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The intestine is the largest immune organ in the body, provides the first line of defense

against pathogens, and prevents excessive immune reactions to harmless or beneficial

non-self-materials, such as food and intestinal bacteria. Allergic and inflammatory

diseases in the intestine occur as a result of dysregulation of immunological homeostasis

mediated by intestinal immunity. Several lines of evidence suggest that gut environmental

factors, including nutrition and intestinal bacteria, play important roles in controlling

host immune responses and maintaining homeostasis. Among nutritional factors, ω3

and ω6 essential polyunsaturated fatty acids (PUFAs) profoundly influence the host

immune system. Recent advances in lipidomics technology have led to the identification

of lipid mediators derived from ω3- and ω6-PUFAs. In particular, lipid metabolites

from ω3-PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid) have recently

been shown to exert anti-allergic and anti-inflammatory responses; these metabolites

include resolvins, protectins, and maresins. Furthermore, a new class of anti-allergic

and anti-inflammatory lipid metabolites of 17,18-epoxyeicosatetraenoic acid has recently

been identified in the control of allergic and inflammatory diseases in the gut and skin.

Although these lipid metabolites were found to be endogenously generated in the

host, accumulating evidence indicates that intestinal bacteria also participate in lipid

metabolism and thus generate bioactive unique lipid mediators. In this review, we discuss

the production machinery of lipid metabolites in the host and intestinal bacteria and the

roles of these metabolites in the regulation of host immunity.

Keywords: lipid metabolites, dietary oil, intestinal immunity, inflammation, allergy, intestinal bacteria

INTRODUCTION

Lipid composition in organisms differs among species, in accordance with the expression levels of
metabolic enzymes and dietary habits.Marine phytoplankton and seaweeds produce a large amount
of the ω3-polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA) (1). Although fish do not generate EPA and DHA per se, they accumulate EPA
and DHA by eating phytoplankton (1). In plants, linseed and perilla contain large amounts of
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α-linolenic acid, a precursor of EPA and DHA. In contrast,
soybean oil and sesame oil contain copious quantities of the ω6-
PUFA linoleic acid. The difference in the fatty acid composition
of plants depends on the expression levels and activities of
metabolic enzymes such as 112-desaturase and 115-desaturase,
which are involved in the generation of linoleic acid and α-
linolenic acid, respectively (2, 3). Because mammals do not
have either 112 or 115-desaturase, ω3- and ω6-PUFAs are
categorized as essential fatty acids that must be obtained from the
diet (3). Therefore, the balance of ω3 and ω6 lipids in the body
largely depends on the quality of the dietary lipid consumed.

The beneficial effect of dietary ω3-PUFAs on human health
was first reported in an epidemiological study in 1978 in which
Greenland Eskimos, who consume high ω3-PUFA diets that
include fish, were found to have a lower mortality from coronary
heart disease than Danes and Americans, who eat much less ω3-
PUFAs (4). Since then, accumulating evidence indicates that EPA
and DHA have beneficial effects on the inhibition of various types
of inflammatory and allergic diseases, including cardiovascular
disease, Alzheimer’s disease, rheumatoid arthritis, inflammatory
bowel disease, atopic dermatitis, asthma, and food allergy
(5–13). Recent developments in analytical technology, including
liquid chromatography (LC) and mass spectrometry (MS), have
enabled us to identify EPA- and DHA-derived pro-resolving
lipid mediators (SPMs), including resolvins (Rvs), protectins
(PDs), maresins (MaRs), and 17,18-epoxyeicosatetraenoic acid
(17,18-EpETE) for inhibition of inflammatory and allergic
diseases (7, 14).

Dietary lipids are metabolized not only by mammalian
enzymes but also by bacterial enzymes. Microorganisms can
generate unique lipid metabolites such as conjugated linoleic
acids, hydroxy fatty acids, and oxo fatty acids. These bacteria-
produced lipid metabolites show biological activity in the context
of host health and diseases (15, 16). Here, we review our current
understanding of ω3- and ω6-PUFA-derived lipid mediators in
the control of inflammatory and allergic diseases.

ω6 FATTY ACID METABOLITES HAVE
OPPOSING ROLES IN
PRO-AND ANTI-INFLAMMATION

Dietary lipids are metabolized in the body to lipid mediators,
which regulate host immune systems. Arachidonic acid (AA) is

Abbreviations: 12-HHT, 12-hydroxy-heptadecatrienoic acid; 14,15-EpETE,

14,15-epoxyeicosatetraenoic acid; 17,18-EpETE, 17,18-epoxyeicosatetraenoic

acid; 17,18-diHETE, 17,18-dihydroxy-eicosatetraenoic acid; AA, arachidonic

acid; CHS, contact hypersensitivity; CLA, conjugated linoleic acid; COX,

cyclooxygenase; CRTH2, chemoattractant receptor-homologous molecule

expressed on Th2 cells; CYP, cytochrome P450; DC, dendritic cell; DHA,

docosahexaenoic acid; DSS, dextran sodium sulfate; EPA, eicosapentaenoic acid;

GPR, G-protein-coupled receptor; HYA, 10-hydroxy-cis-12-octadecenoic acid;

HYB, 10-hydroxy-octadecanoic acid; HYC, 10-hydroxy-trans-11-octadecenoic

acid; IL, interleukin; KetoA, 10-oxo-cis-12-octadecenoic acid; KetoB, 10-

oxo-octadecanoic acid; KetoC, 10-oxo-trans-11-octadecenoic acid; LC, liquid

chromatography; LOX, lipoxygenase; LT, leukotriene; MaR, maresin; MCRA,

myosin cross-reactive antigen; MS, mass spectrometry; NF, nuclear factor; OVA,

ovalbumin; PD, protectin; PG, prostaglandin; PPAR, peroxisome proliferator-

activated receptor; PUFA, polyunsaturated fatty acid; Rv, resolvin; SPM, specialized

pro-resolving lipid mediator; TNF, tumor necrosis factor; TX, thromboxane.

a metabolite of linoleic acid, and functions as a direct precursor
of bioactive lipid mediators, which are known as eicosanoids.
In addition to its biosynthesis in the body from linoleic acid,
AA can be obtained from dietary sources, such as meat and
eggs. AA is metabolized by cyclooxygenase (COX), lipoxygenase
(LOX), and cytochrome P450 (CYP), and then converted into
lipid mediators, including prostaglandins (PGs), leukotrienes
(LTs), thromboxanes (TXs), and lipoxins (LXs) (Figure 1) (17).
These AA-derived lipid meditators have both pro- and anti-
inflammatory effects in the intestine.

AA is converted into LTB4 by LOX activity. The LTB4-
BLT1 axis plays a key role in the development of inflammatory
diseases including inflammatory bowel disease by stimulating
the recruitment of inflammatory cells and the production
of pro-inflammatory cytokines (18–20). LTB4 also activates
another receptor BLT2 which is a high affinity receptor for
12-hydroxy-heptadecatrienoic acid (12-HHT). In contrast to
pro-inflammatory role of BLT1, BLT2-deficient mice show
transepidermal water loss, suggesting its anti-inflammatory role
in the skin (21). Indeed, BLT2-mediated pathway induced
the expression of claudin-4 for enhancement of epithelial
barrier (21).

AA is converted into PGs by COX activity, which generate
PGD2 and PGE2 as the representative lipid mediators. The
PGD2-chemoattractant receptor-homologous molecule
expressed on Th2 cells (CRTH2) pathway induces dextran
sodium sulfate (DSS)- and trinitrobenzene sulfonic acid (TNBS)-
induced colitis (22, 23). Eosinophil infiltration into colon is
inhibited by CRTH2 antagonist treatment in TNBS-induced
colitis (23). In contrast to pro-inflammatory properties, the
PGD2-DP axis reduces granulocyte infiltration into the colonic
mucosa in the mouse model of TNBS-induced colitis and
colitis-associated colorectal cancer (24, 25) These opposing roles
of CRTH2 and DP in chemotaxis are explained by different
usage of G proteins. CRTH2 is coupled with Gαi while DP is
coupled with Gαs, which induces decreased and increased in
cAMP levels, respectively (26). Consistent with these findings
when PGD2 acted on neutrophils CRTH2 pathway, it induced
neutrophil migration to the intestinal lamina propria in the
DSS-induced colitis model (22).

PGE2 stimulates four distinct types of receptors EP1 to
EP4. The PGE2-EP2 axis in neutrophils and tumor-associated
fibroblasts promotes colon tumorigenesis by inducing expression
of inflammation- and growth-related genes, including tumor
necrosis factor (TNF)-α, interleukin (IL)-6, and Wnt5A (27).
In contrast to EP2-mediated carcinogenic effects, EP3-mediated
signals show anti-carcinogenic effects, which are consistent with
different types of G protein pathways; EP2 activates Gαs, while
EP3 activates Gαi (27).

Therefore, it is suggested that the opposing roles in pro-
and anti-inflammation of ω6-PUFAs derived lipid mediators are
determined by target cell types and receptor types.

In addition to these factors, cellular source of PGD2 affects
in its activity in pro- and anti-inflammation in croton oil-
induced skin inflammation model (28). In the initial phase of
the dermatitis when few inflammatory cells exist in the skin,
endothelial cells show highest COX-2 activity and produce
PGD2, which leads to DP activation on endothelial cells,
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FIGURE 1 | Lipid mediators derived from AA, EPA, and DHA. Various kinds of lipid mediators are produced from ω6- and ω3-PUFAs. AA, EPA, and DHA are

converted to bioactive lipid mediators by the enzymatic activities of COX, LOX, and CYP. Lipid mediators exert their biological effects through binding to

G-protein-coupled receptors. AA-derived lipid mediators have pro- and anti-inflammatory activities, whereas EPA- and DHA-derived lipid mediators exert

anti-inflammatory or pro-resolution activities or both.

and inhibits vascular leakage. On the other hand, in the
late phase of the dermatitis, many types of hematopoietic
inflammatory cells produce PGD2, which stimulate CRTH2 on
inflammatory cells for infiltration to the inflamed skin, and
exacerbates skin inflammation (28, 29). These findings suggest
that stage of inflammatory process is a determinant of the
effects of AA-derived metabolites through distinct site of the
mediator production.

DIETARY ω3-PUFAS INHIBIT THE
DEVELOPMENT OF ALLERGIC DISEASE

We and others have shown the anti-inflammatory and anti-
allergic effects of dietary ω3-PUFAs (4, 7, 8, 12, 13, 30–34).

Fish oil is a representative ω3-PUFA-rich dietary oil which
contains plenty amount of EPA and DHA. Dietary fish oil
ameliorated asthma by decreasing eosinophil infiltration, mucus
production, and peribronchiolar fibrosis, which was associated
with inhibition of cytokine production by downregulation of

nuclear factor (NF)-κB and GATA-3 (30). These anti-allergic
effects may be caused by decreased amount of ω6-PUFA-derived
lipid mediators such as PGD2, LTB4, and LTE4 which exacerbate
airway inflammation and increasing ω3-PUFA-derived lipid
mediators, for example, RvD1 is reported to decrease allergic
airway responses (6, 35, 36). Further, fish oil-fed mice reduced
acute allergic skin response in food allergy model sensitized by
peanut and whey by reducing mucosal mast cell protease-1 and
antigen specific IgE in serum (31).

Linseed oil contains large amount of α-linolenic acid which

is converted into EPA and DHA in the body. One study

reported that linseed oil-fed mice alleviated pollen-induced

allergic conjunctivitis by decreasing the production of ω6-

PUFA-derived pro-inflammatory lipid mediators, and reducing
eosinophil infiltration into the conjunctiva (13). We also found

that linseed oil-fed mice reduced allergic diarrhea in ovalbumin
(OVA)-induced food allergy model (7). In this model, allergic
diarrhea occurs as a consequence of a dominant Th2-type
environment and the presence of allergen-specific serum IgE,
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which induces mast cell degranulation in the gut. We found
that in linseed oil-fed mice, the Th1–Th2 balance, allergen-
specific IgE level, and mast cell numbers in the gut did not
change compared with those in soybean oil-fed mice in the
OVA-induced food allergy model. However, we found that mast
cell degranulation was profoundly inhibited in linseed oil-fed
mice (7).

We also assessed fatty acid composition in intestinal tissues
and found that the amounts of α-linolenic acid and its
metabolites of EPA and DHA were increased in linseed oil-fed
mice when compared with those in soybean oil-fed mice (7).
In contrast, linoleic acid and AA levels were higher in soybean
oil-fed mice than linseed oil-fed mice (7). Imaging MS analysis
revealed that increased amounts of α-linolenic acid EPA and
DHA were found in the lamina propria compartment where
large numbers of immune cells such as T cells, plasma cells,
and dendritic cells are present (7). These findings collectively
demonstrated that the composition of essential fatty acids in
dietary oils directly reflect the lipid composition in the gut, which,
in turn, may influence the host immune system.

ω3 FATTY ACID METABOLITES HAVE
ROLES IN ANTI-INFLAMMATION
AND PRO-RESOLUTION

EPA and DHA are representative ω3-PUFAs, which compete
with AA in the AA cascade. Therefore, it has long been
considered that the beneficial effects of dietary ω3-PUFAs
against inflammatory diseases stem from decreased amounts
of AA-derived eicosanoids. In addition, recent technology
developments in LC and MS have led to the identification of

trace and novel lipid mediators, including Rvs, PDs, and MaRs,
which are produced from EPA and DHA in the body (37). These
metabolites have anti-inflammatory or pro-resolution properties
(or both) and are known as SPMs (Figure 1) (37). Although the
receptors for SPMs have not been fully elucidated, some SPMs
have been shown to interact with specific receptors. For example,
Rvs derived from EPA and DHA use distinct types of receptors.
RvE1 interacts with BLT1 and ChemR23, while RvD1 interacts
with G-protein-coupled receptor (GPR) 32 and ALX (38, 39).

Examples of how SPMs affect intestinal inflammation include
their involvement in the RvE1–ChemR23 axis, which actively
inhibits colonic inflammation in the DSS-induced colitis model
by suppressing the TNF-α-induced nuclear translocation of NF-
κB and the expression of inflammatory cytokines, including
TNF-α and IL-12p40, from macrophages (40). Furthermore,
RvE1 and PD1 enhance the resolution of inflammation by
stimulating macrophage phagocytosis of apoptotic cells in
zymosan-induced peritonitis (41, 42). MaR1 is reported to
attenuate both DSS- and TNBS-induced colitis by inhibiting NF-
κB activation and inflammatory cytokine production (43). Thus,
multiple types of SPMs exert their anti-inflammatory properties
by using different mechanisms for the regulation of colitis.

17,18-EPOXYEICOSATETRAENOIC ACID IS
A NEW CLASS OF ANTI-ALLERGY
LIPID MEDIATOR

As mentioned above, dietary linseed oil inhibited the
development of food allergy with increased amounts of α-
linolenic acid, EPA and DHA in the intestine (7), which

FIGURE 2 | 17,18-EpETE is a new class of anti-allergy and anti-inflammatory lipid mediator. 17,18-EpETE is produced by CYP from EPA. 17,18-EpETE suppresses

contact hypersensitivity by reducing neutrophil infiltration into the skin by inhibiting Rac activation and migration through GPR40 signaling. 17,18-EpETE also indirectly

inhibits the development of food allergy by inhibiting mast cell degranulation. Given that mast cells do not express GPR40, the detailed mechanisms responsible for

this inhibition of mast cell degranulation remain unclear.
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prompted us to investigate mediator profiles by using LC-
MS/MS analysis. We found that 17,18-EpETE was the metabolite
whose levels increased the most in the gut of linseed oil-fed
mice (7). When 17,18-EpETE was intraperitoneally injected
into soybean oil-fed mice, development of allergic diarrhea
and degranulation of mast cells were inhibited, which was
similar to observation in linseed oil-fed mice (Figure 2) (7).
Consistent with its action at the late stage of the allergic response,
17,18-EpETE was effective as a prophylactic and a therapeutic
treatment for food allergy (7).

17,18-EPETE AMELIORATES CONTACT
HYPERSENSITIVITY THROUGH
GPR40-MEDIATED INHIBITION OF
NEUTROPHIL MIGRATION

To evaluate the biological role of 17,18-EpETE in the regulation
of other types of allergic inflammatory disease, we examined
the effect of 17,18-EpETE on the regulation of contact
hypersensitivity (CHS) in the hapten-induced CHS model.
We found that 17,18-EpETE showed both prophylactic and
therapeutic anti-inflammatory effects on CHS in mice and
cynomolgus macaques (44). 17,18-EpETE did not affect T
cell or dendritic cell functions, including inducible skin-
associated lymphoid tissue formation, but it did selectively
inhibit neutrophil infiltration into the skin (44). Indeed, 17,18-
EpETE reduced neutrophil mobility by inhibiting Rac-activation
and pseudopod formation in a GPR40-dependent fashion (44).
Consistent with this selective influence on neutrophils, GPR40
was highly expressed by neutrophils, but not T cells or other
leukocytes in the skin. It is worth noting that mast cells do
not express GPR40; so, given that mast cell degranulation was
inhibited by 17,18-EpETE treatment in the food allergy model
(7, 44), this finding suggests that 17,18-EpETE inhibits mast cell
degranulation indirectly (Figure 2). Of note, the activation of
GPR40 in intestinal epithelial cells has been reported to improve
intestinal barrier function by enhancing occludin expression
(45). Therefore, it is likely that the improvement in intestinal
barrier function induced by 17,18-EpETE via GPR40 in epithelial
cells led to decreased allergen penetration, which, in turn,
resulted in decreased mast cell degranulation and inhibited food
allergy development.

STRUCTURE-ACTIVITY RELATIONSHIPS
AMONG THE GPR40-DEPENDENT
ANTI-ALLERGIC AND
ANTI-INFLAMMATION EFFECTS
OF 17,18-EPETE

17,18-EpETE is further metabolized by soluble epoxide hydrolase
to 17,18-dihydroxy-eicosatetraenoic acid (17,18-diHETE).
However, 17,18-diHETE has little effect on the development
of food allergy, and 14,15-epoxyeicosatetraenoic acid (14,15-
EpETE), which has an epoxy structure at the ω6 position,
also lacks the ability to inhibit food allergy (7). In addition,

17,18-diHETE has little effect on the development of CHS
(44). Although 17,18-EpETE activates GPR40, 17,18-diHETE
does not activate GPR40, which is consistent with its lack of
anti-allergic and anti-inflammatory properties (7, 44). These
findings therefore suggest that the 17,18-epoxy ring structure
at the ω3 position in EPA is important for GPR40-mediated
anti-allergic and anti-inflammatory activity.

17,18-EpETE is synthesized from EPA through the enzymatic
activity of CYP and has two isomers, 17(S),18(R)-EpETE
and 17(R),18(S)-EpETE. Among the CYP subfamilies in
mice, five CYP isoforms (Cyp1a2, 2c50, 4a12a, 4a12b, and
4f18) are known to convert EPA into 17,18-EpETE (46).
Cyp1a2 displays high stereoselectivity for producing 17(R),18(S)-
EpETE, whereas Cyp4f18 displays stereoselectivity for producing
17(S),18(R)-EpETE (46). In contrast, Cyp2c50, Cyp4a12a, and
Cyp4a12b display less stereoselectivity and produce a mixture
of 17(S),18(R)-EpETE and 17(R),18(S)-EpETE (46). 17(R),18(S)-
EpETE, but not 17(S),18(R)-EpETE, is a potent vasodilator
(47). Indeed, 17(R),18(S)-EpETE activates calcium-activated
potassium channels, which lead to relaxation of rat cerebral artery
vascular smooth muscle cells (47). Whether stereoselectivity
of 17,18-EpETE contributes to the anti-allergy and anti-
inflammatory effects of 17,18-EpETE have not been evaluated
in food allergy and CHS, because we used racemic compounds
in our studies (7, 44). The CYP isoform and polymorphisms
determine the metabolic properties of CYP and stereoselectivity.
Therefore, the anti-allergic and anti-inflammatory health benefits
derived from ω3-PUFA intake may be influenced by the
expression levels of the various types of CYP in the body.

CYP is also found in microorganisms. For example, it
has been reported that bacterial CYP (e.g., BM-3 derived
from Bacillus megateirum) metabolizes PUFAs and produces
hydroxy and epoxy fatty acids (48). Bacillus, Streptomyces,
Pseudomonas, andMycobacterium also have CYP (49–53). These
findings suggest that many types of microorganisms are involved
in lipid metabolism. In addition, other metabolic enzymes,
such as COX and LOX, are thought to be expressed by
some bacteria, including Pseudomonas aeruginosa, Shewanella
woodyi, Mytococcus fulrus, and Burkholderia thailandensis
(54, 55). Some microorganisms described above are present
in environment, suggesting that in addition to mammalian
expression of metabolic enzymes, various microorganisms may
be a determinant of the efficacy of ω3-PUFA in the context of the
regulation of inflammation.

BACTERIAL-CONJUGATED LINOLEIC
ACID HAS A ROLE
IN ANTI-INFLAMMATION

Intestinal bacteria have been shown to express unique
unsaturated fatty acid-metabolic enzymes and to produce
bioactive lipid mediators that are not generated by mammalian
cells (Figure 3). Ruminal bacteria including Butyrivibrio,
Lactobacillus, and Megasphaera can produce conjugated
linoleic acid (CLA), which is an isomer of linoleic acid that
has conjugated double bounds (56–58). It is known that CLA
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FIGURE 3 | Physiological functions of CLA and HYA. CLA and HYA are produced from linoleic acid by intestinal bacteria. c9,t11-CLA ameliorates insulin sensitivity

and prevents atherosclerosis, t10,c12-CLA deteriorates insulin sensitivity and promotes atherosclerosis, and t9,t11-CLA prevents atherosclerosis. HYA enhances

intestinal barrier function by increasing occludin expression and inhibiting intestinal inflammation in a GPR40-dependent manner. HYA inhibits atopic dermatitis by

increasing claudin-1 expression and enhancing skin barrier function. HYA also inhibits gastric Helicobacter infections by blocking the bacterial futalosine pathways.

has some isomers such as cis-9-trans-11-octadecenoic acid
(c9,t11-CLA), trans-10-cis-12-octadecenoic acid (t10,c12-
CLA) and trans-9-trans-11-octadecenoic acid (t9,t11-CLA).
These isomers have different activities for insulin sensitivity
and atherosclerosis.

For example, c9,t11-CLA shows beneficial effects on
insulin sensitivity by enhancing glucose uptake and
adipokine production such as leptin and adiponectin, and
on atherosclerosis by suppressing macrophage infiltration
and activation, and reducing plaque development through an
increase in expression of PPARγ, while t10,c12-CLA shows
adverse effects through a decrease in expression of PPARγ

(59–63). In addition, t10,c12-CLA reduces expression of
liver X receptor α (LXRα) which induces expression of ATP-
binding cassette (ABC) transporter A1, ABCG1, and sterol
regulatory element binding protein 1c which involved in reverse
cholesterol transport (64, 65). Therefore, t10,c12-CLA shows
pro-atherosclerosis effects (66–68). On the other hand, t9,t11-

CLA is effective for the treatment of atherosclerosis by activation

of LXRα (69). These results indicate that each isomers exert
different bioactivities through distinct transcriptional regulation

and activation of PPARγ and LXRα for the control of insulin

sensitivity and atherosclerosis.
Compared with chemical production, microbial fermentation

offers better ways to produce isomer-specific CLAs. The
CLA isomers are produced at different ratios, depending
on the type of bacteria. Lactobacillus strains (L. acidophilus,
L. plantarum, L. casei, L. reuteri, L. rhamnosus, and L.

pentosus), Bifidobacterium strains (B. dentium, B. breve, and
B. lactis), and Propionibacterium freudenreichii can convert
linoleic acid to c9,t11-CLA and t10,c12-CLA, and these
bacteria produce higher levels of c9,t11-CLA than of t10,c12-
CLA (15, 57, 70–72). Some Lactobacillus and Bifidobacterium
strains also produce t9,t11-CLA with c9,t11-CLA and/or
t10,c12-CLA (57). L. paracasei and B. bifidum produce
c9,t11-CLA stereoselectively, whereas Megasphaera eldsenii
produces t10,c12-CLA stereoselectively (71, 73). Given that
these CLAs have different biological activities which depend
on their 3D-structure, it is important to select appropriate
bacteria as a probiotics or producer for obtaining required
beneficial effects.

BACTERIAL PRODUCTION OF UNIQUE
HYDROXY AND OXO FATTY ACIDS AND
THEIR MULTIPLE BIOLOGICAL ACTIVITIES

L. plantarum, an intestinal bacteria, produces hydroxy fatty acids
(i.e., 10-hydroxy-cis-12-octadecenoic acid [HYA], 10-hydroxy-
trans-11-octadecenoic acid [HYC], 10-hydroxy-octadecanoic
acid [HYB]) and oxo fatty acids (10-oxo-cis-12-octadecenoic
acid [KetoA], 10-oxo-trans-11-octadecenoic acid [KetoC], 10-
oxo-octadecanoic acid [KetoB]) as intermediate products of
CLA production (16). Recently, these metabolic intermediates
have been shown to contribute to the regulation of host
health and diseases. HYA is the first metabolite produced
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from linoleic acid by L. plantarum, and it enhances intestinal
barrier function and suppresses the development of DSS-
induced colitis in mice in a GPR40-dependent manner (45).
Furthermore, HYA prevents Helicobacter infections by blocking
their futalosine pathways, which is an alternative menaquinone
biosynthetic pathway and an essential metabolic pathway
for the growth of Helicobacter. Moreover, HYA treatment
suppresses the formation of lymphoid follicles in the gastric
mucus layer after H. suis infection, and therefore HYA
treatment protects mice against the formation of gastric mucosa-
associated lymphoid tissue lymphoma induced by infection
with Helicobacter (74). HYA also ameliorates the pathological
scores of atopic dermatitis in NC/Nga mice by decreasing
plasma IgE levels and reducing mast cell infiltration into
the skin (75, 76). KetoA enhances adiponectin production
and glucose uptake in a proliferator-activated receptor γ

(PPARγ)-dependent manner, and is effective for the prevention
and amelioration of metabolic abnormalities associated with
obesity (77).

The production of these hydroxy and oxo fatty acids depends
on the unique bacterial enzymes CLA-HY (unsaturated fatty acid
hydratase), CLA-DH (hydroxy fatty acid dehydrogenase), CLA-
DC (isomerase), and CLA-ER (enone reductase) in L. plantarum
AKU1009a (16, 78). The hydroxy activity is found not only
in Lactobacillus but also in a broad spectrum of bacteria.
Oleate hydratase belongs to the FAD-dependent myosin cross-
reactive antigen (MCRA) protein family, which is found in gram-
positive and -negative bacteria; it catalyzes the conversion of
linoleic acid to HYA. For example, Lactobacillus, Bifidobacterium,
Streptococcus, and Stenotrophomonas bacteria are reported to
have MCRA, and indeed they have the ability to produce
HYA (79–82).

Together, these findings indicate that intestinal bacteria
metabolize dietary lipids and produce lipid metabolites
that can regulate host immune systems. Therefore, to
obtain beneficial lipid metabolites and regulate intestinal
inflammation, we need to consider not only host enzymes but
also enzymes produced by intestinal bacteria. In addition, we
must consider how dietary lipid intake causes changes in the
intestinal microbiota.

CONCLUSION

Recent technological developments in lipidomics research
initiated a new era of lipid biology by helping researchers
to identify novel lipid metabolites from ω3- and ω6-PUFAs,
which actively regulate the host immune system and play
important roles in the control of health and diseases.
Given that the production of lipid metabolites is influenced
by complex factors, including diet, intestinal bacteria,
and enzyme expression, combined studies on nutrition,
metabolomics, and the metagenomics of the microbiota,
as well as informatics, may provide powerful insights to
further our understanding of the lipid network in the host
immune system.
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