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Abstract

Cancer cells interact with surrounding stromal fibroblasts during tumorigenesis, but the complex molecular rules that
govern these interactions remain poorly understood thus hindering the development of therapeutic strategies to target
cancer stroma. We have taken a mathematical approach to begin defining these rules by performing the first large-scale
quantitative analysis of fibroblast effects on cancer cell proliferation across more than four hundred heterotypic cell line
pairings. Systems-level modeling of this complex dataset using singular value decomposition revealed that normal tissue
fibroblasts variably express at least two functionally distinct activities, one which reflects transcriptional programs
associated with activated mesenchymal cells, that act either coordinately or at cross-purposes to modulate cancer cell
proliferation. These findings suggest that quantitative approaches may prove useful for identifying organizational principles
that govern complex heterotypic cell-cell interactions in cancer and other contexts.
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Introduction

Cancer cells interact dynamically with surrounding stromal

cells. Among the many relevant cell types within cancer stroma,

fibroblasts appear to function prominently [1]. However, we lack a

clear understanding of how molecular and cellular heterogeneity

within this cell type functionally contributes to cancer initiation

and progression [2]. In part, this is due to the experimental

challenges inherent in studying multi-cellular interactions. While

increasingly sophisticated animal models are being used to define

discrete mechanisms by which fibroblasts contribute to tumor

progression, these models are not well-suited for systematic

discovery across multiple genetic and epigenetic contexts [3–6].

An alternative experimental approach involves analyzing the

interaction of dissociated cancer cells and fibroblasts in vitro [7–

11]. This approach has the potential to enable systematic and

unbiased molecular screening for new stromal targets that can

subsequently be validated in more physiologically relevant systems.

In vitro approaches to studying cellular interactions are generally

limited by the choice of specific cells, culture conditions, and assays.

The ideal system would examine functional interactions between

different primary cancer cell and fibroblast populations co-derived

from the same tumors. However, primary human cancer cells are

notoriously difficult to propagate long-term ex vivo, and primary

tumor-derived fibroblasts appear to undergo phenotypic changes in

short-term culture [6]. In contrast, established cell lines are easily

grown, relatively inexpensive, and readily available, thus represent-

ing a potentially useful and renewable resource for studying cancer-

fibroblast interaction. In addition, culture conditions can influence

cellular behavior but increasingly complex approaches that attempt

to mimic physiologically relevant conditions, such as three-

dimensional culture, scale poorly [12]. Finally, fibroblasts affect

many aspects of cancer cell behavior including proliferation and

survival, angiogenesis, invasion, metastasis, and drug resistance, but

assays to score increasingly complex phenotypes can be challenging

to implement in systematic studies.

We therefore performed a quantitative and integrated analysis

using mathematical modeling of cancer cell proliferation in two-

dimensional co-culture with a large number of normal fibroblast cell

lines. These studies revealed that normal tissue fibroblasts variably

express at least two functionally distinct activities in modulating

cancer cell proliferation. Furthermore, transcriptional profiling of

these different fibroblast populations revealed that at least one of

these activities might relate to molecular programs that are present

in activated mesenchyme. Systems-level modeling may thus be

useful for identifying organizational principles that broadly underlie

the interactions of cancer cells and fibroblasts, and may therefore

inform systematic molecular studies of cancer-fibroblast interaction.

Materials and Methods

Cell lines and plasmid DNA
Cell lines were purchased from ATCC (Manassas, VA) or

Coriell Cell Repositories (Camden, NJ). All fibroblast lines were
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used for co-cultures within 10 passages after purchase. Cancer and

fibroblast cell lines were cultured in Dulbecco’s Modified Eagle

Medium (DMEM) with 10% fetal calf serum (FCS), L-glutamine

(4 mM), penicillin (100 units/mL), and streptomycin (100 mg/

mL). EGFP labeling of cancer cell lines was done using a third-

generation lentiviral vector system. 293T cells were transfected

using lipofectamine 2000 in a subconfluent 10-cm dish with the

vector pCCLsin.PPT.hPGK (10 mg), into which EGFP had been

cloned, as well as pMDLg/p packaging (7 mg) and VSV-G

envelope encoding pMD.G (5 mg) plasmids. These plasmids were

obtained from Rafaella Sordella at the MGH Center for Cancer

Research and Luigi Naldini at the San Raffaele Telethon Institute

for Gene Therapy. Viral supernatant was collected after 48 hours,

filtered with a 0.45 micron syringe filter, and stored at 280uC.

Cancer cell lines were infected in subconfluent wells of 24-well

plates, using 300 mL of virus in 1 mL of DMEM culture media

with 10% fetal calf serum. This protocol yielded infection rates in

excess of 80% (determined by visual assessment using fluorescence

microscopy). EGFP-negative cells were removed using a modified

5-laser Becton-Dickinson FACSDiVa with standard techniques as

previously described [13].

Quantitative co-cultures
26104 fibroblasts were seeded in 100 mL in at least 6 replicate

wells in each of two 96 well plates and allowed to adhere into a

confluent monolayer overnight. Subsequently 103 EGFP-express-

ing cancer cells were seeded in an additional 50 mL into the

fibroblast containing wells and into empty wells (150 mL total

volume per well). A Spectramax M5 plate reader (Molecular

Devices, Sunnyvale, CA) was used to obtain fluorescent readings

approximately once daily for 14 days (excitation 477 nm, emission

515 nm). Thirty microliters of fresh media were added to each well

on days 3, 6, 9, and 12. Wells containing fibroblasts or media

alone, all with 150 mL of media per well on day 0, were measured

in parallel and the values subtracted from co-culture and

monoculture wells, respectively, to account for auto-fluorescence.

All cultures were performed in DMEM with 10% FCS.

Heterotypic xenografts: Estradiol pellets (0.72 mg, 60-day release,

Innovative Research of America, Sarasota, FL) were implanted

into female nude mice (Charles River Laboratories) two days prior

to xenograft injections. Mice were divided into 2 groups: 5 mice

were injected with AG09877 fibroblasts and EGFP-expressing

T47D breast cancer cells, and 5 mice were injected with AG04351

fibroblasts and EGFP-expressing T47D cells. Cells were trypsin-

ized and re-suspended in Hank’s Balanced Salt Solution at a

concentration of 46106 million cells per 100 microliters. Animals

anesthetized with isoflurane were injected with 46106 fibroblasts

and 46105 cancer cells into the subcutaneous tissue over the

mammary fat pad. EGFP signal was imaged and quantified using

a bonSAI fluorescence optical imaging system immediately after

injection, daily for four days, and then every 2–3 days. Mice were

treated in compliance with MGH Institutional Animal Care and

Use Committee regulations and sacrificed 43 days after injection.

Tumor tissue was resected and flash frozen. Frozen sections were

stained with hematoxylin and eosin or with anti-cytokeratin (CAM

5.2, Becton-Dickinson).

Data processing
To quantify the effect of fibroblasts on the growth of cancer cells, we

defined the mono-culture curve, m tð Þ, to be the difference on day t

between the average fluorescence measurement for the wells with

cancer cells but no fibroblasts and the average fluorescence

measurement for the wells with media alone. We defined the co-

culture curve, c tð Þ, to be the difference on day t between the average

fluorescence measurement for the wells with cancer cells and fibroblasts

and the average fluorescence measurement for the wells with fibroblasts

alone. We removed constant signal by subtracting the smaller day 0

value. Specifically, we let ~mm tð Þ~m tð Þ{ min m 0ð Þ,c 0ð Þð Þ and let

~cc tð Þ~c tð Þ{ min m 0ð Þ,c 0ð Þð Þ. Co-culture ratios were defined as the

ratio of the area under these two curves. Specifically, where M is the

area under the ~mm tð Þ curve, we let t0,t1, . . . ,tn be the days for which we

have measurements and interpolated linearly between measurement

times. By the trapezoid rule,

M~
Xn{1

i~0

1

2
~mm tið Þz~mm tiz1ð Þð Þ tiz1{tið Þ:

We defined C similarly to be the area under the ~cc tð Þ curve. We

then defined the co-culture ratio, E, by

E~ C=Mð Þ:

To compute confidence intervals (CIs) for E, we used the union

of three bootstrap BCa two-sided 95% CIs, each computed from

10,000 bootstrap samples [14]. The bootstrap samples are formed

by first choosing with replacement from the two replicate 96-wells

plates and by then choosing with replacement wells of each type

(i.e., media-only, fibroblast, mono-culture, co-culture) from the

chosen plates. The co-culture ratio was considered significant if the

95% CI for E was completely above or below one.

Mathematical modeling
We hypothesized that a small number of functionally distinct

interaction types underlie the large number of data points in the

matrix of co-culture ratios. We suspected that if we could

determine an optimal number, N, of simpler matrices with which

to approximate the co-culture ratio matrix, then that optimal N

would give us some idea of the number of functionally distinct

interaction types at work and the matrices that comprise the

approximation might give us some insight into the nature of those

interactions.

A variety of methods exist to decompose a mathematical matrix

into a sum of simpler matrices that are in some sense orthogonal or

independent of one another [15]. Models based on singular value

decomposition (SVD) or principal component analysis (PCA) have

been most widely used across a broad range of biological,

chemical, and physical sciences [16]. Examples include the

deconvolution of anatomical or pathophysiological information

from dynamic contrast-enhanced MRI and analysis of three-

dimensional quantitative structure-activity relationships to predict

the activity of candidate drugs [17–19]. We chose SVD for our

analysis over PCA since PCA first centers the data by subtracting

row or column means. However, the zero value of our matrix was

set to equal an AUC ratio of 1, signifying the absence of an effect

of co-culture on cancer cell proliferation. Thus to shift the zero

value by subtracting means would have sacrificed its intrinsic

meaning.

Decomposition methods are often coupled with cross-validation

strategies to distinguish meaningful components from statistical

noise [20]. The cross-validation strategy we chose to use employs

the EM algorithm for the estimation of missing data [21] as

detailed below.

Let R be the matrix of differences between the co-culture ratio

matrix and 1, such that positive values of R correspond to co-cultures

that stimulated cancer cell proliferation and negative values of R

Cancer-Fibroblast Interaction
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correspond to co-cultures that inhibited cancer cell proliferation. We

wish to determine an optimal N for R. To do so, we use models the

complexity of which increase with N to predict the value of each

element of R from all the other elements of R and deem as optimal the

N for which those predictions are maximally accurate.

Specifically, for any matrix S, let Si,j denote the element of S in

the ith row and jth column, let Si,j denote S with the element of S in

the ith row and jth column missing and let Si,j xð Þ be Si,j with the

missing element filled in by x. Let AN Sð Þ be the approximation of

S gotten by adding the best N matrices of the singular value

decomposition of S (i.e., those corresponding to the N largest

singular values). In the case of missing data we define AN Si,jð Þ by

the EM algorithm for the estimation of missing data as follows. Let

S
i,j
1 ~Si,j mean Si,j

� �� �

and let

S
i,j
kz1~Si,j AN S

i,j
k

� �� �
i,j

� �
:

In our experience, this EM algorithm has always converged as k

increases so we can let

AN Si,j
� �

~AN lim
k??

S
i,j
k

� �
:

Let

ei,j,N~ Ri,j{ AN Ri,j
� �� �

i,j

��� ���
and let eN be the median of the ei,j,N over all the i and j. The N for

which eN is minimal is deemed to be the optimal N for R.

Gene expression profiling
Confluent plates of fibroblasts (replicating the conditions of co-

culture) or cancer cells in log-phase growth were trypsinized,

centrifuged into pellets, and flash frozen in liquid nitrogen. RNA

was isolated with Qiagen RNeasy kits and profiled using Affymetrix

HG-U133 Plus 2.0 microarrays with standard protocols [22].

Figure 1. Quantitative analysis of cancer-fibroblast cell line interactions. A) Heat map representation of experimentally determined co-
culture ratios for 432 cancer-fibroblast cell line interactions. Red refers to growth-stimulatory interactions and blue to growth-suppressive
interactions. B) Interactions resulting in statistically significant growth stimulation of cancer cells (i.e. the lower bound of the 95% CI for the co-culture
ratio is .1) are shown in red, and interactions resulting in statistically significant growth inhibition of cancer cells (i.e. the upper bound of the 95% CI
for the co-culture ratio is ,1) are shown in blue. The circle indicates the interaction between T47D and AG04351, and the square indicates the
interaction between T47D and AG09877.
doi:10.1371/journal.pone.0006888.g001

Cancer-Fibroblast Interaction
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Results and Discussion

We first systematically co-cultured twelve human breast,

melanoma, and lung cancer cell lines with thirty-six untrans-

formed, human fibroblast cell lines derived from normal skin and

lung (see Table S1 and Table S2 for details). Each cancer cell line

was tagged with EGFP using lentiviral transduction to enable the

composite quantification of cancer cell proliferation and survival

over fourteen days using a simple plate reader-based assay system.

For each cell line pairing (n = 432), which we examined in multiple

replicates over independent experiments, we computed the ratio of

the area under the EGFP curve for cancer cells grown in co-

Figure 2. Cancer cell-fibroblast xenografts. A) EGFP signal from injections of EGFP-expressing T47D cells with AG09877 fibroblasts (5 mice, blue
curve) or AG04351 fibroblasts (4 mice, red curve). Error bars represent standard error of the mean. B) Representative pictures of mice xenografted
with each admixture taken 3 days after injection, with white arrows pointing to injection sites. C) Photomicrographs of a T47D-AG09877 tumor. From
left to right: hematoxylin and eosin staining, GFP fluorescence, and immunohistochemistry for cytokeratin.
doi:10.1371/journal.pone.0006888.g002

Cancer-Fibroblast Interaction
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culture divided by the area under the curve for cancer cells grown

alone (Figure 1A). We found that fifty-three of 432 cell line

pairings (12%) were growth-stimulatory in absolute terms, defined

by a 95% confidence interval with a lower bound greater than 1

(Figure 1B). In contrast, 176 (41%) were growth-inhibitory and

203 (47%) were null. These data demonstrate that only a minority

of heterotypic cell line pairings yield increased cancer cell growth.

To explore the relevance of these co-cultures in vivo, we next

focused on two specific cancer-fibroblast pairings that displayed

opposing proliferative effects in vitro. Specifically, AG09877

stimulated T47D proliferation, while AG04351 was growth-

inhibitory for this same cancer cell line. Co-injection of T47D

cells and AG09877 fibroblasts subcutaneously in nude mice led to

the formation of small tumors over one week (Figure 2A and 2B).

In contrast, xenografting of these cancer cells with AG04351

fibroblasts did not result in tumor formation. These results

confirmed that opposing effects of different fibroblast populations

on cancer cell growth in vitro could also be observed in vivo.

T47D alone is weakly tumorigenic (data not shown) [23,24], and

the fact that most induced tumors permanently regressed after the

first week suggested that the growth-stimulatory effect of AG09877

fibroblasts was generally insufficient to sustain the prolonged

growth of this cell line in vivo. Notably, however, one animal

actually developed a persistent tumor over the course of six weeks.

Pathologic examination of this single tumor revealed EGFP-

positive cancer cells embedded within a significant desmoplastic

stromal component (Figure 2C). While only a single experiment,

this provocative result suggested that growth-stimulatory fibro-

blasts identified in vitro might be capable of exerting both

transient and more sustained tumorigenic effects on adjacent

cancer cells in vivo.

We next aimed to identify organizational principles underlying

the matrix of co-cultures that might provide insight into the

biological determinants of cancer-fibroblast interaction. System-

atically recreating the cellular interaction matrix using heterotypic

xenografts might have offered further insight into the physiological

relevance of individual pairings, but was not feasible for 432

different interactions. We therefore used a systems-level approach

to characterize and our model in vitro data. To begin with,

cursory inspection of the data in figure 1 revealed that cancer cell

lines could be grouped into those that were predominantly

inhibited (n = 3), largely inhibited (n = 6), or strongly stimulated

(n = 3) by fibroblasts, suggesting that the growth response of a

cancer cell line in a given stromal co-culture was pre-programmed

and independent of the paired fibroblast line (e.g. Figure 3A).

However, only SKBR3 displayed uniform responses across all

fibroblast lines, implicating multiple fibroblast-specific contribu-

tions to cancer cell proliferation. In several cases this fibroblast

contribution was sufficient to override the general predisposition of

the cancer cell line, leading to a growth stimulatory interaction

with an otherwise growth-inhibited cancer cell line or vice-versa

(e.g. Figure 3B). Thus the growth response of cancer cell lines to

stromal co-culture appeared to result from the combination of a

dominant cancer cell-determined contribution and a smaller but

often critically important fibroblast effect.

Although Figure 3B schematically represents a parsimonious

two signal model, the total number of interaction types could not

be readily inferred through qualitative inspection of our dataset.

We therefore used mathematical modeling based on singular value

decomposition to ask whether the complex pattern of growth

stimulation and inhibition we observed across this dataset resulted

from a small, finite number of interaction types between cancer

cells and fibroblasts. Decomposing the matrix of co-culture ratios

into a sum of N component matrices, we used a leave-one-out

cross-validation strategy to define the optimal value for N (Figure 4;

see materials and methods for full details of the model). We found

that the median cross-validation error reached its nadir with N = 3,

suggesting that the net co-culture ratio for each cell line pairing

resulted from the sum of interaction values represented by three

distinct component matrices. Matrix A, which accounted for the

majority of error reduction in the model, reflected the varying

responsiveness of different cancer cell lines to generic stromal

signals produced by fibroblasts (Figure 5A). For example, 9 of 12

cancer cell lines generally responded to fibroblasts with slowed

Figure 3. Cancer cell proliferation in co-culture is determined
by properties of both cancer cells and fibroblasts. A) The growth
response of cancer cell lines (circles) to fibroblasts (oblong shapes) is
determined predominantly by the preprogrammed ability of cancer
cells to proliferate in response to generic fibroblast signals (black
arrows) shared in common across all fibroblast lines. Some cancer cell
lines (green) are growth stimulated, while others (yellow) are
unresponsive or growth-inhibited. B) Additional signals produced by
subsets of fibroblasts (red arrows) add complexity by either further
stimulating cancer cell proliferation (upper left panel) or compensating
for the lack of response to generic signals (lower left panel). Although
all signals in this schematic are defined as growth-stimulatory, they may
also be growth-inhibitory thus adding further complexity.
doi:10.1371/journal.pone.0006888.g003

Figure 4. Cross-validation model. Median leave-one-out cross-
validation error when the matrix of co-culture ratios is approximated by
the sum of N component matrices.
doi:10.1371/journal.pone.0006888.g004
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Figure 5. Mathematical modeling of cancer-fibroblast interaction. A)–C) Decomposition of the co-culture matrix into 3 component matrices.
When applicable, cancer and fibroblast cell lines are divided into two groups (X, green, and Y, purple) such that interactions within the same group make
growth-stimulatory (i.e. positive) contributions to the estimated co-culture ratio and interactions between opposite groups make growth-inhibitory (i.e.
negative) contributions to the estimated co-culture ratio. P values refer to tissue of origin segregation between X and Y groups. Circles indicate the
interaction between T47D and AG04351, and squares indicate the interaction between T47D and AG09877. Red refers to growth-stimulatory interactions
and blue to growth-suppressive interactions, with intensity corresponding to the strength of the effect and scaled independently within each matrix.
doi:10.1371/journal.pone.0006888.g005
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growth, as exemplified by SKBR3 and MCF7, while three cancer

cell lines were typically growth-stimulated, as evidenced by BT-

474 and SK-MEL-2.

In contrast, matrix B and matrix C reflected distinct fibroblast

activities that correlated significantly but imperfectly with a given

fibroblast’s tissue of origin (p = 661025 and p = 0.0072 for

matrices B and C respectively) (Figures 5B and 5C). In the space

of each matrix, the fibroblasts were subdivided into two groups

that interacted with distinct subsets of cancer cell lines to promote

cancer cell proliferation (green vs. purple in figure 5). While the

majority of cancer cell lines interacted cooperatively with the

‘‘skin-like’’ fibroblasts in matrix B, a different majority favored the

‘‘lung-like’’ fibroblasts in matrix C. Consequently, we were able to

identify multiple examples in which the same fibroblast-cancer

pairing resulted in positive effects on cancer cell proliferation in

one matrix and negative effects in the other (e.g. T47D-AG07139),

suggesting that fibroblasts could interact with cancer cells in at

least two functionally distinct ways.

Despite the fact that the majority of error reduction in the model

was contributed by matrix A, in some instances the effect size in

matrices B and C in combination was sufficient to override that in

matrix A. In fact, closer analysis revealed that the net effects of

different fibroblasts on cancer cell proliferation could only be

accurately determined by considering the quantitative contributions

of effects from all three matrices. This is illustrated by interactions

between the breast cancer cell line T47D and the two skin fibroblast

cell lines AG09877 and AG04351 (denoted in Figure 1A and

Figure 5A–C by squares and circles, respectively). Matrix A

(Figure 5A) revealed that T47D was generally predisposed to

growth suppression by all fibroblast cell lines. One plausible

biological explanation for this could be the expression of a cell

surface receptor for some cytostatic factor secreted by all fibroblasts.

However, matrix B (Figure 5B) indicated that most skin fibroblast

cell lines had a growth stimulatory activity for T47D, with a few

notable exceptions including AG04351. In theory, this activity could

be due to the expression by most skin fibroblasts of a specific

mitogenic growth factor. In contrast, matrix C (Figure 5C) indicated

that most skin fibroblast cell lines also had a second distinct growth

inhibitory activity for T47D, with the important exception of

AG09877 and several others. This activity could plausibly be

attributed to the secretion by most skin fibroblasts of a specific

growth inhibitory cytokine. Thus AG09877, by expressing the

growth-stimulatory activity and lacking the growth inhibitory

activity, made two functionally distinct growth-stimulatory contri-

butions to T47D growth that were sufficient in combination to

override the general predisposition of T47D to fibroblast-mediated

growth suppression. In contrast, AG04351 only made growth

suppressive contributions with respect to both fibroblast activities.

Table 1. Gene set enrichment analysis of skin vs. lung fibroblasts.

Gene set name Brief description (Pubmed ID)

FDR q-value
for
enrichment
in skin
fibroblasts

FDR q-value
rank for
enrichment
in skin
fibroblasts

FDR q-value
for
enrichment
in Group X
of matrix B

FDR q-value
rank for
enrichment
in Group X
of matrix B

FDR q-value
for
enrichment
in Group X
of matrix C

FDR q-value
rank for
enrichment
in Group X
of matrix C

HTERT_DN Downregulated in hTERT-immortalized
fibroblasts vs. non-immortalized controls
(12702554)

0.07 1 0.88 520 1.00 510

EMT_UP Up-regulated during the TGFbeta-induced
epithelial-to-mesenchymal transition (EMT) of
Ras-transformed mouse mammary epithelial
(EpH4) cells (EMT is representative of late-stage
tumor progression and metastasis) (14562044)

0.15 2 0.30 1 0.91 430

JECHLINGER_EMT_UP Genes upregulated for epithelial plasticity
in tumor progression (14562044)

0.16 3 0.31 2 0.86 377

CIS_XPC_DN Reduced expression in XPC-defective
fibroblasts, compared to normal fibroblasts,
following treatment with cisplatin (15107491)

0.18 4 0.77 28 0.86 374

CMV_24HRS_DN Downregulated at 24 hrs following infection
of primary human foreskin fibroblasts with
CMV (9826724)

0.19 5 0.39 6 0.99 476

TSADAC_RKOEXP_UP Genes with some basal expression and
partially-methylated promoters, upregulated
by the combination of TSA and DAC in RKO
cells (11992124)

0.20 6 0.85 476 0.79 94

IDX_TSA_DN_CLUSTER5 Strongly down-regulated at 2–96 hours during
differentiation of 3T3-L1 fibroblasts into
adipocytes with IDX (insulin, dexamethasone
and isobutylxanthine), vs. fibroblasts treated
with IDX + TSA to prevent differentiation
(cluster 5) (15033539)

0.21 7 0.32 3 1.00 510

FALT_BCLL_DN Genes downregulated in VH3-21+ B-CLL
(15817677)

0.21 8 0.81 91 0.87 399

CROMER_HYPOPHARYNGEAL
_MET_VS_NON_UP

Genes increased in metastatic hypopharyngeal
cancer tumours (14676830)

0.23 9 0.80 64 0.82 214

Nine gene sets enriched in skin vs. lung fibroblasts with corresponding false discovery rate (FDRs) q values and ranks. Also included are the FDR q values and ranks for
each of these gene sets in the group X vs. Y distinction from matrices B and C of Figure 5.
doi:10.1371/journal.pone.0006888.t001
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To gain insight into the molecular identity of these fibroblast

activities, we isolated RNA from 36 fibroblast cell line monocul-

tures and performed microarray-based gene expression profiling

using Affymetrix gene chips. We first identified genes that were

differentially expressed between skin and lung fibroblasts, between

groups X and Y in matrix B, and between groups X and Y in

matrix C. We then used gene set enrichment analysis (GSEA) [25]

to identify gene sets enriched within each comparison. Using a

false discovery rate (FDR) threshold of 0.25, we identified nine

gene sets enriched in the skin vs. lung fibroblast distinction,

including two that characterize the epithelial-to-mesenchymal

transition (EMT) phenotype (Table 1) [26]. Although associated

with higher FDRs, both sets were also enriched in the Bx (skin-like)

vs. By (lung-like) distinction. In contrast, no gene sets were flagged

in the Cx (skin-like) vs. Cy (lung-like) distinction, suggesting that

this fibroblast activity may either reflect transcriptional differences

only induced within the context of co-culture or non-transcrip-

tional differences that could not be easily detected using

microarray-based transcriptional profiling.

EMT describes a coordinated program of cellular phenotypes

increasingly recognized as crucial to the metastasis of carcinoma

cells. These phenotypes include loss of epithelial cell polarity,

increased cellular migration, and invasion into surrounding tissues

[27]. Moreover, recent evidence indicates that EMT programs also

regulate mesenchymal cell functions including angiogenesis [28].

Furthermore, the transcription factor Snail, a master regulator of

EMT, is expressed in activated fibroblasts within healing wounds

and at the tumor-stromal interface [29]. Our data thus suggested

that EMT programs are preferentially expressed by many skin

fibroblasts, perhaps serving as the molecular basis for one of the

fibroblast activities (Type B) described by our quantitative model.

Closer inspection of the two EMT gene sets reveals that many of

the genes driving the enrichment in skin fibroblasts (i.e. the core

enriched genes) are cell surface and secreted molecules that have

been implicated in stromal contributions to tumor progression

(Figure 6). For example, matrix metalloproteinases and cathepsins

including MMP-2, MMP-12, and cathepsin Z are up-regulated in

tumor stroma and promote cancer cell proliferation, migration,

and invasion by degrading basement membranes and exposing

cryptic migratory and growth signals [30]. Tenascin C is a

matricellular protein that stimulates cancer cell proliferation and

angiogenesis [31]. N-cadherin (CDH2) is expressed in the

filopodia of myofibroblasts that migrate toward malignant cancer

cells in a transforming growth factor beta-dependent manner [32].

SPARC (secreted protein acidic and rich in cysteine) is another

stromal matrix protein that increases cancer cell invasion and that

has been inversely correlated with survival in patients with

pancreatic cancer [33,34]. Stromal PDGFRB regulates interstitial

fluid pressures and drug uptake within tumors [35]. Thus the same

genes that regulate EMT in epithelial cancer cells also regulate

functional contributions to malignant progression from the tumor

stroma. Enriched expression of these genes in skin fibroblasts

suggests tissue-specific preprogramming of mesenchymal popula-

tions for tumor stromal functionality.

Fibroblasts therefore appeared to display at least two distinct

effects on the proliferative response of cancer cells in co-culture.

Figure 6. Enrichment of EMT genes in skin vs. lung fibroblasts. Heat map (right) and enrichment plot (left) for the EMT gene set from GSEA
analysis of skin vs. lung fibroblasts [26].
doi:10.1371/journal.pone.0006888.g006

Cancer-Fibroblast Interaction

PLoS ONE | www.plosone.org 8 September 2009 | Volume 4 | Issue 9 | e6888



Importantly, a quantitative balance between these two fibroblast

activities and the general responsiveness of cancer cells to

fibroblast signals largely determined the co-culture ratio for a

particular cell line pairing. These independent fibroblast effects

can apparently co-exist within individual fibroblast populations,

functioning either cooperatively or at cross-purposes with respect

to cancer cell growth. Intriguingly, our analysis suggests that both

activities segregate fibroblasts largely according to tissue of origin.

Moreover, microarray profiling indicated that one of these

activities might reflect differential expression of a coordinated

transcriptional program associated with activated mesenchymal

cells. Further work will be required to fully characterize the

molecular basis of each fibroblast activity and to evaluate the

relevance of our findings to cancer-fibroblast interaction in real

tumors.

This work was limited by the nature of the cell populations

examined, insofar as established cancer cell lines and normal tissue

fibroblasts may not completely phenocopy those cell populations

that exist within an evolving human tumor. Additional studies with

larger or more varied fibroblast panels might also identify new and

different patterns of activity. Furthermore, these experiments

included only 12 cancer cell lines. Experiments with a larger and

more diverse cancer cell line panel may eventually reveal

additional correlations between cancer cell tissue of origin or

molecular subtype and growth response in co-culture. Finally, our

SVD-based model was predicated on specific assumptions,

including the supposition that serial deconvolutions of a matrix

each account for maximum residual variability. This assumption

may not always be accurate [36], and other algorithmic

approaches may ultimately prove superior for modeling cell-cell

interaction. However, this study offers a proof of principle that

systems-level modeling may be useful to begin defining the

organizational principles that govern cell-cell interaction. We

anticipate that similar approaches applied to other cell types may

be useful for studying heterotypic cell interaction both in cancer

and other contexts.

Gene expression data have been deposited in NCBI’s Gene

Expression Omnibus [37] and are accessible through GEO Series

accession number GSE17032.

Supporting Information

Table S1 Cancer Cell Lines

Found at: doi:10.1371/journal.pone.0006888.s001 (0.04 MB

DOC)
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Found at: doi:10.1371/journal.pone.0006888.s002 (0.07 MB

DOC)
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