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Abstract

Ionic liquids are salts used in a variety of industrial processes, and being relatively non-vola-

tile, are proposed as environmentally-friendly replacements for existing volatile liquids.

Methylimidazolium ionic liquids resist complete degradation in the environment, likely

because the imidazolium moiety does not exist naturally in biological systems. However,

there is limited data available regarding their mammalian effects in vivo.

This study aimed to examine the effects of exposing mice separately to 2 different methy-

limidazolium ionic liquids (BMI and M8OI) through their addition to drinking water. Potential

effects on key target organs–the liver and kidney–were examined, as well as the gut

microbiome.

Adult male mice were exposed to drinking water containing ionic liquids at a concentra-

tion of 440 mg/L for 18 weeks prior to examination of tissues, serum, urine and the gut micro-

biome. Histopathology was performed on tissues and clinical chemistry on serum for

biomarkers of hepatic and renal injury. Bacterial DNA was isolated from the gut contents

and subjected to targeted 16S rRNA sequencing.

Mild hepatic and renal effects were limited to glycogen depletion and mild degenerative

changes respectively. No hepatic or renal adverse effects were observed. In contrast, ionic

liquid exposure altered gut microbial composition but not overall alpha diversity. Proportional

abundance of Lachnospiraceae, Clostridia and Coriobacteriaceae spp. were significantly

greater in ionic liquid-exposed mice, as were predicted KEGG functional pathways associ-

ated with xenobiotic and amino acid metabolism.

Exposure to ionic liquids via drinking water therefore resulted in marked changes in

the gut microbiome in mice prior to any overt pathological effects in target organs. Ionic

liquids may be an emerging risk to health through their potential effects on the gut micro-

biome, which is implicated in the causes and/or severity of an array of chronic disease in

humans.
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Introduction

Ionic liquids are salts that are normally liquid at ambient temperature (typically below 100˚C)

and in some cases, are liquids at room temperature. These properties have resulted in them

being proposed or used in a variety of industrial processes including processing of biomass;

organic and inorganic materials syntheses; carbon dioxide capture; electrocatalysis; liquids for

enzymes; lubricants and additives for conventional lubricants; battery electrolytes; use in fuel

cells; use in separations and extractions for materials in the nuclear industry; separation agents

and as pharmaceutical ingredients [1]. The low volatility of many ionic liquids in particular,

may also be a driver for them being proposed as environmentally-friendly replacements for

existing volatile solvents [1]. The term “ionic liquids” encompasses a diverse range of chemi-

cals [1]. Five types of ionic liquid cations are currently mostly used:- ammonium, pyridinium,

imidazolium, phosphonium and sulfonium [2].

Commercially widely-available methylimidazolium ionic liquids are a class of ionic liquids

composed of a cationic methylimidazolium moiety with an alkyl chain increasing in length by

2 carbons (i.e. ethyl, 2C; butyl, 4C; hexyl, 6C. . ..) and a variety of different anions (e.g. Cl-, Br-,

tetrafluoroborate etc). In theory, a near limitless number of different methylimidazolium ionic

liquids could be synthesised based on the many potential anions, but also on substitution at

other positions around the imidazolium ring. However, based on registrations submitted to

the European Chemicals Agency (ECHA), the total number of methylimidazolium ionic liq-

uids used in the EU at present, is likely to be in the order of up to 60–70 [3]. Methylimidazo-

lium-based ILs are most often proposed as solvents in a variety of industrial applications such

as separations, catalysis and dissolution, with 1-ethyl-3-methylimidazolium acetate (likely

used at high levels since the ECHA database indicates several variants manufactured at up to

100 tonnes/annum or manufacture levels are reported as confidential [3]). This methylimida-

zolium ionic liquid has shown outstanding performance in the fields of biomass dissolution

and biopolymer processing [4].

From an environmental point of view, there are limited data to suggest that some methyli-

midazolium ionic liquids are resistant to rapid degradation. For example, according to the

ECHA registration document for a 2C methylimidazolium ionic liquid, 1-ethyl-3-methyl-1H-

imidazol-3-ium is not readily biodegradable (as determined using an OECD test guideline

study using activated sludge). Microbiological metabolism does occur with methylimidazo-

lium ionic liquids as the alkyl chain length increases however, cleavage of the imidazolium

ring is not seen [5]. Their persistence in the environment may therefore be a cause for concern

due to the presence of the imidazolium moiety, which does not exist naturally in biological

systems.

Methylimidazolium ionic liquid toxicities have been most extensively examined in environ-

mental toxicity tests. For example, for salts of 1-octyl-3-methylimidazolium chloride (M8OI),

toxic effects have been demonstrated in R. nigromaculata frogs [6]; E. coli [7]; wheat [8,9];

green algae [10]; marine diatom S. costatum [11]; planarians D. japonica [12] and fish P. dab-
ryanus [13].

Very limited data are publicly available regarding the potential toxicity of ionic liquids and

methylimidazolium ionic liquids in particular, in mammalian systems. The NTP reviewed the

literature on three 4C alkyl ionic liquids in 2004, including 1-butyl-3-methylimidazolium chlo-

ride (BMI) [14]. At that time, it was noted that information regarding acute, short-term/sub-

chronic, or chronic exposure, synergistic/antagonistic effects, reproductive or teratological

effects, carcinogenicity, genotoxicity or immunotoxicity were not available. To our knowledge,

the database on methylimidazolium ionic liquid mammalian toxicity has not markedly

increased except for a single study reporting acute toxic effects of the 8C alkyl ionic liquid
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1-octyl-3-methylimidazolium bromide in mice over 24 hours after a single i.p. administration.

Ten hours after administration, the authors report histopathological changes in the liver [15].

This observation has been followed by several in vitro studies in human liver cell lines showing

that M8OI exposure leads to increased oxidative stress and cell death by an apoptotic mecha-

nism(s) [16–19]. However, in our hands, the target organ for the toxic effects of M8OI after

exposure by i.p. injection was the kidney [20].

Since ionic liquids are water-soluble and persist in the environment, the effects of extended

exposure through drinking water is a potential route of exposure in man. Accordingly, the

effects of exposing mice separately to 2 different methylimidazolium ionic liquids (BMI and

M8OI) in their drinking water has been examined–to our knowledge for the first time–with a

focus on the key target organs of liver and kidney. The gastrointestinal microbiota was exam-

ined given the apparent impact of the microbiota on a variety of chronic diseases [21,22].

M8OI was selected for study because the cation was recently detected at high levels in soils in

close proximity to a landfill waste site [19] and is a potential hazard trigger for an autoimmune

liver disease primary biliary cholangitis (PBC) [19,3]. BMI was included as this structurally-

related ionic liquid is more widely used and is a more likely potential hazard trigger for PBC

based on structural considerations [3].

This study explores the impact of oral exposure to ionic liquids in drinking water on

murine gut physiology. We observe mild histological alterations contrasted with significant

shifts in microbial communities.

Materials & methods

Materials

The chloride salts of BMI and M8OI were purchased from Sigma (Poole, UK) and were>99%

and>97% pure respectively.

Mice and experimental design

This study was performed under a licence by the UK Home Office with local Animal Welfare

and Ethical Review Body (Newcastle University) approval. Adult C57Bl6 male mice (5 months

of age) were purchased from Charles River and housed in the Comparative Biology Centre at

Newcastle University. Mice (up to five per cage) were housed in Maxiseal 420 cm2 mouse

cages (Arrowmight, Hereford, UK) in an enriched environment (nesting material, chew sticks

and cardboard tubes) and were provided with food (RM3 Special Diet Services, UK) and water

ad libitum in an air-conditioned environment on a 12 h light/dark cycle with regulated humid-

ity (50% ± 10%) and temperature (23˚C ± 1˚C). Cages were randomly assigned to 3 groups

and provided with drinking water ad libitum (control, 5 animals) or either drinking water con-

taining BMI (10 animals) or M8OI (10 animals) at a concentration of 440 mg/L (prepared

fresh every 4 weeks). Aliquots were tested by HPLC and both remained stable in drinking

water for at least 4 weeks. No vehicle was required in these studies. One control mouse was

culled during the study due to a handling error. There are no data available on potential expo-

sure levels in man. A single dose was therefore chosen to reduce the number of animals used

prior to any future dose-response study to determine a threshold for any effects. The dose cho-

sen for this study was based on acute exposure via i.p. administration, as a dose likely to give

no more than mild renal and hepatic effects. This route was chosen because the oral route is

the most relevant route of exposure in man and relevant to test potential direct effects on the

microbiota and liver. Based on a default factor for sub-chronic studies (0.15), it can be esti-

mated that mice were exposed to 66 mg of BMI or M8OI/kg bw [23]. Mice were exposed for

18 weeks prior to cervical dislocation and removal of tissues, blood, and urine (by direct
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extraction from the bladder) for analyses. Gut contents were harvested by removing the intesti-

nal tract and manually squeezing the excised caecal, proximal and mid colon contents in to

sterile, DNA-free universals containing 2mLs sterile 1 x PBS (137 mM NaCl, 27 mM KCl, 100

mM phosphate pH 7.4). Single samples from each animal were snap frozen in dry ice then

stored at -80˚C until transportation on dry ice to Northumbria University for DNA isolation

and processing. Due to the loss of one control mouse through a handling error, the gut con-

tents of one stock animal was used as a replacement.

For examination of M8OI absorption, metabolism and excretion after oral exposure, mice

(5 months of age) were randomly assigned to one of 4 dose groups:- control vehicle, 5 mg/kg

bw, 20mg/kg bw and 40mg/kg bw and gavaged with M8OI in drinking water (8mL/kg bw).

Control animals were gavaged with 8mL drinking water/kg bw. Mice were dosed at the begin-

ning of the study and at 18 hours, prior to cervical dislocation at 24 hours and removal of tis-

sues, blood, bile (by direct extraction from the gall bladder) and urine (by direct extraction

from the bladder) for analyses.

Pathology and clinical chemistry

Serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities and serum

glucose and creatinine concentrations were determined as previously outlined [24]. Urinary

total protein levels were determined using the Bradford protein assay. Urinary kidney injury

molecule 1 (Kim1) levels were estimated by Western blotting as previously described [20]. Tis-

sues were fixed in 4% formalin in 1xPBS, processed, embedded in wax and 4μm sections

stained with haematoxylin and eosin (H&E) or sirius red (followed by haematoxylin) essen-

tially as previously outlined [24]. Liver sections were also periodic acid stained (PAS) with or

without prior treatment with diastase essentially as described [20]. Sections were also subjected

to immunohistochemical analyses for vimentin, α-smooth muscle actin and Kim1 as previ-

ously outlined [25].

Bacterial DNA isolation from murine stool

Processing order of gut content samples was randomised to reduce confounding effects. Prior

to DNA isolation, all samples were defrosted at room temperature, homogenised by vortexing,

then centrifuged at 6000 x g for 25 minutes to pellet biological material. Supernatants were dis-

carded and 250 mg of each pellet was transferred to individual bead tubes of QIAGEN Power-

Lyzer PowerSoil DNA Isolation kit (Hilden, DE). DNA isolation was performed as per

manufacturer’s instructions with an extended bead beating step of 25 minutes. All extractions

were performed alongside 2 buffer (consisting of only 1 x PBS used to store samples) and 1 kit

(consisting of only kit reagents) control.

16S rRNA sequencing and processing

The Schloss SOP [26], was followed to prepare libraries of isolated bacterial DNA for multi-

plexed, targeted sequencing of the V4 region of the 16S rRNA gene on the Illumina MiSeq

(CA, USA), with V2 chemistry (2 x 250 bp reads), using primers 515F and 806R [27]. A

sequencing negative control was also included consisting of sterile DNA-free H2O.

Forward and reverse reads were merged, quality filtered, trimmed, clustered in to de novo

operational taxonomic units (OTUs), and assigned taxonomy based on the SILVA database

[28], in Mothur according to the MiSeq SOP [29]. Briefly, all reads with phred score less than

q30, ambiguous bases and / or greater than 275 bp in length were culled. Any reads not aligned

to the SILVA database were removed along with non-bacterial sequences and chimeric

sequences as defined by standard uchime operating parameters [30]. For an overview of the
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microbial ecology terms used and data on raw sequence reads and processing, see S1 and S2

Materials respectively.

M8OI and metabolite determination in biological samples

Biological samples (serum, bile and urine) were analysed for the presence of M8OI and its major

metabolites—HO8IM and HOOC7IM—essentially as previously described [19] using non tar-

geted data independent LC-HR-MS/MS using a TripleTOF 5600 high-resolution quadrupole

time-of-flight (TOF) mass spectrometer (Sciex) equipped with a DuoSpray ion source operated in

positive electrospray mode, coupled to an Eksigent Nano LC 420 system. M8OI and metabolites

were quantified by standard multiple reaction monitoring (MRM) techniques using a Q-Trap

5500 hybrid linear ion trap/triple quadrupole mass spectrometer (Sciex) coupled to a Shimadzu

Prominence liquid chromatograph. Analyst version 1.6.2 and MultiQuant version 2.0 (Sciex)

were used for instrument control/data acquisition and quantitative analysis respectively.

Statistical analyses

For comparing animal sample endpoints between two groups, an unpaired Students t-test was

carried out and significance assumed where p<0.05. For comparison of multiple groups,

ANOVA was used and, where significant, differences between exposure groups were determined

using the Bonferroni-Holm method. Where p<0.05, a significant difference was assumed.

Analysis of microbial communities was performed in R [31], utilising phyloseq [32], vegan

[33], and pairwiseAdonis [34] packages. Data were visualised with the ggplot2 [35], and ggbi-

plot [36] packages. To normalise variable sequencing depth per sample, raw counts of OTUs

were expressed as relative abundance per sample. Comparison of negative control and test

communities were performed by Adonis PERMANOVA. Fisher’s alpha index was calculated

to determine alpha diversity within samples while Bray-Curtis dissimilarity was calculated to

determine beta diversity between samples. Kruskall-Wallis rank sum test was invoked to assess

significant differences between continuous variables such as relative abundance of individual

genera or OTUs between exposure groups. Pairwise Mann-Whitney Wilcoxon test was utilised

to cross-compare multiple groups of continuous variables such as alpha diversity between

exposure groups.

Complete linkage clustering based on beta diversity was validated by gap statistic and used

to differentiate samples in to community state types (CSTs) as previously described [37].

ANOSIM was employed to identify significant dissimilarity between CSTs while pairwise PER-

MANOVA further identified significant dissimilarity between each CST. Bacterial OTU domi-

nance was calculated using inverse Simpson diversity index. Relationships between xenobiotic

exposure cohort and CST membership were assessed using Fisher exact test.

Metagenomes were predicted using PICRUSt [38] based on bacterial taxonomies assigned

by closed reference alignment of raw sequence reads to the Greengenes database [39]. Differ-

ential KEGG pathways between predicted metagenomes were identified by linear discriminant

analysis effect size (LefSe, [40]), after normalisation by converting to relative abundance.

Wherever necessary, calculated p values were corrected for multiple hypothesis testing by

false discovery rate (FDR), or Bonferroni correction.

Results

Hepatic and renal effects of ionic liquid exposure

Prior to the study, drinking water consumption by mice was monitored and no changes in

consumption were observed once mice were placed on drinking water containing ionic

PLOS ONE Ionic liquids and gut microbiota

PLOS ONE | https://doi.org/10.1371/journal.pone.0229745 March 12, 2020 5 / 22

https://doi.org/10.1371/journal.pone.0229745


liquids. No overt adverse effects were observed throughout the 18-week exposure period based

on general observations in behaviour and visual observations. One control mouse was culled

during the study due to a handling error.

Table 1 indicates that ionic liquid exposures did not have a statistically significant effect on

terminal body weights. There were no statistically significant effects on relative liver weights or

evidence for overt liver injury based on changes in serum ALT or ALP activities. No significant

effects were seen on serum glucose or liver glycogen levels (S1 Table). On examination for evi-

dence of renal injury, the only marker statistically significantly raised relative to control was

urinary Kim1 protein in mice exposed to BMI. However, a statistically significant change in

other renal injury markers (serum creatinine, urinary protein) in BMI treated animals was not

detected (Table 1).

To determine whether there were any potential localised hepatic and renal effects of ionic

liquids, organs were fixed and processed for histological and immunohistological

examination.

Examination of H&E-stained liver sections supports the clinical chemistry endpoints (ALT,

ALP), with no evidence for any on-going hepatocyte necrosis (Fig 1A) and no evidence for

unresolved chronic injury based on an absence of fibrosis (Fig 1B). No evidence for an increase

in liver cell apoptosis (based on active caspase 3 expression in liver sections) was observed

(data not included).

Patchy areas of hypoeosinophilia suggestive of protein breakdown were observed and were

more common and widespread in ionic liquid-treated mice (Fig 1A), see also S2 Table for indi-

vidual scoring data. Patchy and variable degrees of portal tract and intra-lobular inflammation

(Fig 1A) were, however, also evident. This background pathology is common (though also var-

iable within the same liver and between animals) in mice and was not observed to be signifi-

cantly markedly different in mice exposed to ionic liquids (S2 Table).

To determine whether glycogen depletion was in part associated with hypoeosinophilia evi-

dent in H&E-stained liver sections, glycogen was specifically examined using PAS staining

(with and without prior glycogen digestion with diastase). Based on these data, the only consis-

tent hepatic effect observed to be markedly different between control and ionic liquid-treated

mice was a variably patchy depletion of glycogen (Fig 1C), with increased association of

vimentin-expressing fibroblasts (Fig 1D). The effect was observed to be most marked in

Table 1. Effect of 18 week exposure to BMI or M8OI in drinking water to male mice.

Control BMI M8OI
Endpoints Mean SD Mean SD Mean SD

General
Body weight (g) 36.70 3.59 34.10 3.49 33.90 2.49

Hepatic
Relative liver weight (% body weight) 4.50 0.48 4.30 0.48 4.60 0.63

Serum ALT (units/L) 36.10 23.70 35.41 9.27 39.50 19.87

Serum ALP (units/L) 64.00 4.30 66.00 18.20 69.00 22.60

Renal
Serum creatinine (units/L) 22.00 4.00 21.00 8.30 27.00 10.10

Urinary protein (mg/mL) 0.66 0.24 0.75 0.40 1.30 0.50

Urinary Kim1 protein (units/7.5μl) 1.70 0.52 15.00� 8.90 6.40 3.13

�Significantly different (two tailed) from control using a one-way ANOVA followed by bonferroni post hoc test.

https://doi.org/10.1371/journal.pone.0229745.t001
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M8OI-treated mice yet was also variable in that some mice were resistant. The patchy nature

of the effect was also limited such that total glycogen levels were not significantly reduced (S1

Table) in contrast to a complete depletion after i.p. administration of M8OI (2 x 10mg/kg

body weight split over a 24 hour period) [20]. An examination of H&E-stained kidney sections

indicated focal and mild degeneration in a limited number of ionic liquid-exposed mice. For

individual scoring data, see S3 Table. The necrotic changes were characterised by hydropic

degeneration and desquamation of cells from tubules (Fig 2A). Fig 2B indicates that there was

a moderate increase in kidney kim1 tissue expression relative to control in ionic liquid-treated

mice, with BMI-treated mice showing a higher incidence for tubular kim1 levels compared to

M8OI-treated mice, which is supported by the higher levels of urinary kim1 protein from

selected mice (Fig 2C). However, Fig 2B indicates that these effects in orally exposed BMI- or

M8OI-treated mice were less severe than the effects seen from an i.p. administration of M8OI

(2 x 10mg/kg body weight split over a 24-hour period).

Fig 1. Histopathological effects of BMI or M8OI exposure in the liver. A, upper panels, typical low powered views of liver sections stained with H&E from the

indicated treatment groups. Lower panels, high powered views of some changes:- hypoeosinophilia (left panel) which was more widespread in M8OI-treated mice but

also present in other groups and intra-lobular and portal tract inflammation, both observed to a near similar extent in all groups. B, typical low powered views of liver

sections stained with Sirius red (staining collagen fibres red), followed by haematoxylin from the indicated treatment groups. Lower panel, positive control–liver section

from a donor liver organ with cirrhosis. C, typical low powered views (upper panels) and high powered views (lower panels) of liver sections stained with PAS from the

indicated treatment groups, with where indicated, diastase treatment. D, typical low powered views of liver sections immunostained for vimentin from the indicated

treatment groups. Size bar = 100μm throughout.

https://doi.org/10.1371/journal.pone.0229745.g001
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Fig 2. Histopathological effects of BMI or M8OI exposure in the kidney. A, typical views of kidney sections stained with

H&E from the indicated treatment groups. Upper panels showing glomeruli, lower panels, tubules. B, typical views of kidney

sections immunostained for kim1 from the indicated treatment groups. M8OI (i.p.) kidney section from a mouse

administered M8OI via intraperitoneal injection; No 1o Ab, section treated identically without the addition of primary (i.e.

kim1) antibody. Size bar = 100μm throughout. C, Western blot for kim1 in urine from individual mice (7.5μl/lane). +ve

control, urine from a mouse administered M8OI via intraperitoneal injection [20].

https://doi.org/10.1371/journal.pone.0229745.g002
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Oral exposure to M8OI results in absorption followed by renal and biliary

excretion of M8OI and its metabolites HO8IM and HOOC7IM

The fate of M8OI was examined after oral administration to mice by gavage as outlined in the

methods section (and illustrated in Fig 3A) using an established assay [19] and the levels of

M8OI and its metabolites determined in serum, bile and urine at time of sacrifice. Fig 3B dem-

onstrates that M8OI was absorbed from the gastrointestinal tract and systemically distributed

since it appears at an increasing concentration in the urine with increasing dose. However,

M8OI is likely rapidly cleared from the systemic circulation since it is barely detectable in the

serum at termination at any dose. The appearance of M8OI in an increasing concentration in

both urine and bile with dose indicates both biliary and renal excretion, with renal clearance

Fig 3. The disposition of M8OI in the mouse after oral gavage. A, schematic diagram of dosing regimen used. B, serum, bile and urine

concentrations of M8OI or the hydroxylated (HO8IM) and carboxylated (HOOC7IM) metabolites at termination. Data are the mean and SD of

5 individual animal serum samples at any one timepoint. Bile and urines data are the mean and SD of between 3 and 5 individual animal

samples. Note, in some cases, sufficient urine or bile was not obtained from an animal.

https://doi.org/10.1371/journal.pone.0229745.g003
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likely playing the major role (Fig 3B). In contrast to M8OI, the metabolites shown to be pro-

duced by the human liver [19] are readily detectable in the serum with both metabolites also

being excreted via the bile and urine (Fig 3B). Renal excretion of the metabolites appeared to

become saturated at the high dose level, particularly for HO8IM (Fig 3B), which may lead to

increased biliary excretion.

In the absence of an assay for BMI, its absorption and bioavailability were predicted in silico
along with a range of other structurally-related methylimidazolium ionic liquids (including

M8OI). S1 Fig shows that the in silico prediction for oral absorption and bioavailability of

M8OI is supported by the data obtained in orally-dosed M8OI in mice (Fig 3) in that there is a

minor but significant absorption but low bioavailability of M8OI (due to metabolism and

excretion). BMI is predicted to show a greater degree of absorption from the gastrointestinal

tract and to have higher bioavailability than M8OI (S1 Fig).

These data suggest that exposing mice for 18 weeks to BMI or M8OI in their drinking water

results in absorption and both hepatic and systemic exposure to the ionic liquids and/or their

metabolites based on M8OI and metabolite determinations in biological fluids, in silico predic-

tions of absorption and bioavailability, hepatic glycogen depletion and renal degenerative changes.

However, these effects were mild and limited in comparison to the effects (previously observed)

seen after an acute systemic exposure to M8OI (via an i.p. administration of M8OI; 2 x 10mg/kg

body weight split over a 24-hour period). On this basis, no hepatic or renal adverse effects were

observed when exposing mice to the ionic liquids in drinking water at the doses employed.

Exposure to ionic liquids impacts gut microbial composition

To determine whether there had been any changes to the gut microbiota in mice exposed to ionic

liquids, bacterial DNA was isolated from the gut contents and subjected to targeted 16S rRNA gene

sequencing and processing as outlined in the Methods section. A total of 1.71 x 106 total 16S rRNA

gene sequence reads (mean = 6.34 x 104, SD = 3.74 x 104), passing quality filter were observed across

n = 27 samples, including all negative controls (S2 Fig). Negative control microbiota were compared

with sample compositions, showing significant dissimilarity (p = 0.004, R2 = 0.30 [adonis PERMA-

NOVA]) (S3 Fig). Negative controls (n = 4), were omitted from subsequent analyses and the domi-

nant OTU (classified as Escherichia/Shigella) present in negative controls was removed from the

dataset. The remaining 25 samples yielded 1.71 x 106 total 16S rRNA gene sequence reads.

Gut microbial community composition was different in mice exposed to the ionic liquids

compared to controls (Fig 4A) (p = 0.001, R2 = 0.26 [Adonis PERMANOVA]). Exposure to

ionic liquids significantly reduced the beta diversity (unweighted Bray-Curtis dissimilarity)

observed within exposure groups (Fig 4A). Thus, exposure to ionic liquids had a consistent

effect on microbiota composition, reducing the within group community variation. These

results were particularly evident in M8OI exposed mice. Indeed, the community composition

of mice exposed to M8OI was significantly different to both BMI and control subjects (Table 2).

Further evidence of the consistent effects and reduced variation between microbiota of

M8OI exposed mice compared to both BMI and control groups is highlighted in Fig 4B.

Despite no observed significant differences in alpha diversity (Fisher’s alpha), between expo-

sure groups the within group variation observed for M8OI exposed mice was much lower than

in BMI exposed and control mice.

Ionic liquid exposure enriched specific taxonomic and functional

repertoires

To identify taxa responsible for the consistent changes and significant differences in commu-

nity composition observed in the three ionic liquid exposure groups, relative abundance of
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merged genera (agglomerated using ‘tax_glom’ function in phyloseq R package [30]), were

compared between controls and ionic liquid exposed mice.

Significant differences in relative abundance of 13 different genera were observed between

control and ionic liquid exposed mice (Fig 4C, Table 3). Significantly greater relative abun-

dance of Parasutterella, a common core component of the murine microbiota [41], was

observed in control mice than both ionic liquid exposed groups. Lower levels of Parasutterella
in ionic liquid exposed mice was countered with greater relative abundance of genera belong-

ing to the Lachnospiraceae.
Coriobacteriaceae spp. were the most significant differentially abundant bacterial feature

identified between subjects exposed to M8OI and controls (Fig 4C, Table 3), exhibiting a 1.9

fold change in mean abundance. This is of particular interest as the genera within the Corio-
bacteriaceae have previously been associated with xenobiotic metabolising potential [42,43].

This is explored further in this population via predicted metagenomes. Furthermore, Bendtsen

Fig 4. Impact of ionic liquid exposure on gut microbiota composition. A, Panels illustrate beta diversity, expressed as Bray-

Curtis dissimilarity. B, alpha diversity, expressed as fisher-alpha diversity. C, significantly differential abundant microbial

genera identified. D, KEGG functional pathways identified between exposure groups. Each point in panels a–c represents an

individual sample. Points are coloured by exposure condition (M8OI = blue; BMI = orange; Control = green). Ordination in

panel A describes 61% of the total dissimilarity between samples. KEGG pathways in panel D were identified by PiCrust

metagenome predictions based on taxonomic composition.

https://doi.org/10.1371/journal.pone.0229745.g004

Table 2. Comparison of microbial beta diversity of gut contents from each cohort.

Cohort BMI Control
BMI - 0.021�

M8OI 0.003� 0.006�

�Statistically significant difference in beta diversities (Bray-Curtis) between pairwise cohort comparison (pairwise

PERMANOVA with Bonferroni correction).

https://doi.org/10.1371/journal.pone.0229745.t002
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and colleagues observed increased abundance of Coriobacteriaceae in mice exposed to

increased stress levels in the living environment [44]. Psychological stress has previously been

linked with inflammatory processes [45].

Significantly greater relative abundance of several members of the Lachnospiraceae family:

Dorea (fc = 3.52); Lachnospiraceae_incertae_sedis (fc = 6.35); and Roseburia (fc = 3.15), were

observed in M8OI exposed mice compared to controls. This suggests the family may possess a

fitness advantage over other bacteria following exposure to the ionic liquids used in this study.

In addition, the unclassified Lachnospiraceae genus exhibited a 2.18 fold increase in mean rela-

tive abundance between BMI exposed and control mice.

Other genera associated with exposure to M8OI included an unclassified Clostridia, Oscilli-
bacter and Lactobacillus. Genera associated with exposure to BMI included Barnesiella and

Roseburia The greatest significant fold change in mean abundance was observed in Rumino-
coccaceae, which exhibited a 25.64 fold decrease following BMI exposure though was never

present at greater than 1% of the total observed genera within any sample.

Supplementary to changes in individual bacterial genera, predicted metagenomes of com-

munities exposed to each chemical illustrated altered functional capacities (Fig 4D). Significant

changes in several KEGG pathways associated with metabolic potential were identified by lin-

ear discriminant analysis effect size [40]. Specifically, mice exposed to M8OI harboured micro-

biomes with significantly greater relative abundance of KEGG pathways associated with

xenobiotic metabolism, particularly those for bisphenol and naphthalene metabolism. In con-

trast, mice exposed to BMI showed greater relative abundance of KEGG pathways associated

with metabolism of amino acids such as tryptophan. Furthermore, mice exposed to either

xenobiotic, exhibited lower relative abundance of KEGG pathways associated with metabolism

of retinol and lipids, unsaturated fatty acid biosynthesis and cytochrome p450 activity.

Table 3. Seventeen most significantly differential genera between gut microbiota of each treatment group.

Control BMI M8OI
Genus Mean Abundance SD Mean Abundance SD Mean Abundance SD P val FDR adjusted P val

Parasutterella 13.07 23.86 1.55 1.07 3.42 2.74 0.00 0.02

Coriobacteriaceae_uncl. 0.60 0.43 0.62 0.39 1.15 0.43 0.00 0.02

Dorea 0.39 0.61 0.38 0.64 1.37 0.91 0.00 0.02

Lachnospiracea_incertae_sedis 0.09 0.08 0.07 0.04 0.55 0.21 0.00 0.02

Barnesiella 1.65 2.03 3.07 2.08 1.52 1.13 0.00 0.02

Ruminococcaceae_uncl. 0.42 0.25 0.02 0.03 0.42 0.42 0.00 0.02

Clostridia_uncl. 0.52 0.38 0.85 0.33 0.92 0.43 0.00 0.02

Bacteroidales_uncl. 3.06 2.87 3.44 1.16 2.73 1.56 0.01 0.03

Roseburia 0.31 0.30 0.53 0.48 0.98 0.62 0.01 0.03

Oscillibacter 1.10 0.76 1.55 1.07 2.18 1.03 0.01 0.03

Pseudoflavonifractor 1.42 2.19 0.51 0.40 0.87 0.80 0.01 0.04

Lachnospiraceae_uncl 14.50 23.09 31.71 21.29 22.22 14.86 0.01 0.04

Lactobacillus 1.15 0.67 1.80 1.15 3.87 2.80 0.01 0.04

Desulfovibrionales_uncl. 0.04 0.05 0.15 0.18 0.62 0.39 0.02 0.07

Betaproteobacteria_uncl 0.34 0.21 0.90 0.26 1.02 0.46 0.03 0.07

Proteobacteria_uncl. 1.37 2.22 0.18 0.30 0.56 0.80 0.03 0.09

Sporobacter 0.06 0.08 0.16 0.07 0.51 0.51 0.04 0.09

Dotted line indicates threshold of genera present at significantly different relative abundance between cohorts (Kruskall-Wallis rank sum test) following FDR correction.

Uncl = unclassified; SD = standard deviation; FDR = False Discovery Rate; val = value.

https://doi.org/10.1371/journal.pone.0229745.t003
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Gut microbiota cluster by ionic liquid exposure groups

Samples formed three distinct clusters, referred to as community state types (CSTs), when beta

diversity (Bray-Curtis dissimilarity), was compared by complete linkage hierarchical clustering

(Fig 5, S4 Fig, S4 Table). Membership of each distinct CST was significantly associated with an

individual ionic liquid exposure group (p< 0.001 [Fisher exact test]). Specifically, mice

exposed to BMI were significantly associated with CST1, M8OI exposed mice were more likely

to be members of CST3 and control mice dominated CST2 (Fig 5). Significant differences

were observed in OTU evenness (Inverse Simpson diversity), between CSTs. CSTs associated

with ionic liquid exposure exhibited significantly lower OTU evenness than CST3, associated

with control mice (CST1 vs CST3 p = 0.037; CST2 vs CST3 p = 0.012 [Bonferonni corrected

pairwise Mann-Whitney Wilcoxon test]). These results are as expected from the differential

genera analyses (Fig 4C, Table 3), in which greater evenness was illustrated in control mice by

an absence of any dominant genera, compared to both ionic liquid exposed groups.

Discussion

This study is the first–to our knowledge–to examine exposing animals, orally and over an

extended period of time, to ionic liquids.

Fig 5. Complete linkage hierarchical clustering identifies three distinct community state types based on relative

abundance of bacterial OTUs. Membership of CSTs shows significant association with ionic liquid exposure group

and is also linked with sample alpha diversity. Heatmap shows relative abundance of the top 50 most abundant

bacterial OTUs. Each tile represents the abundance of a specific OTU (in rows), in the given sample (in columns).

https://doi.org/10.1371/journal.pone.0229745.g005
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To date, only two studies have examined the effects of methylimidazolium ionic liquids in

vivo. Both studies were performed in mice with M8OI over a 24-hour period. The first study

used the Br- salt of M8OI and reported marked hepatic effects within 16 hours after a single i.

p. injection [15]. A more recent study from this laboratory used the same route of exposure

but employed lower split doses and the Cl- salt (to avoid any complications from the anion), as

used in these studies [20]. This latter study did not replicate the striking hepatic effects seen

with the Br- salt although this may be due to differences in the salt used and the doses

employed. However, as observed in the current study, administration of the Cl- salt of M8OI

did not result in necrosis of hepatocytes in the liver based on both histopathological examina-

tion and an absence of any increase in serum ALT or ALP [20]. However, i.p. administration

of M8OI did result in a significant dose-dependent loss of hepatic glycogen and a mild but sig-

nificant increase in portal tract inflammatory recruitment and/or fibroblastic proliferation

accompanied by a focal fibrotic change [20]. The kidney was found to be the organ most

affected (no effects were seen in the several other organs: brain, heart and pancreas) after i.p.

administration of M8OI, as it resulted in focal and mild degeneration to multifocal and mod-

erate generation with a general trend for an increase in severity with increased dose [20]. The

relatively milder hepatic and renal effects of M8OI seen in the current oral study, compared to

an acute i.p. exposure, suggests that there may be limitations in the absorption of M8OI from

the gastrointestinal tract and/or a threshold to any adverse systemic effects to M8OI adminis-

tered as a bolus. Examining the disposition of M8OI after oral bolus administration in this

study confirms that M8OI is absorbed to some extent since M8OI and its known metabolites

appear in the bile and urine. However, the low serum levels of M8OI suggest it may be subject

to rapid excretion and low bioavailability, which may account for its limited systemic-depen-

dent effects. No studies with BMI have been performed in animals and it is interesting to note

that this ionic liquid–which shows less toxicity to cells in vitro [In general, the longer the alkyl

chain in methylimidazolium ionic liquids, the more toxic is the ionic liquid (Abdelghany et al,
manuscript in submission)]–has resulted in more severe renal effects than M8OI. This latter

effect may be associated with its higher absorption and bioavailability, as predicted in silico in

this study.

Although the effects of exposing mice to ionic liquids in their drinking water had minimal

effect on the target organs, the effects on the gut microbiota were significant. Specifically, expo-

sure to M8OI had a profound impact on caecal microbiota beta-diversity compared to both

controls and BMI exposed mice. Indeed, clustering of samples based on beta-diversity identi-

fied 3 distinct clusters, each associated with a single exposure group. Proportional abundances

of several taxa were different in mice exposed to ionic liquids, along with KEGG pathways

indicated from predicted metagenomes.

Exposure to M8OI resulted in significantly greater relative abundance of Coribacteriaceae
and Lachnospiraceae as well as KEGG pathways associated with metabolism of xenobiotics.

Metabolic functional capacity was predicted based on community membership rather than

directly measured in this study. Nonetheless, Coriobacteriaceae have previously been linked

with xenobiotic degrading potential [39,40]. Expansion of the Lachnospiraceae family may be a

direct result of the reduction in Parasutterella and Ruminococcacea as both Lachnospiraceae
and Ruminococcacea share a considerable overlap in functional repertoires including metabo-

lism of host-derived glycans via the acrylate and propionate pathways [46,47]. The greater pro-

portional abundance of both Coriobacteriaceae and Lachnospiraceae along with their

associated KEGG pathways following exposure to M8OI suggests metabolic plasticity within

these taxa may confer a fitness advantage during exposure to xenobiotics. It is, however,

important to add that the increased abundances of both these KEGG pathways and bacterial

families exhibited here are purely observational.
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BMI exposed mice showed greater proportional abundance of Clostridia and of KEGG

pathways associated with amino acid metabolism than control mice. The potential of Clostridia
to metabolise aryl amino acids has been previously described [48]. Indeed, Clostridia are the

most common fermenters of amino acids found in the gut [49]. Excessive breakdown of pro-

teins by the gut microbiota can lead to build up of toxic end products such as phenols, ammo-

nia, amines and hydrogen sulphide [49,50]. This is of particular interest due to the more severe

renal impacts of BMI than M8OI in this cohort.

Significantly greater proportional abundance of xenobiotic metabolising potential identi-

fied in M8OI than BMI exposed mice may suggest the former is more readily degraded by the

gut microbiota. This could explain the reduced impact of orally delivered M8OI in this study,

compared to previous work [20], in which M8OI was delivered via i.p. injection. Moreover,

this may explain the difference in observed renal damage between M8OI and BMI. The differ-

ences in degrading potential may be linked to length of the alkyl chains where the impact of

steric interference by the imidazole ring is reduced as the alkyl chain extends from 4C in BMI

to 8C in M8OI. Degradation of M8OI by the gut microbiota may also explain the lower bio-

availability of M8OI compared to BMI identified by our in silico analyses.

Primary biliary cholangitis (PBC), is a progressive liver disease manifesting in non-obstruc-

tive damage to the small bile ducts causing cholestasis and, in late-stage disease, cirrhosis,

sometimes necessitating transplant [51]. Exact aetiology remains enigmatic though it is widely

considered an autoimmune condition due to presence of anti-mitochondrial antibodies

(AMAs) to the lipoyl domains of autoreactive mitochondrial proteins [52–55]. There is a clear

genetic predisposition to developing PBC, with greater pairwise concordance rates between

monozygotic twins (0.63), than among other autoimmune conditions [56]. Geographic clus-

ters of PBC in non-related individuals support a role for an environmental trigger(s) [57].

Associations have linked disease prevalence to reservoir source for drinking water [58]; heavy

mining [59]; proximity to toxic “superfund” landfill sites [60] and oestrogen replacement ther-

apy [61]. More recently, high levels of M8OI were found in soils in close proximity to a landfill

site [19]. Since M8OI is metabolised in human liver to a metabolite that may be incorporated

into lipoyl domains of autoreactive mitochondrial proteins in place of the lipoic acid [19],

M8OI or related methylimidazolium ionic liquids may also be added to the list of potential

triggers for PBC.

From the current study, there is little evidence to suggest that a direct interaction of M8OI

with the liver could lead to hepatic changes that might lead to a development of a PBC-like dis-

ease in mice. However, M8OI (and BMI) exposure both lead to changes in GI microbiota. To

date, there has been limited analyses completed on PBC patients and GI microbiota. The

majority of the studies suggest that there is an association between PBC and changes in the

microbiota. Lv and colleagues [62] compared 242 early stage PBC patients with 30 healthy con-

trols and report reduced abundance of 4 species (including Lachnobacterium spp) and

increases in 13 species in PBC patients. A more recent study [63] also reported a reduction in 4

species in 60 ursodeoxycholic acid treatment-naïve patients versus 80 matched healthy con-

trols. Ursodeoxycholic acid is a bile acid and first line treatment for PBC [64]. An examination

of microbiota changes prior to its use may be an important refinement in studies since bile

acid changes themselves are likely to modulate the GI microbiota [65]. However, in terms of

reduced levels, this latter study shares only 1 species in common with that by Lv et al [62], that

of a Bacterioidetes, with 3 shared species (Enterobacteriacae, Veillonella and Klebsiella) out of a

total of 8 species increased. In a separate study with 39 PBC patients, significant increases in

Veillonella (and Eubacterium) compared to healthy controls were reported [66]. Chen and col-

leagues [67] also report increases in Veillonella in PBC patients ([66] treatment-naïve PBC

patients versus 109 healthy controls). These observations are simple associations and lack
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evidence for cause and effect. Despite such findings and the abundance of Veillonella in the

adult GI-tract [68,69], there were no changes in Veillonella relative abundance observed in this

study. This may be due the use of murine rather than human subjects. Murine and human gut

microbiota do not perfectly overlap [70]. Indeed, as a genus, Veillonella accounted for less

than 0.001% of all sequence reads obtained in this experiment. A further influence on compo-

sitional differences between this study and those by Tang [63], Abe [66] and Chen [67] et al., is

the material from which bacteria were isolated. While previous studies have utilised stool, this

study utilised caecal contents.

Comparing NOD.c3c4 mice, which develop spontaneous biliary inflammation in extra-

and intrahepatic bile ducts, to control NOD mice, changes in Veillonella are also not flagged

whereas there are changes in the levels of several other genera [71]. Interestingly, there are sim-

ilarities in some of the patterns of microbiota change seen between the NOD.c3c4 and control

mice and the control and ionic liquid-treated mice in this study. Most notably the second and

third most differentially abundant genera associated with M8OI exposure in our study were

Dorea and an unclassified Clostridia. The same two genera remained significantly enriched

once cage effects were discounted in the study by Schrumpf and colleagues [71]. Further work

to identify if these genera are associated with onset of biliary inflammation through immune

signalling or as a result of biliary inflammation due to increased availability of bile conjugates

as substrate is required.

Ionic liquids are used in multiple industrial processes and generally considered a “green”

alternative to inorganic solvents [72]. Despite, multiple studies exploring the toxicity of ionic

liquids on the environment, including in the contexts of plants [9], and aquatic creatures [73],

none have studied the impacts of these compounds on the microbiota.

Peric et al. (2014), described the toxicity of both protic and aprotic ionic liquids, including

BMI, on an uncharacterised soil microbiota [74]. Results of this study showed toxicity of ionic

liquids (measured via respiration rates), at concentrations of 100 mg / kg and above. The

authors also observed increased respiration rates of soil microbiota exposed to lower concen-

trations of protic ionic liquids derived from organic amines, suggesting degradation of the

ionic liquids. Interestingly, they did not observe the same phenomenon in aprotic ionic liquids

such as BMI and M8OI. In contrast, our results show higher proportional abundances of

KEGG pathways associated with xenobiotic metabolism in mice exposed to M8OI, suggesting

some degree of degradation may occur. These results are in agreement with those of past stud-

ies [75], which proposed certain microbes may utilise ionic liquids as a carbon source. Using

Biolog-ECO plate methods Guo and colleagues observed enhanced growth of soil associated

microbes when exposed to ionic liquids coupled with both greater amino acid and depleted

phenol utilisation.

This study examined the impact of ionic liquids on mouse gut microbiota, which is compo-

sitionally distinct both taxonomically and functionally, to that of soil. Nevertheless, we build

on the previous research by identifying bacterial genera proportionally enriched during ionic

liquid exposure that may be responsible for degradation of these compounds in vivo. The bac-

terial genera enriched in ionic liquid exposed mice in this study, including Coriobacteriaceae
and Ruminococcus, were also enriched in studies investigating environmental stress [43].

These same genera have also been associated with high fat diets and inflammatory response

[75]. Further research to identify impact of environmental exposure to ionic liquids on

immune responses and metabolism would be pertinent.

There remain some limitations to this study. Ionic liquids are not on the list of chemicals

routinely screened by the EPA [https://www.epa.gov/assessing-and-managing-chemicals-

under-tsca/sunset-dates-chemicals-subject-final-tsca-section-4-test ]; a UK EPA equivalents

(SEPA/EA) [https://www.sepa.org.uk/media/59968/policy_61-control-of-priority-and-
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dangerous-substances-and-specific-pollutants-in-the-water-environment.pdf] [https://www.

gov.uk/government/publications/list-of-chemicals-for-water-framework-directive-

assessments]; the US CDC national biomonitoring program [https://www.cdc.gov/

biomonitoring/environmental_chemicals.html]; the EU water framework priority pollutant

list [https://ec.europa.eu/environment/water/water-framework/priority_substances.htm] or

on the priority list of the Human Biomonitoring in Europe initiative [https://www.hbm4eu.

eu]. Accordingly, it is not possible to determine the degree to which the environment might be

contaminated with ionic liquids and therefore to make some estimation of likely population

exposure or the appropriate dose(s) to use in experimental studies that reflect likely human

exposure.

There will also always be uncertainty regarding the translation of findings from experimen-

tal animals to man. The only solution to this concern is to perform similar experiments in

man, but such experiments are un-ethical. However, the novel observation reported in our

manuscript is that changes in microbiota occur in mice on exposure to 2 different methylimi-

dazolium ionic liquids in the absence of any overt toxic effects to the host. This observation

can reasonably be translated to man in the sense that changes likely would occur in man

exposed similarly to methylimidazolium ionic liquids. Given the differences in microbiotas

between mouse and man, the relative changes in species will likely be different.

An additional limitation in this study is the absence of an assessment of any intestinal

effects, such as changes in mucus thickness and/or barrier function. Intestinal tissues in this

study were not retained for pathology, in part, because the gut contents were manually

squeezed from the tissue (which could have contributed to artefactual tissue changes associated

with this procedure, rather than due solely to the ionic liquid exposures). Effects of ionic liq-

uids on intestinal barrier function remains undetermined and should be examined in the

future.

Conclusions

While this study shows limited impact of ionic liquid exposure on host organs such as the liver

and kidneys, we demonstrate taxonomic shifts in gut microbiota and suggest altered bacterial

function repertoires based on predicted metagenomes. Frequent links have been made

between altered gut microbiota composition and host health. Due to the interaction between

the microbiota and host, these results highlight the need for future research to explore the

impact of ionic liquids in humans and human associated microbiota.

Supporting information

S1 Fig. Prediction of passive absorption and bioavailabilities of 5 methylimidazolium ionic

liquids. The oral absorptions and bioavailabilities of 5 structurally-related methylimidazolium

ionic liquids–including BMI and M8OI–where predicted using the ACD/Percepta software as

described (http://perceptahelp.acdlabs.com/help_v2017/index.php/Absorption; http://

perceptahelp.acdlabs.com/help_v2017/index.php/Oral_Bioavailability) and freely accessible

here: https://www.psds.ac.uk/. Based on passive absorption alone, significant (>20%) amounts

of ionic liquid were predicted to be absorbed with BMI predicted to show greater maximum

passive absorption compared to M8OI. In terms of bioavailability, M8OI was predicted to

have low bioavailability, which was supported by the low levels of serum M8OI determined

(Fig 3B). In contrast, BMI was predicted to be significantly more bioavailable than M8OI.

(PPTX)
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S2 Fig. Sample sizes of samples used in the determination of gut microbial composition.
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Control = green) compared to negative controls (sequencing and kit negatives = black). Also

included is an additional control, 2 samples of the buffer used to store stools during storage

and transport (purple).

(PPTX)

S3 Fig. Compositional abundance of gut microbial samples. A, total count compositional

abundance (y axis) versus sample identity. Control communities in left panel were significantly

distinct from samples in right panel (p(adj) <0.005 [pairwise PERMANOVA]). B, total count

compositional abundance (y axis) versus sample identity after removing the main contributing

OTU in the control community (Escherichia/Shigella [pale green in (A)]) prior to subsequent

analysis.
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S4 Fig. S4 Fig linkage clustering. A, clusters as defined by complete linkage clustering

(CST1 = red; CST2 = blue; CST3 = green). B, validation by gap statistic.
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