixels before being fed to the 
CNNs to match the image size of the selected architecture. Of the 67 species, 20 species were selected to be con-
sidered known based on the number of specimens in the database, the species’ medical relevance, and address-
ing class balance between known and unknown. For each of the five data folds, 4 of the 20 known species were 
removed to the unknown category, leaving 16 known species for each fold. Each species was considered unknown 
for one of the five folds. To maximize the potential of the limited dataset, we used real time data augmentation, 
using the default parameters of the get_transforms function in the FastAI PyTorch library36 (random cropping, 
affine transform, symmetric warp, rotation, zoom, brightness, and contrast modifications with the exception of 
the affine transform, for which a dihedral affine was used).

Novelty detection algorithm structure.  The three tiers of the novelty detection algorithm are trained 
independently in sequence. Different data is used to train Tier I than is used to train Tiers II and III, so that Tiers 
II and III can assess the familiarity of Tier I CNNs with the new data presented it, rather than training the later 
tiers on data to which Tier I was fit during its training.

Tier I uses two CNNs trained independently on the same data. The models trained were both Xception37 
models, but were trained on different data with different class divisions. The Xception model uses separable 
convolutions which reduces the number of parameters in the model. This in turn reduces the network’s tendency 
to overfit, while also reducing training and inference time. These hypotheses were further verified through 
experimental validation by comparing to other standard CNN architectures. The two datasets were open-set and 
closed-set, where the closed-set model contained only 16 known species-level classes, and the open set model 
contained the 16 known species-level classes as well as 4 genus-level classes and a general mosquito class. The 
genus-level classes are simply formed of groups of species of the same genus and do not include any specimens 
of the 16 known species. The mosquito class consists of multiple genera outside the genera described by the 
other 20 classes. The CNNs were trained with a fully connected classification head, the open-set Xception with 
21 nodes and the closed-set Xception with 16 nodes. For Tier I, in the training of Xception37 models we use a 
learning rate of 1e−2, with one cycle schedule38. Models are trained for 60 epochs with Ranger optimizer39 with 
a batch size of 16. We use categorical Focal Loss40 to address class imbalance in our data classes, with the gamma 
parameter set to 2. Focal loss dynamically adjusts the class weights giving hard examples higher weight, which 
enables better training of the model in the face of imbalanced classes. Model training is performed on an RTX 
2070 Super GPUs using the deep learning framework PyTorch41.

Tier II consists of three standard machine learning classifiers, a support vector machine (SVM), a random 
forest (RF), and a wide and deep neural network (WDNN)42, appended to each the Tier I CNNs, resulting in 
six Tier II components. Tier II components were selected through preliminary iterative experimentation with 
various models of similar complexity, evaluating their capability of parsing through the features and probabilities 
produced by Tier I. Each attempted to determine whether the given specimen was from a known species or an 
unknown species by analyzing the features of the Tier I CNN, and for the WDNN, both the features and the logits. 
The SVM uses a Radial-basis function (RBF) kernel, with a kernel coefficient (γ) set according to γ = 1/(nfeatures * 
Xvar), where nfeatures is the number of features per sample and the Xvar is the variance of all samples in the set43. It 

http://www.boldsystems.org
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derives a squared L2 penalty based on a regularization constant (C) set to 0.1. The RF fits 200 decision trees with 
a maximum depth of 19, considering log2(nfeatures) features per split and using entropy as a measure of impurity43. 
The WDNN is a deep neural network with two input layers, a deep input which learns lower dimensional dense 
representations of the data and a wide input which memorizes shallow features to help protect the network from 
over-generalization. The deep input takes the features (2048 nodes) and passes them to four hidden layers (2500, 
1900, 1900, and 1900 nodes). It uses He normal initialization44, and includes a 0.65 dropout layer45, a batch nor-
malization layer46, and an ELU activation47 between each hidden layer. The wide input receives the logits (21 for 
open-set Xception and 16 for closed-set Xception) and directly concatenates them with the final hidden layer 
of the deep network. This concatenated layer feeds to a single output node to determine known or unknown. 
The network is trained for 20 epochs using a binary cross entropy loss function with an Adam optimizer48. The 
learning rate was initially set to 1e-3, decaying every 10 epochs at a rate of 0.1.

Tier III first intakes the unknown probabilities from the six Tier II components and uses soft voting for the 
initial assessment (i.e. averaging the six probabilities). Average probabilities, pavg, are then sorted into confident 
and unconfident predictions, based on thresholds determined during training. Unconfident predictions are those 
where Tknown < pavg < Tunknown, where Tunknown = 0.9, above which an unknown prediction is considered confident, 
and where Tknown = 0.3, below which a known prediction is considered confident. Unconfident predictions, where 
the average probability falls between the two thresholds, are concluded by evaluating the six tier II probability 
scores, p, with a Gaussian Mixture Model (GMM) in sckitlearn43. A GMM was selected because it facilitated 
moving uncertain p predictions to unknown as much as possible, minimizing erroneous known predictions. The 
GMM performs unsupervised clustering of known samples, treating unknown samples as anomalies. It fits the 
probabilities from the six Tier II components into seven clusters, using a random 10% of the unknown training 
data for Tier II/III and all of the known training data. We estimate the density of the model for each sample using 
the score_samples method, which finds the log of the probability density function at that location. The lower 
the score, the lower the density and the less likely that the given sample is in the known set. This density is used 
to measure the likelihood that a datapoint fits into any of the seven clusters in the model, and the lowest 10% of 
these are considered anomalous, or in this case unknown. The 10th percentile defines a density threshold, below 
which a sample is determined to be unknown.

Hyper parameter optimization for Tier II and III components was conducted on the training data for seed 0 
of fold 1 using a random search. The rate limiting factor for training time is the CNN Xception, which contains 
22,855,952 parameters. Even so, the training of the closed-set Xception using our methods and data schema took 
on average 87 min for a single fold. The RF, SVM, WDNN, and GMM each respectively take (3.4 s (s), 9.8 s), 
(13.1 s, 12.6 s), (25.7 s, 20.4 s), and 2.7 s to train for a single fold on a CPU, formatted (closed, open) for Tier II 
components. The short training time is due in large part to the small size of the dataset.

Data partitioning and training.  Training of the novelty detection algorithm to recognize when a speci-
men’s species is known or unknown to the closed-set CNN from Tier I results in three distinct types of data to 
be encountered in the wild: specimens from known species recognized by the closed-set CNN (K); specimens 
from unknown species used to train the algorithm (U); and specimens from novel unknown species which were 
not used in training (N). We evaluate the algorithm on representations of each of these populations, which we 
refer to as species sets K, U, and N.

Sixty-seven mosquito species were included in the overall dataset. Twenty of these species were included in the 
K dataset. All other species were always used in either the U or N datasets. Each specimen had multiple photos, 
and each photo was considered a single sample. When a specimen was designated for training, validation, or 
testing for a particular fold, all photos of that specimen were isolated to that activity.

Tier I closed-set CNNs were trained only on K species. Tier I open-set CNNs were trained on K species and a 
subset of U species (U1). The Tier II and III classifiers were trained on K species, U1 species, and the remaining 
subset of U species (U2). The remaining set of unknown species not used in training comprised the novel species 
testing set N. These species sets are further described as those used as inputs to Tiers I, II, and III (population 
represented by group U1), those used as inputs to train Tiers II and III (population represented by group U2), 
and those species which are novel to the algorithm (population represented by group N).

The algorithm training and evaluation was iterated on multiple data splits, assessing different divisions of 
species across sets K, U1, U2, and N. In each of the five folds, 4 of the 20 species considered known were removed 
from the K set for cross validation, leaving 16 species within the K set for each fold. U1 species set, a subset of 
18 unknown species for training the open-set Tier I CNN, also trained on by the Tier II and III components, 
remained the same species for all folds and iterations, throughout training and testing. The remaining unknown 
species were distributed between U2 and N sets. Tier I was iterated on five distinct folds with data from sets K 
and U1 using a training:validation:testing split ratio of 70:15:15.

Tier II and III components were trained using the testing data of Tier I. The data split was iterated 5 times for 
each of these five folds with data from sets K, U1 and U2, resulting in twenty-five iterations. For each fold and 
iteration, the specimens within each set designated for training and testing were randomized. For each iteration, 
the unknown species which were designated for N versus U2 were iterated, being sure that each species was 
included in the N set for at least one iteration, except U1 species which could not be iterated in this way. For 
each iteration, the percentage of specimens within each species to be designated for training or testing was first 
set by a training:testing split ratio of 80:20, then manipulated to reduce class imbalance between known and 
unknown within a genus and between morphologically similar species (see Supplementary Table 1, Datafolds).

Species classification.  After the novelty detection methods, if a sample was considered known, the sam-
ple was sent to be classified by the Tier I closed-set CNN. The results are first calculated independent of the 
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novelty detection methods, including all samples of the species in question which were not included in training 
or validation for the training of that fold. Because each fold removed four species from the dataset, such that 
each species was considered unknown for one of the five folds, there was an imbalanced number of iterations 
distributed across the confusion matrix, thus each cell is averaged independently. The results are then calculated 
as a subsequent step after the novelty detection methods, only classifying species on samples first determined to 
be known, and where unknown is maintained as a class within the confusion matrix. This confusion matrix was 
calculated over the twenty-five folds of the novelty detection methods, using the respective Tier I CNN for that 
fold. Both confusion matrices are normalized.

Of the 67 species recorded in our dataset, 39 of them have more than 40 photos, and were thus included in 
the widened closed-set species classification, which was trained over five data folds on the same architecture and 
hyper parameters stated for training the Tier I closed-set CNN. The five data folds simply iterated the distribution 
of specimens across the training:validation:testing split. The average macro-F1-score and average accuracy, and 
their standard deviations over the five folds were reported, along with an average normalized confusion matrix, 
and a graph comparing the average accuracies to the number of specimens in the database.

Analysis methodology of detecting novel species.  For each of the fifty iterations, the algorithm’s 
performance on both known and unknown species was evaluated. The accuracy, unknown sensitivity/recall, 
unknown specificity, and unknown precision was calculated for each iteration, and mean and standard devia-
tion of each species set (K, U1, U2, and N) was reported. Micro-average results are reported considering each 
sample with an equal weight, and macro-average results are reported considering the mean for each species with 
an equal weight. A mean confusion matrix was calculated using closed-set Xception model results for the five 
folds. The 20 known species were considered as distinct classes, and the remaining species grouped together as 
a distinct unknown class. Each of the twenty-five iterations of Tier II and III was cascaded within its respective 
fold of the five folds of Tier I to calculate the unknown detection and species classification confusion matrix.

In addition, simpler methods for novelty detection were compared to our methods to assess the need for the 
complexity of our novelty detection algorithm (see Table 3). The simpler methods are as follows: our full methods 
without the GMM arbiter for low confidence samples, such that the final prediction is made by soft voting; the 
Tier II RF component appended to the Tier I closed-set CNN; the Tier II WDNN component appended to the 
Tier I closed-set CNN; the Tier II SVM component appended to the Tier I closed-set CNN; the Tier I open-set 
CNN, where any of the five open-set classes are considered unknown classifications; a softmax applied to the 
logits of the Tier I closed-set CNN, where unknown classification is given if no species receives a probability 
higher than a threshold determined through evaluation on the training set (0.99); the ODIN algorithm by Liang 
et al.49, unaltered from the author provided github, trained using the closed-set Xception, using all K set data 
used in Tier I training and Tier II and III training for training data inside the distribution. McNemar’s Test50 was 
used to compare the accuracies between each alternative method and our methods to assess discordance. These 
comparisons were performed on the same data folds, so the comparison was paired. The known and unknown 
precision and recall were also reported for each method.

Statistics.  The accuracy metrics used throughout this work were accuracy, precision, recall (equivalent to 
sensitivity), specificity, and F1-score:

Macro F1-score is determined by calculating the F1-score for each species, then averaging the F1-score across 
species. This controls for class imbalance in the test set. For fold 2, all samples for An. quadrimaculatus were used 
in training the known set, so for cascading the unknown detection with closed-set classification the F1-score 
for this species was omitted, as there was no possibility for true positives by which to calculate it. The error bars 
were calculated using sample standard deviation:

where sx is the standard deviation, xi is a given sample of measurement, x
_
 is the average of the sample population 

in question, and n is the number of samples. When comparing the difference between methods, given that the 
testing and training data was paired through all folds and iterations, McNemar’s Test with continuity correction 
was used to assess significance:

where b is the number of samples where our method was correct and the alternative method in question was 
incorrect, c is the number of samples where the alternative method in question was correct and our method was 
incorrect, and χ2

1 is the test statistic with a chi-squared distribution and 1 degree of freedom.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding author 
upon reasonable request.

(1)F1 score = 2 ∗
Precision ∗ Recall

Precision + Recall

(2)
sx =

√

√

√

√

∑

(

xi − x
−

)2

n − 1

(3)χ2
1 =

(|b − c| − 1)2

b + c
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The code used to generate the results in this study are available in the GitHub repository: https://​github.​com/​
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