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Abstract: In Precision Agriculture, images coming from camera-based sensors are 
commonly used for weed identification and crop line detection, either to apply specific 
treatments or for vehicle guidance purposes. Accuracy of identification and detection is an 
important issue to be addressed in image processing. There are two main types of 
parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the 
sensor’s positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as 
CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural 
applications, the uncontrolled illumination, existing in outdoor environments, is also an 
important factor affecting the image accuracy. This paper is exclusively focused on two 
main issues, always with the goal to achieve the highest image accuracy in Precision 
Agriculture applications, making the following two main contributions: (a) camera sensor 
arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the 
adverse illumination effects. 
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1. Introduction 

The use of robotic systems, equipped with vision-based sensors, for site-specific treatments in 
Precision Agriculture (PA) is seeing continuous growth. A common practice consists of image 
processing for weed and crop identification. Both, crop lines and weed identification are used for 
selective treatments [1–13]; additionally crop line identification is also used for tractor guidance [14–17]. 
Crop line and weed detection is an important issue related with the application of machine vision 
methods in agriculture, and consequently has attracted numerous studies in the area. 

Ratios of greenness to soil determine what is known as density. The goal is always to detect 
crop/weed densities and also crop lines from the imaged spectral components. These tasks must always 
be carried out using a given camera-based sensor with the highest accuracy and robustness possible 
and under adverse and highly variable outdoor illumination conditions, which are the natural 
environmental conditions in agricultural fields. 

Accuracy may be critical for determining whether specific treatments are required for weed control 
or for vehicle guidance when required. Accuracy in this matter is directly related with intrinsic and 
extrinsic camera parameters [18], and also with some factors caused by the uncontrolled outdoor 
illumination [19]. 

The camera-based sensor consists of three main parts, namely: (a) CCD device; (b) optical lens and 
(c) ultraviolet and infrared cut filters for controlling the input of only those wavelengths of interest. 
Some camera parameters are fixed for the system’s requirements according to the goals of the 
application. Sometimes this leads to the choice of a specific sensor, as described below in Section 2, 
with their intrinsic parameters already predefined and perhaps some extrinsic ones too. This paper is 
concerned with the definition and analysis of those unfixed extrinsic parameters and also with factors 
to control the adverse effect of the illumination, always with accuracy purposes for greenness 
identification and later crop line and weed detection. 

Regarding the extrinsic parameters, they depend directly on the physical vision system, which is 
installed on-board the tractor pointing to a selected area in the field, ahead of the tractor. This is an 
important issue in PA, which is addressed in this paper and described in Section 2.2.1. 

Regarding the illumination factors, we can point out that the processing of agronomic  
images becomes a difficult task because they are always captured under uncontrolled illumination  
conditions [19]. Indeed, in outdoor environments a variety of weather conditions may appear, i.e., 
highly sunny or cloudy days with different intensities, clear days alternating with different cloud 
densities, etc. 

Moreover, it is well known that in outdoor environments, particularly in sunny days, infrared 
radiation enters the sensor impacting the different spectral channels. The control of illumination factors 
is addressed in Section 2.2.2. 
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Based on a given camera-based sensor with its corresponding accessories, we study the image 
accuracy for crop line and weed detection in agronomical images with specific reference to maize 
crops, where an area 3 m wide must be covered. This accuracy is studied from two points of view, 
making the main findings of this paper: (a) geometrical arrangement, based on extrinsic parameters 
and (b) software corrections for improving the image quality, derived from the uncontrolled 
illumination in this kind of outdoor environments. This paper is organized as follows: Section 2 
describes materials and methods used for accuracy determination considering the above two points of 
view. In Section 3 accuracy results are provided. Finally, Section 4 presents the relevant conclusions. 

2. Materials and Methods 

2.1. Materials 

The camera-based sensor consists of three essential physical parts: (a) CCD-based device embedded 
in a housing with its electronic equipment and interfaces for power supply and to the computer;  
(b) optical lens and (c) ultraviolet and infrared cut filter. Figure 1 displays these parts assembled as a 
whole in Figure 1(a) and separated in Figure 1(b). 

Figure 1. CCD sensor, lens and UV/IR cut filter: (a) integrated. (b) separated. 

 
(a) 

 
(b) 

The CCD is a Kodak KAI 04050M/C sensor with a Bayer color filter with GR pattern; resolution of 
2,336 × 1,752 pixels and 5.5 × 5.5 μm pixel-size. This device is part of the SVS4050CFLGEA  
model [20] which is robust enough and very suitable for agricultural applications. This device offers 
several externally controlled possibilities: (a) exposure time, which determines the time taken to 
capture the image; (b) Red, Green and Blue gains, where a value can be set for each channel, including 
gains auto-calculation; (c) definition of specific Regions Of Interest (ROIs); (d) information about the 
operating temperature. This Gigabit Ethernet device connected to a cRIO-9082 with dual-core 
controller, 1.33 GHz and LX150 FPGA running under LabView 2011 from National Instruments [21] 
is robust enough and specifically designed for real-time processing, so both features are very suitable 
for our agricultural application. Because the application occurs in harsh environments (containing dust, 
drops of liquid from sprayers, etc.) it is encapsulated in a housing with IP65 protection and internally 
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equipped with an automatic fan which is triggered if the temperature surpasses 50 °C; this housing is 
displayed in Figure 2(a) indicated by the label camera-based sensor. 

Figure 2. Camera-based sensor arrangement with a ROI in front of the tractor: (a) near the 
mass center of the tractor with referential coordinate systems; (b) Zenithal position. 

(a) 
 

(b) 

The optical system consists of a Schneider Cinegon 1.9/10-0901 lens [22], with manual iris aperture 
(f-stop) ranging from 1.9 to 16 and manual lockable focus, providing high stability in the agricultural 
environment. It is valid for sensor formats up to a diagonal value of 1″, i.e., maximum image circle  
of 16 mm, and is equipped with an F-mount which can be adapted to C-mount. The focal length is 
fixed at 10 mm. Its field of view is above 50° with object image distance from infinity to 7.5 mm, 
which allows the mapping of a width of 3 m as required for our application. Its spectral range varies from 
400 to 1,000 nm, i.e., visible and near-infrared (NIR). Under this optical system the images are 
captured with perspective projection [18]. 

As mentioned before, our system works in adverse outdoor agricultural environments where the 
natural illumination contains a high infra-red component. The sensor is highly sensitive to NIR 
radiation and to a lesser extent to ultra-violet (UV) radiation. The NIR heavily contaminates the three 
spectral channels (Red, Green and Blue) producing images with hot colors. This makes identification 
of crop lines and weeds unfeasible because during the treatments these structures are basically green. 
To avoid this undesired effect, the system is equipped with a Schneider UV/IR 486 cut-off filter [23]. 
Its operating curve specifies that wavelengths below 370 nm and above 760 nm are blocked, i.e., both 
UV and NIR radiation. Despite this blocking effect, a vignetting effect remains, requiring correction as 
described below. 

More than 2,000 images have been acquired in the CSIC-CAR facilities in Arganda del Rey 
(Madrid) on different dates, during April/May/June 2011 from maize fields and the last ones on 
November 2012 and January 2013. No maize crops are available at this time of the year. Because our 
application is specifically designed for maize crops, crop lines have been made by mowing six 80 
meter long lines among weeds. Lines are separated 75 cm from each other like in real maize crops. 

To quantify the number of pixels with the maximum accuracy as possible, a bright orange colored 
cardboard of 1 × 1 m2 is used. This cardboard defines the physical ROI to be imaged with a peculiar 
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color, which is not present in agronomic images. It is placed in front of the tractor at different 
distances. As mentioned before, these distances define one of the extrinsic parameters involved in this 
study related to accuracy from a geometric point of view. 

2.2. Methods 

2.2.1. Accuracy from the Point of View of Extrinsic Parameters 

As mentioned before, the vision system is installed on-board a tractor pointing to a selected area 
ahead. Figure 2(a) displays the camera configuration in the tractor, specifically devoted to treatments 
in maize fields under the project funded under the Seventh Framework Program: RHEA—Robot Fleets 
for Highly Effective Agriculture and Forestry Management [24]. In this project an important issue is 
related to the area to be treated, because the implement used for applying treatment, covers four crop 
lines spaced 0.75 m each, so the total wide area to be captured for the camera must be at least 3 m in 
width. Although it is always possible to combine different camera resolutions with different focal 
lengths, an acceptable solution for positioning the camera, at the same time the width of the scene is 
captured fulfilling this requirement, is the one displayed in Figure 2(a). 

Under this configuration, the origin of the world coordinate system OXYZ is located exactly in the 
ground with its axes oriented as displayed. At a height h from O is placed the origin o of the coordinate 
system oxyz attached to the plane of the image, i.e., coinciding physically with the CCD. Angles  
pitch (α), roll (θ) and yaw (β) define the three degrees of freedom of the image plane with respect to 
the OXYZ system. They define three extrinsic parameters, which are the basis for building the rotation 
matrix. A fourth extrinsic parameter is h, which defines the height of the camera; it is involved in the 
translation matrix. Although the position of the camera is fixed under this tractor configuration, some 
displacements along the vertical are still possible, so that h can be considered variable. 

The tractor moves along the crop lines and it processes in real time the images determining the 
percentages of weeds and the crop line location. Tractor speed is a critical factor since the faster the 
tractor moves along the crop lines, the faster the algorithms for detection have to be or else the further 
away the selected area to be focused has to be, with the resulting unavoidable loss of accuracy. 

Ideally the best pitch angle would be 90°, i.e., with camera pointing downwards (zenith orientation). 
This camera arrangement has been used for discrimination between crops and weeds in sugar fields [25] 
and its performance has been reported in [26]. In our application, this pitch angle arrangement would 
imply that the camera would have to be placed under the tractor. This solution requires a lens which 
allows a broad field of view to cover the required width of 3 m and that images processed on real time 
would have to be processed nearly instantaneously. Another solution would be placing the camera 
fixed on a bar (Figure 1(b)) at a certain distance ahead of the tractor so that algorithms would have 
more time to process the images as the tractor reaches the processed area. But this performance would 
produce high oscillations with the tractor’s movement which would result in useless blurry images. 
Therefore, an acceptable position for the camera on the tractor is the one as close to its mass center as 
possible to avoid oscillations and with the pitch angle adjusted so that the camera points to the ROI 
with the highest possible accuracy. 



Sensors 2013, 13 4353 
 

 

In the same way, the shorter the distance of the region of interest to the tractor, i.e., to the origin of the 
OXYZ, the higher the accuracy obtained in the acquired images. However, the area must not be too close 
because of the following two constraints: (a) the box in front containing energy accumulators requires a 
minimum pitch angle to cover the ROI; (b) in the time for image processing; the minimum distance is 
limited since a very short distance to the tractor would not give time enough for image processing. 

Regarding the extrinsic roll (θ) and yaw (β) parameters, we assume they are fixed to zero values 
because of the plane terrain (roll) and correct guidance (yaw). Obviously, they could be considered to 
be non-zero if the above constraints are not met. Thus, assuming both extrinsic parameters are known, 
the image accuracy, based on the above mentioned constraints, depends on the pitch angle (α), the 
height of the camera (h) and the distance of the ROI (d), so this paper studies the image accuracy based 
on these three parameters, i.e., α, h and d, which are related to each other. The goal is to find out the 
relation among them to determine the camera arrangement needed to achieve the best image accuracy. 
This represents an extension with regard the study in [27], where only the pitch angle was the subject 
of study, also for image accuracy, under a simulated scenario through Webots [28], instead of a real 
one as now. The use of simulated scenarios is a common practice before using the real ones [9]. 
Depending on the agronomic application some systems set beforehand some extrinsic parameters 
because the system performance is guaranteed, either for detecting weeds and crops [29–31] or for row 
following [32,33], including stereovision systems [34]. 

For quantifying the ROI resolution of every image captured under different values of the extrinsic 
parameters to be studied, this image is segmented and the number of pixels of the orange cardboard is 
computed based on a segmentation process developed under LabView. This process is easy, it is based 
on the color spectral properties displayed by the peculiar orange color mapped on the image from  
the original cardboard, every non bright orange pixel is removed, so that the remaining ones in the  
image belong to the ROI, Figure 3. The higher the number of remaining orange pixels in the image the  
higher the resolution of the ROI. This is the criterion for measuring the accuracy based on the  
extrinsic parameters. 

Figure 3. ROI in the field defined by the orange cardboard and number of its pixels. 

 

A set of 125 images have been acquired consisting of five different pitch angles, five different 
heights and five different distances, all combined with each other. This means that every image 
corresponds to a different pitch angle, a different height of the sensor camera from the ground and a 
different distance of the ROI from the sensor camera. 

ROI with
n pixels
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In order to achieve this set of images we proceed as follows: 

1. The camera-based sensor is placed in the same position as the one it has in the tractor pointing 
at the crop lines. 

2. The cardboard is placed in the middle of the crop lines at the distance where weeds will be 
detected once the tractor is in movement (Figure 2). 

3. A set of different images is taken varying the pitch angle, the height of the camera from the 
ground and the distance of the camera to the ROI alternatively. That is: 

for h = h1 to h5 do 
for d = d1 to d5 do 

for α = α1 to α5 do 
• capture image Ihdα 
• identify the cardboard; apply color image segmentation based on the RGB spectral 

components 
• compute the area in terms of the number of pixels belonging to the identified 

cardboard 
 end; end; end; 

2.2.2. Accuracy from the Point of View of Illumination Factors 

As already mentioned, the quality of the images is highly dependent on illumination, which affects 
highly the segmentation algorithms and indirectly the image accuracy from the point of view of crop 
line detection and weed identification. Thus, in addition to the extrinsic parameters, the image 
accuracy can be studied from the point of view of image quality. In this paper, we make the following 
contributions to this topic: 

• Controlling the amount of light impacting the sensor. The diaphragm or iris aperture is fixed, 
because no auto-iris lens is available in our system, and the amount of light is controlled via the 
exposure time, which is a facility provided by the camera sensor. 

• Applying a software correction procedure for minimizing the phenomenon known as  
lens vignetting effect, where the brightness decreases at the periphery in the image compared to 
the center of the image. This effect can be produced by different causes, including optical 
properties of the lens itself, particularly in lenses with wide aperture. When we apply a cutting 
infrared filter, part of the red wavelengths are attenuated causing an excess of greenness, 
particularly where vignetting is more evident, i.e., at the periphery of the image and more 
specifically on the four corners. 

(a) Exposure Time 

A panel with four colors is placed in front of the tractor and inside the field of view of the camera. 
At this stage we assume known the extrinsic parameters for the best accuracy, i.e., geometric camera 
arrangement with α and h values. Thus, we know the position of the panel in the image and also the 
distribution of colors on it (Figure 4). The white part of this panel serves as reference for controlling 
the exposure time. 
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The procedure consists of the following steps: 

1. Capture an image. 
2. Perform a sampling inside the white part and compute the average value for the three 

spectral RGB components, i.e., തܴ, ܩ,ഥ  and ܤത . 
3. Adjust the Exposure time (Et) so that the highest of the three maximum average values, ܪ ൌ ሼݔܽ݉ തܴ, ഥ,ܩ ഥ,ܤ ሽ, falls on a given interval to ensure that the sensor is sufficiently 

excited but without reaching saturation. In our sensor with 8 bits in resolution per 
channel, the maximum value is M = 28 = 255, hence the interval is as follows:  ܽܯ ൑ ܪ ൏  where a and b define the lower and upper limits, in our experiments ,ܯܾ
we have verified that a = 0.90 and b = 0.98 suffices. 

4. Et, which represents the previous exposure time, is adjusted as follows: if ܪ ൏  ܯ0.90
then ܧ௧ ൌ ሺ1 ൅ ௧ܧሻ݌ ; if ܪ ൐ ௧ܧ ܯ0.98 ൌ ሺ1 െ ௧ܧሻ݌ otherwise Et does not need 
updating; where 0 ൏ ݌ ൏ 1 represents the fraction of adjusting, set to 0.20 in  
our experiments. 

5. If after the adjustment H does not fall inside the interval specified, a new image is 
captured with the last Et updated and steps a) to (d) are repeated again. 

Figure 4(a) displays an image captured with an Et = 2 × 104 µs where the white panel displays 
values requiring Et adjustment; Figure 4(b) shows the same image acquired with Et = 3.5 × 104 µs. We 
can see how the whole image, and particularly the white panel, have increased their values resulting in 
a brighter image. 

Figure 4. Images captured from the same scene with two different exposure times:  
(a) Et = 2 × 104 µs; (b) Et = 3.5 × 104 µs. 

 
(a) 

 
(b) 

(b) Vignetting Correction 

As specified by the manufacturer, the Schneider UV/IR 486 cut-off filter [23] is based on what is 
known as thin-film technology containing more than thirty coats on one of its sides and a  
multi-resistant coating on the opposite one. The incidence angle of these rays in the periphery of the 
filter is greater than in the center and they must travel longer distances along the different layers of 
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interference. This effect is more pronounced the shorter the focal length of the lens, i.e., lenses with 
wide-angles. This occurs in our case with a lens of 10 mm. 

The effect is that the real color is displaced toward green and blue at the expense of the red one. 
Thus, in order to correct this effect we have designed an image gray pattern (P) with values ranging  
in [0,1], where at the center of the pattern (cx, cy) the value is zero and achieves its maximum value of 
one at the four corners. The size of this pattern is exactly the one of the image and the value of each 
pixel i located at (x,y) is computed as follows:  

( ) ( )( )
1
222( , ) x yd x y x c y c= − + −  (1)

Figure 5 displays this pattern. Given a channel R, G and B we apply the following operation to 
obtain the corrected values, Rc, Gc and Bc: 

Rc = (1+KrP)×R;     Gc = (1+KgP)×G;    Bc = (1+KbP)×B (2)

where × denotes pixel-by-pixel multiplication instead matrix product; Kr, Kg and Kb represent the 
trade-off between corrections, based on the behavior of the Schneider UV/IR 486 cut-off filter [23] we 
have verified, with high level of satisfaction that the following values are appropriate in our 
experiments: Kr = 0.3; Kg = 0.0 and Kb = 0.0. This means, that only the red channel is corrected in our 
application where crop line and weed detection with high accuracy is the goal. 

Figure 5. Image pattern used for vignetting correction. 

 

3. Results and Discussion 

This study is concerned with the accuracy of weed and crop line detection in maize fields under the 
RHEA project [24]. It has been focused on the definition of three critical extrinsic parameters and also 
on how to control adverse effects produced by the illumination. 

3.1. Analysis of Extrinsic Parameters 

Table 1 shows the number of pixels (n) obtained for the ROI after applying the method described in 
Section 2.2.1 for the set of 125 images. Each image Ihdα is captured under different values for the pitch 
angle (α), height of the camera (h) and distance to the ROI (d). 



Sensors 2013, 13 4357 
 

 

Results in Table 1 are graphically displayed in Figure 6 for convenience and better visibility, with 
the 125 values obtained for n. As we can see from the graph, there are five sets of five values each 
(marked with a red circle) that correspond to the maximum values of n. All these values were obtained 
at the distance of 3 meters which leads us to the first conclusion of our study (a quite intuitive but 
perhaps not obvious one): “The closer the ROI is from our camera the higher the resolution and 
therefore the accuracy on weeds and crop lines detection”. 

Table 1. Number of pixels (n) in the ROI obtained for different combinations in the pitch 
angle (α), height of the camera (h) and distance to the ROI (d). 

α = 10° α = 20° α = 30° α = 40° α = 50° 

d 
(m) 

h 
(cm) 

n 
d 

(m) 
h 

(cm) 
n 

d 
(m)

h 
(cm)

n 
d 

(m)
h 

(cm)
n 

d 
(m) 

h 
(cm) 

n 

3.0 

210 120,456 

3.0 

210 119,872

3.0 

210 114,152

3.0 

210 118,338

3.0 

210 121,236

215 122,547 215 121,622 215 115,351 215 118,645 215 123,568 

220 124,754 220 123,682 220 116,321 220 119,078 220 125,698 

225 126,354 225 125,462 225 117,244 225 119,176 225 127,425 

230 128,452 230 127,442 230 118,089 230 119,357 230 129,423 

3.5 

210 101,239 

3.5 

210 98,589  

3.5 

210 94,523  

3.5 

210 94,021  

3.5 

210 94,865  

215 102,569 215 99,745  215 95,325  215 95,685  215 95,862  

220 103,698 220 100,695 220 95,986  220 96,852  220 96,899  

225 103,967 225 100,885 225 96,854  225 97,246  225 97,585  

230 104,693 230 101,210 230 98,752  230 98,563  230 98,865  

4.0 

210 71,895 

4.0 

210 70,912  

4.0 

210 68,108  

4.0 

210 74,594  

4.0 

210 74,625  

215 72,698  215 71,992  215 68,812  215 74,729  215 74,987  

220 74,147   220 73,245   220 69,543   220 74,947   220 75,125   

225 74.236   225 73.856   225 69.332   225 74.752   225 75.012   

230 75,100   230 74,342   230 70,811   230 75,219   230 75,652   

4.5 

210 55,326   

4.5 

210 54,856   

4.5 

210 53,865   

4.5 

210 52,023   

4.5 

210 51,745   

215 56,314   215 55,123   215 54,169   215 52,869   215 51,658   

220 57,259   220 56,985   220 54,896   220 53,695   220 52,896   

225 58,965   225 59,001   225 55,896   225 54,754   225 54,585   

230 59,996   230 59,896   230 56,987   230 55,625   230 55,632   

5.0 

210 37,989   

5.0 

210 36,552   

5.0 

210 35,648   

5.0 

210 39,602   

5.0 

210 39,874   

215 38,654   215 37,472 215 36,182   215 40,226   215 40,325   

220 39,541 220 38,442 220 36,762   220 40,713   220 41,256   

225 39,987 225 39,152   225 37,421 225 41,160 225 42,015   

230 41,253 230 40,232   230 37,895 230 41,581 230 42,569   

In order to assess the real results in Table 1 against theoretical results, we have developed a simulation 
program in Matlab [35]. With such purpose in mind, we define a ROI with identical size i.e., 1 × 1 m2. The 
coordinate systems are defined like in the real situation and the focal length is also fixed to 10 mm. 
The CCD-device specifications are the ones corresponding to the Kodak KAI Sensor provided in 
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Section 2.1. The free parameters provided to the program are obviously h, d and α. For each 
combination of these free parameters we map the four corners from the ROI into the corresponding 
pixels in the image, obtaining a trapeze. We compute the area of this trapeze and compute the 
percentage against the number of pixels (n) displayed in Table 1. The average value for all 
combinations of the free parameters in Table 1 is 0.0088% with standard deviation of 7.9 × 10−4. As 
we can see, simulated and real values are very close, verifying the validity of the real experiments for 
the proposed sensor arrangement and the configuration of the extrinsic parameters. 

Figure 6. Dependency of the number of pixels (n) against h, d and α. 

 

Once we know that distance is a critical parameter for accuracy, we fix the distance of the ROI at 3 m 
and see how n varies with the other two parameters. Fixing distances away from the tractor we graph the 
different values of n depending on the pitch angle (α) and the height (h) of the camera (Figure 7). 

Figure 7. Number of pixels n, against α, for the five different heights h, at a fixed  
distance d = 3 m. 

 

From Figure 7 we can see that the best pitch angles, in terms of accuracy, are those in which the 
ROI is placed either at the top of the image which corresponds with α = 50° (Figure 8(a)), or at the 
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bottom of the image with α = 10° (Figure 8(b)), and the worst pitch angle is that in which the ROI is 
placed at the center of the image with α = 30 (Figure 8(c)). The images in Figure 8 were captured at a 
height h = 215 cm and a distance d = 3 m. The above conclusion was already reported in [15], 
although only considering the pitch angle (α) and without the intervention of the height (h). Thus under 
this more exhaustive study we arrive at the same conclusion with respect the pitch angle. 

Figure 8. Different images of the ROI (bright orange cardboard) captured with h = 215 cm 
and d = 3 m under three different pitch angles: (a) α = 50°; (b) α = 10° and (c) α = 30°. 

 
(a) 

 
(b) 

 
(c) 

Regarding the height (h) in Figure 7, we can see that the greatest number of pixels is always 
obtained with h = 230 cm. This appears a surprising result because without exhaustive analysis one 
might feel that the lower height objects appear with greater resolution. To clarify this, we again display 
the number of pixels, n against the pitch angle α, and the height h, but this time we place on the x-axis 
the height (Figure 9). 

Figure 9. Number of pixels n, against h, for five different pitch angles α, at a fixed  
distance d = 3 m. (dot means Decimal point or thousand, please change to comma if dot 
refer to thousand, the same to Figure 13). 

 

Indeed, we can see that the accuracy increases as we increase both the height of the camera in the 
tractor and the pitch angle. This is due to the geometric camera arrangement. Figure 10 displays a 
pedagogical example where this is clarified. If we would place the camera at a very close height from 
the ground, at a fixed distance d with a given pitch angle α, we would get an image like  
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the one displayed in Figure 10(a), however as h and α increase with d remaining fixed, due to a  
new perspective arrangement, the area of the cardboard that can be seen from the camera also  
increases, Figure 10(b). 

Figure 10. Images of the same ROI at a fixed distance and the same pitch angle: (a) with 
the camera almost at ground level; (b) image obtained at a greater height from the ground. 

 
(a) 

 
(b) 

To emphasize the importance of choosing the correct parameters in order to get the highest possible 
accuracy for a specific area of the image, we take a look of the maximum number of pixels, nmax and 
the minimum, nmin, obtained in our study: 

nmax = 129,423 pixels, (α = 50°,  h = 230 cm, d = 3 m). 
nmin = 35,648 pixels, (α = 30°, h = 210 cm, d = 5 m). 

This means that the same area of a region in the 3D scene can be imaged into a ROI with a very 
different number of pixels depending on the parameters involved in this study, i.e., α, h and d. This can 
be critical in some agricultural applications. For instance, consider a combination of parameters giving 
n = 129,423 and a second arrangement with n = 35,648, this results in a loss of resolution up to 72.5%, 
i.e., the accuracy reduction. 

We have studied the best arrangement for the extrinsic parameters and we have found a trade-off 
between them. Considering that the tractor is in movement at a speed of approximately 4 m/s and our 
ROI is 5 m deep by 4.5 m wide a good choice of parameters is: α = 20°, h = 220 cm and d = 4 m. The 
parameters we have chosen give us, according to our study, a resolution of n = 56,985. If we compare 
this resolution with the maximum resolution obtained in our study (n = 129,423) we realize that, due to 
constrains not related with the sensor camera, we are giving up 56% of the accuracy. However, had we 
not considered the importance of these parameters, a worse election of these would have led us to a 
reduction of 72.5% of the resolution. 

So, apart from the intrinsic parameters there are other parameters to be considered with a critical 
influence on the accuracy of the ROI. This means that when the sensor specification is provided we 
need to determine, depending on the application, which is the best arrangement of the extrinsic 
parameters. In this study we have only considered the pitch angle, but also accuracy depends on the 
yaw and roll angles. These angles should be considered if the camera arrangement involves its 
consideration or when the tractor must work in a sloping ground. 
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3.2. Analysis of Illumination Factors 

The second group of factors affecting the image accuracy, now in terms of the quality of the image 
based on the RGB spectral components, is the one derived from the illumination factors. In order to 
verify the relevance of these factors we apply the segmentation process described in [2], which is 
based on the computation of a global threshold through a fuzzy clustering learning-based strategy. The 
images under analysis contain two main classes of interest, i.e., vegetation and no vegetation. The 
fuzzy clustering is designed to compute the cluster centers associated to each of these two classes 
based on specific samples of the image. These samples are represented by features with the three RGB 
spectral components. The cluster centers are three dimensional vectors with three spectral values. Once 
the cluster centers are estimated, a threshold value is obtained as the percentage of the green spectral 
component with respect the three ones. This threshold allows us to identify green plants from the 
remaining parts in the images and the corresponding binary image is finally obtained. Figure 11 displays 
the results of applying this process to the images displayed in Figures 4, respectively, which were 
obtained with two different exposure times. 

Figure 11. Segmented images obtained from the ones in Figure 4 respectively. 

 
(a) 

 
(b) 

The exposure time for the image in Figure 4(a) was below which it would be desirable, unlike the 
one obtained in the image in Figure 4(b), which was sufficient. As we can see, the result in the first 
case is worse than in the second one. Indeed, the binary image displayed in Figure 11(b) contains an 
over-segmentation in the part of interest, where crop lines and weeds are placed with important gaps 
on the outer part. A possible explanation to this phenomenon is that the sensor requires sufficient time 
to be impacted by the reflectance and the illumination coming from objects in the scene. Because there 
are different types of materials, the reflectance and illumination sent to the sensors is different for each 
type of material. When the exposure time is insufficient, the sensor produces this kind of effect. On the 
contrary, if the exposure time is excessive the intensity image becomes saturated and the image 
segmentation process fails. Figure 12(a) displays a saturated image and its corresponding segmented 
image in Figure 12(b) using the same segmentation procedure as before; we can see how the  
result becomes unfeasible. From the point of view of weeds and crop lines detection, this leads to  
clear inaccuracies. 
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From the point of view of accuracy, color or white balancing is not required because these 
processes are only suitable for a correct human perception [36]. This represents an important 
advantage over other systems that perform this kind of operations. 

Figure 12. (a) Original saturated image; (b) binary image after segmentation. 

 
(a) 

 
(b) 

Regarding the process related to vignetting, Figure 13(a) displays an original image and  
Figure 13(b,c) the binary segmented images without and with vignetting correction. In Figure 13(b) we 
can easily see how an excess of white pixels appears at the four corners representing green plants, which 
is not present in the image of Figure 13(c) after vignetting correction. Thus, when no vignetting 
correction is applied, high inaccuracy results in the corners during weed and crop line detection. 

Figure 13. (a) Original image; (b) binary image without vignetting correction; (c) binary 
image with vignetting correction. 

 
(a) 

 
(b) 

 
(c) 

In order to test the performance of the proposed method to control the adverse illumination factors, 
we have applied the following procedure: 

(a) With the tractor stopped at different positions in the field, we acquire an image that 
needs exposure time adjustment according to the procedure described in Section 2.2.2. 
A second image is acquired after the adjustment. Thus, for each position two  
images are acquired and stored as RGB in the BMP format, i.e., without compression 
to avoid losses. 
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6. Each image of the stored pair is processed with and without vignetting correction. 
Thus, for each pair we obtain four binary images through the method described in [2], 
as already mentioned. 

7. For each pair of images a ground-truth image is built as follows. From the four binary 
images obtained above, we select the one with the highest quality according to an 
expert human criterion by comparing it with the pair of original images. The selected 
binary image is manually touched up, so that isolated or groups of pixels are relabeled 
as white or black pixels, also according to the human criterion. 

8. The four binary images are compared against the corresponding ground-truth by 
computing the Correct Classification Percentage (PCC) index [37]: 

TW TBPCC
TW TB FW FB

+=
+ + +

 (3)

where TW (true whites) and TB (true blacks) are the number of white/black pixels respectively in the 
image that are also white/black in the ground-truth; FW (false whites) and FB (false blacks) are the 
number of white/black pixels respectively in the image that are also black/white in the ground-truth. 

We have analyzed 25 pairs of images captured as described in Step (1) above during different days 
and under different illumination conditions. Table 2 displays the averaged PCC values over the 25 
binary images obtained after the processing with and without exposure time adjustment and vignetting 
correction. The analysis is carried out after removing the top third of each image, because this part is 
out of our specific interest. 

Table 2. Averaged PCC values for the images analyzed with and without exposure time 
adjustment and with and without vignetting correction. 

 Images Requiring Exposure  
Time Adjustment 

Images after Exposure  
Time Adjustment 

vignetting correction No Yes No Yes 
PCC 66 74 83 91 

As we can see from results in Table 2, the highest percentage is obtained after exposure time 
adjustment and vignetting correction. This implies that the best accuracies are obtained after the 
application of these two processes. 

4. Conclusions 

The present study is part of the work developed in the RHEA project [24], where the reason for 
developing this study was to acquire images with the highest possible accuracy for weed and crop line 
detection. We have studied two main sources of inaccuracies. The first could be caused because of an 
incorrect arrangement of the extrinsic parameters, once the intrinsic ones have been set beforehand due 
to the different requirements derived from the agronomic application at hand. Some of these 
requirements are that ROI to be treated must be placed at a certain distance so that we have enough 
time (real-time) to process the image and posterior action for treatment. On the same way, a very high 
pitch angle may make some of the crop lines of interest disappear from the image. Another question to 
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be considered in our case is that the ROI cannot be placed at the very top or at the very bottom of the 
image because once the tractor is in movement, irregularities on the ground produce oscillations of the 
tractor and the camera that may make the ROI disappear from the image. Additionally, depending on 
each project, it is obvious that in other projects extrinsic and intrinsic parameters can be combined to 
achieve a trade-off among them for maximum accuracy. The second source is derived from the 
uncontrolled illumination that causes insufficient or excessive CCD sensor activation, producing  
infra- and over-saturation. Also the illumination causes the known vignetting effect, when it crosses an  
UV-IR coated cut-off filter. 

We have also proposed solutions for correcting the adverse illumination effects with the goal of 
maximum accuracy, concluding that for outdoors image processing, illumination must be constantly 
calibrated in real time as images are taken. There is no “unique” value for exposure time or iris 
aperture valid for any atmospheric weather conditions. 
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