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a b s t r a c t

Biochars are emerging eco-friendly products showing outstanding
properties in areas such as carbon sequestration, soil amendment,
bioremediation, biocomposites, and bioenergy. These interesting
materials can be synthesized from a wide variety of waste-derived
sources, including lignocellulosic biomass wastes, manure and
sewage sludge. In this work, abundant data on biochars produced
from coconut-shell wastes obtained from the Colombian Pacific
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1. Data

The data presented in this work describe the production and characterization of biochars derived
from coconut-shell wastes obtained from the Colombian Pacific Coast. The data correspond to the
synthesis of biochar at different values of temperature and feeding of oxygen in the pyrolysis reaction.
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Table 1 presents the yields (%) of biochar, their mean particle size and Zeta Potential. Table 2 shows the
total carbon and nitrogen contents of biochars. Table 3 displays the elemental content of biochars
estimated through ICP spectroscopy. Table 4 shows the BET surface area of biochars. On the other hand,
Fig. 1 and Fig. 2 plot the IR transmittance spectrum of biochars obtained at different values of tem-
perature and feeding of oxygen in the pyrolysis reaction. In order to have a better understanding of
these figures, the main transmittance IR-bands associated to the functional groups of the coconut shell
and biochars are presented in Table 5. Besides, Fig. 3 and Fig. 4 show the XRD spectrum of biochars
obtained at different values of temperature and feeding of oxygen in the pyrolysis reaction. In addition,
Table 6 depicts the position of some reference XRD peaks for amorphous and crystalline carbonaceous
materials, including biochars and graphite. Finally, Figs. 5e9 portray the morphology of the biochar
samples through the SEM technique.

2. Experimental design, materials, and methods

Synthesis of biochars: Coconut shell wastes from the Colombian Pacific Coast were used as biochar
precursors. These shells were grinded using a jaw crusher and a hammermill to get enough amounts of
particles less than 250 mm. Next, sampling was done according to the quartering method described in
the ASTM C702/C702 M standard [5] (See Fig. 10) as follows: the original sample was placed in a clean,
level plastic surface. Then, the material was mixed thoroughly by turning the entire sample several
times. After the last turning, the entire sample was shoveled into a conical pile by depositing each
shovelful on top of the preceding one. The pile was then flattened by pressing the top without further
mixing, and afterwards, it was divided into four equal quarters by cutting two diameters at right angles.
Finally, two diagonally opposite quarters were removed, and the remaining quarters were mixed and
taken to the next stage of the process, in which the grinded particles were fed into the system of six
parallel closed fixed-bed-pyrolysis reactors shown in Fig. 11.

During the pyrolysis experiments, the temperature and O2 content were modified according to the
experimental design shown in Table 7. In a typical experiment, each of the 6-pyrolysis reactors was
loaded with ~25 g of grinded coconut shells. Then, they were placed inside a muffle furnace that was
Table 1
Yields (%), mean particle size and Zeta Potential of biochars.

Pyrolysis temperature (�C) Oxygen content (% v/v) Yield of biochar (%) Mean Particle size (mm) Zeta Potential (mV)

280 2.5 36.17 119.33 �44.17
304 0.85 33.00 116.87 �26.79
304 4.14 32.66 114.93 �37.04
350 0 32.33 115.69 �41.76
350 2.5 30.43 114.24 �45.41
350 5 29.86 114.32 �45.05
396 0.85 28.62 113.10 �36.74
396 4.14 28.14 108.34 �36.10
420 2.5 27.13 113.73 �41.15

Table 2
Total Carbon and Nitrogen contents of biochars.

Pyrolysis temperature (�C) Oxygen content (% v/v) Total Carbon content (% wt.) Total Nitrogen content (% wt)

280 2.5 53.35 0.49
304 0.85 45.60 0.45
304 4.14 39.93 0.44
350 0 50.78 0.46
350 2.5 36.70 0.41
350 5 46.31 0.45
396 0.85 39.64 0.40
396 4.14 42.47 0.42
420 2.5 43.42 0.41



Table 3
Elemental analysis of coconut shells and biochars through ICP spectroscopy.

Pyrolysis
temperature (�C)

Oxygen
content (% v/v)

Al (ppm) B (ppm) Ca (ppm) Cu (ppm) Fe (ppm) K (ppm) Li (ppm)

Coconut Shell 26.64 9.60 177.23 12.78 1541.62 2752.84 0.50
280 2.5 e 14.23 421.24 30.98 3755.75 7712.83 1.02
304 0.85 182.21 548.46 612.94 26.19 3756.40 9517.20 1.13
304 4.14 115.54 245.85 502.74 29.03 4271.60 8650.97 1.19
350 0 216.91 579.31 640.02 31.18 4280.24 8973.81 1.23
350 2.5 133.49 12.78 428.90 31.51 3651.71 6694.86 1.76
350 5 50.85 16.79 486.39 27.30 4340.98 8999.59 1.13
396 0.85 249.55 540.14 725.91 27.70 4475.68 9987.73 1.30
396 4.14 669.05 934.47 829.87 37.50 4954.65 11534.96 1.49
420 2.5 66.90 20.69 546.91 33.84 4966.18 9264.71 1.51

Pyrolysis
temperature (�C)

Oxygen
content (% v/v)

Mg (ppm) Mn (ppm) Na (ppm) P (ppm) S (ppm) Ti (ppm) Zn (ppm)

Coconut shell 86.30 13.40 393.38 406.52 354.72 0.90 16.48
280 2.5 473.23 33.96 1079.20 1034.29 451.31 10.60 25.99
304 0.85 460.60 32.62 2878.80 1048.28 508.26 8.42 0.00
304 4.14 360.68 40.53 1745.00 1066.17 459.47 9.68 28.40
350 0 470.48 37.14 2392.86 1144.67 449.50 11.76 27.27
350 2.5 544.86 35.63 1045.65 2550.24 401.03 13.46 25.46
350 5 371.52 43.13 1267.07 1155.94 442.25 12.36 30.61
396 0.85 523.41 38.65 2614.55 1178.48 446.09 10.39 29.63
396 4.14 545.58 43.53 3744.47 1336.84 512.70 9.80 32.36
420 2.5 389.12 41.47 1305.68 1266.00 498.56 10.24 41.46

Table 4
BET surface area (m2/g) of biochars.

Pyrolysis temperature (�C) Oxygen content (% v/v) BET surface area (m2/g)

280 2.5 13.28125
304 0.85 10.9311
350 2.5 15.5675
396 4.14 15.7544
420 2.5 9.8468

Fig. 1. IR spectrum of biochars produced at different temperatures. The oxygen content in all cases was 2.5% v/v. The IR spectrum of
the coconut shells is presented as a reference.

D. Castilla-Caballero et al. / Data in brief 28 (2020) 1048554



Fig. 2. IR spectrum of biochars produced at different oxygen contents in the pyrolysis reactor. The temperature was 350 �C in all
cases. The IR spectrum of the coconut shells is presented as a reference.

Table 5
Main IR-transmittance bands for the functional groups of the coconut shell and biochars. Adapted from Refs. [1,2].

Wavenumber [cm�1] Characteristic vibrations Functionality

3200e3500 OeH stretching Water, H-bonded hydroxyl (-OH) groups
~ 2935 Asymmetric CeH stretching Aliphatic CHx

~ 2885 Symmetric CeH stretching Aliphatic CHx

1700e1740 C¼O stretching Mainly Carboxyl, traces of aldehydes,
ketones and esters

~ 1600 C¼C stretching together
with C¼O stretching

Aromatic compounds

~ 1030 Symmetric stretching of CeOeC Aryl-alkyl ethers, functional
groups of cellulose, hemicellulose
and lignin

750e885 CeH bending Aromatic CeH out-of-plane deformation

Fig. 3. XRD spectrum of biochars produced at different temperatures. The oxygen content in the experiments was 2.5% v/v.
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Fig. 4. XRD spectrum of biochars produced at different values of oxygen content. The temperature in the experiments was 350 �C.

Table 6
Some reference XRD peaks for amorphous and crystalline carbonaceous materials. Taken from Refs. [3,4].

2 Theta (Bragg) Angle Crystallographic form

Broad peak at ~24 Graphite-like structure (turbostratic carbon, amorphous)
Broad peak at ~42 Graphite-like structure (turbostratic carbon, amorphous)
Sharp intense peaks at ~ 26, ~ 44, and ~ 55,
and less sharp peak at ~60

Graphite (crystalline)
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previously set at the desired temperature. After that, the N2 and O2 feeding were allowed to flow into
the muffle at a specific rate to maintain the O2% v/v value according to the experimental design. In all
cases, the total gas flowrate (N2 plus O2) into the muffle was set at 4210 ml/min, the heating rate was
taken as 10 �C/min, and the reaction time at the desired temperaturewas 1 hour (See scheme in Fig.12).
Once the heating time at the desired temperature was reached, the N2 and O2 gases were allowed to
keep flowing into the system until the reactor's temperature dropped to 100 �C. Then, the reactorswere
taken out from the furnace, and allowed to cool down through natural convection up to ~30 �C. At that
point, biochar was collected in resealable bags and was ready for further use.

Biochar yields were estimated according to equation (1):

% Biochar yield¼ Weight of produced biochar
Weight of coconut shell fed to the reactors

� 100 (1)

2.1. Characterization of biochar

Particle size distribution of biochar samples were estimated through laser diffraction with a
Mastersizer 2000 (Malvern Panalytical). The agitation rate was set at 2000 RPM and the refraction and
absorption indexes were taken as 2.42 and 1.0 respectively.

The total carbon and nitrogen content of biochars were measured through combustion and
reduction processes with a Vario MAX cube-elemental Analyzer in CN mode. In this case, ~300 mg of
each sample were initially loaded in the combustion chamber and sulfadiazine was used as the cali-
bration reference standard.



Fig. 5. SEM morphology of biochar samples produced at 280 �C and 2.5% v/v of oxygen content.

Fig. 6. SEM morphology of biochar samples produced at 350 �C and 0% v/v of oxygen content.
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Fig. 7. SEM morphology of biochar samples produced at 350 �C and 2.5% v/v of oxygen content.

Fig. 8. SEM morphology of biochar samples produced at 350 �C and 5% v/v of oxygen content.
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Fig. 9. SEM morphology of biochar samples produced at 420 �C and 2.5% v/v of oxygen content.

Table 7
Experimental design for the synthesis of biochar.

Experiment Pyrolysis temperature (�C) Oxygen content (% v/v)

1 280 2.50
2 304 0.85
3 304 4.14
4 350 0.00
5 350 2.5
6 350 5.00
7 396 0.85
8 396 4.14
9 420 2.50
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Surface chargewas estimated through Zeta Potential measurements in a 90-Plus Particle-size and
Zeta-Potential Analyzer (Brookhaven). This instrument uses the phase-analysis light-scattering tech-
nique and required the samples to be pre-treated as follows: biochars were passed through a No. 200
sieve (<75 mm) and dried in a vacuum oven at 70 �C during 4 h. Then, 0.025 g of the sample were
weighted in a clean 30-ml plastic tube and 25 ml of deionized water were added. The suspension was
vortexed during 20 s after which an aliquot was transferred to the Zeta-Potential machine for its
analysis. The pre-treatment step was adapted from Ref. [6]. The pH of the deionized water was ~ 6.7.

The elemental content of biochars (Al, B, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Ti, Zn) was measured
through inductively coupled plasma (ICP) spectroscopy using a TJA IRIS Advantage ICP/OES (Sample
uptake rate: 1.2 ml/min, acquisition time: 30 s in the low wavelength range and 10 s in the high
wavelength range). In order to use of ICP spectroscopy, biochar samples were previously digested as



Fig. 10. Sampling (ASTM C702/C702 M�18) of grinded coconut shells used for the synthesis of biochar.

Fig. 11. Pyrolysis reactors.

Fig. 12. Temperature profile scheme during pyrolysis experiments.
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follows: 0.1 g of the samples were weighted and placed in the digestion tubes. Then, 5 ml of HNO3
(trace metal grade) were added to the tubes which were subsequently heated at 120 �C for 12 hours
inside a fume hood. Next, the system was let to cool down for 10 min after which 1 ml of hydrogen
peroxide was added. The system was taken back to the fume hood to be heated again for 30 min. The
last step was repeated, although in this case 2 ml of hydrogen peroxide were added. Finally, the
digested samples were let to cool down and were diluted with deionized water for its subsequent use
in the ICP apparatus.
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Surface area of biochar was estimated through the BET (Brunauer-Emmett-Teller) theory, analyzing
the N2 adsorption/desorption isotherms in a Gemini VII (Micromeritics). N2 isotherms were measured
at �196 �C and the samples were previously degassed under vacuum at 150 �C during 2 h, as rec-
ommended in Ref. [7].

The IR transmittance spectrum of the biochar and coconut-shell samples was recorded in a Bruker
TENSOR 27 (FT-IR) spectrometer in ATRmode. The sampleswere analyzed in the range of 600 and 4000
cm�1, performing 20 scans in each run, using a resolution of 4 cm�1.

X-Ray diffraction spectrums were recorded in a D8 DISCOVER Family diffractometer. Biochars
powders were exposed to Cu Ka radiation with a wavelength (l) 0f 1.5408 Å in the instrument.
The incidence-angle (q) range was chosen as 10e50� with a step time of 60 s/step and a step size
of 10�/step.

Biochars morphology was monitored through SEM microscopy using a LEO 1530 SEM operated at
3 kV. Prior to measurements, diluted suspensions of biochar were prepared by dispersing biochar
particles in deionized water under sonication. Afterwards, small aliquots of the suspensions were
deposited on silicon wafers and were air-dried overnight. Next, the samples were gold sputtered
during 50 s and then were ready for SEM scanning.
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