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Prediction of protein solubility is gaining importance with the growing use of protein molecules as
therapeutics, and ongoing requirements for high level expression. We have investigated protein surface
features that correlate with insolubility. Non-polar surface patches associate to some degree with
insolubility, but this is far exceeded by the association with positively-charged patches. Negatively-charged
patches do not separate insoluble/soluble subsets. The separation of soluble and insoluble subsets by positive
charge clustering (area under the curve for a ROC plot is 0.85) has a striking parallel with the separation that
delineates nucleic acid-binding proteins, although most of the insoluble dataset are not known to bind
nucleic acid. Additionally, these basic patches are enriched for arginine, relative to lysine. The results are
discussed in the context of expression systems and downstream processing, contributing to a view of protein
solubility in which the molecular interactions of charged groups are far from equivalent.

P
rotein solubility and propensity to aggregate has been central to biotechnology and biosciences through the
era of recombinant protein expression. It is also becoming increasingly important in the area of formulation
and preparation of biologics (therapeutic proteins), and in consideration of disorders arising from mis-

folding1. A common view of protein aggregation at relatively high concentration holds that partial unfolding (a
structural feature) leads to association of non-polar stretches of amino acids (a sequence feature). Whilst struc-
tural and sequence properties combine in this view of protein aggregation, computational algorithms that attempt
to predict solubility largely divide into those based on sequence and those based on structure, although some
features (e.g. net charge) span this division.

A key question relates to how solubility is defined in benchmark sets. Early work2 distinguishes between
proteins that form inclusion bodies (IBs) and those that do not, with a study of sequence features. The two
properties correlating best with IB formation were found to be average charge (more net charge, less IB), and turn-
forming residue fraction (more gives IBs, perhaps due to slow folding e.g. with prolines). Other work3 also uses the
IB/non-IB distinction, together with sequence and structure-based correlations with solubility, including ther-
mostability and relative lack of b-sheet. Some reports define soluble proteins as those for which a structure has
been solved and deposited in the protein data bank, PDB4. This definition is used alongside resources that record
progress in protein expression for structural genomics5,6, such as the TargetDB database7. Machine-learning
techniques are then employed to optimise distinction between soluble and insoluble proteins, although it can be
difficult to extract physico-chemical interpretation from such methods. Other work combines machine-learning
with soluble/insoluble datasets obtained through keyword searching in the literature8. The relationship between
mRNA levels and protein solubility in E. coli has been examined9. Proteins with sequence more prone to
aggregation are generally expressed at lower levels, where amino acid polarity is used to indicate aggregation
potential, i.e. proteins with a more non-polar sequence have lower mRNA levels. The REFOLD database10

annotates proteins as soluble or insoluble, but in practice all of these proteins have been expressed through IB
formation.

There are a number of aggregation prediction schemes based on the experimental observation that many
proteins can be induced to adopt an amyloid, b-rich conformation11. These include TANGO12, PASTA13, and
Zyggregator14. Such schemes can include many factors, but generally, the b-forming propensity for linear seg-
ments of amino acid sequence is an important element. A 3D surface polarity approach has been adopted in the
redesigning of protein surface to improve solubility15, with the introduction of groups to break up non-polar
patches. This is reminiscent of the discovery that charges on the surfaces of hyperthermophile proteins are more
closely packed, on average, than those in mesophile proteins16. It was assumed that the higher temperature
environment of hyperthermophiles increases the strength of hydrophobic interactions, leading to the require-
ment for a more stringent breaking up of non-polar patches with charges. A charge influence has also appeared in
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the context of translation rate, a property that will impact on protein
production and therefore potentially solubility. A dependence of
ribosomal velocity on positively charged residues in newly synthe-
sised proteins has been found, due to interaction with the negatively-
charged ribosomal exit tunnel17. More generally, translation rate has
a well-studied correlation with codon bias18.

Methods for predicting protein solubility have been reviewed19.
The availability of experimental data, where proteins have been
expressed in consistent conditions, continues to present a significant
problem with assessing prediction schemes. A significant study
addressing this point used a high throughput cell-free system for
classification of E. coli protein solubility20. The authors of this work
concluded that factors correlating to some degree with solubility
include charge and structural class, whilst algorithms based largely
on propensity to form b-structure/amyloid performed less well,
although a machine-learning study subsequently identified a correla-
tion between sequence-based calculation of physico-chemical prop-
erties and measured solubility for this dataset21.

In the current work, computational methods for characterising
charge and potential distributions in proteins22 have been used
alongside patch-based calculations of surface properties23 to analyse
the properties of soluble and insoluble subsets of proteins. The
experimental data used in this study derive from cell-free express-
ion20 using the PURE system of E. coli factors, lacking chaperones24.
Encouraged by a study in which computation over many proteins
revealed a correlation between electrostatic properties and subcellu-
lar location25, a similar approach was used in respect of solubility.
Whilst some correlation is found between insolubility and larger
non-polar patches, by far the most significant relationship associates
insolubility with large positively-charged patches. The pattern

underlying this unexpected result is similar to that which separates
nucleic acid (NA)-binding from non-NA-binding proteins.

Results
Surface potential patches and solubility. At neutral pH most of the
insoluble and soluble dataset proteins are predicted to be moderately
negatively-charged, and there is no significant separation of the
distributions (Fig. 1a, p 5 0.872 for a Mann-Whitney test of
subsets being sampled from the same underlying distribution). The
maximal positive and negative potential patches for each protein
show quite different behaviour, with no significant separation for
negative potential (p 5 0.227), but clear separation for positive
potential (p 5 7.1 3 10213, Fig. 1b). A patch analysis of charge
clustering (with 13 Å patch radius) was performed in order to
establish whether the positive potential patches, based on contours,
were mirrored in charge geometry. This is the case, with the largest
net positive charge on a patch also distinguishing soluble and
insoluble protein datasets (p 5 2.2 3 1024, Fig. 1c).

Surface polarity and solubility. We next examined a potential role
for the association of proteins via non-polar surfaces, through
calculation of non-polar to polar solvent accessible surface area
(SASA) ratios, for patches of radius 13 Å centred on each atom.
The maximum of this ratio was identified for each protein. Fig. 1d
shows the separation of soluble and insoluble subsets (p 5 2.3 3
1023). Whilst there is some correlation between increased non-
polarity and insolubility, it is far smaller than that exhibited by
positive potential. ROC plot analysis demonstrates this distinction
(Fig. 2). An area under the curve (AUC) of 0.85 for the positive
potential features (Fig. 2a) compares with an AUC of 0.62 for the

Figure 1 | Cumulative fractions of soluble (SOL) and insoluble (INS) protein datasets, upon calculation of particular features. (a) Net charge, predicted

at pH 7.0. (b) Grid points within the largest positive (pos) and largest negative (neg) contours of electrostatic potential. (c) Maximum net positive charge

in a geometric patch (13 Å radius). (d) The maximum ratio (for each protein) of non-polar to polar patch SASA. (e) Largest positive patch contours are

re-plotted, now as a ratio to a 3000 grid point threshold, alongside calculations with DNA-binding and non-DNA-binding datasets. (f) Separation

according to the geometrical patch with the largest Arg content.
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non-polar to polar surface area ratio (Fig. 2b). A threshold of 3000
grid points (in the contours of positive potential) gives the best
separation between soluble and insoluble datasets. Positive patch
size can be reported as a ratio to this value.

Comparison with discrimination for DNA-binding proteins.
Positively-charged surfaces are implicated in nucleic acid binding26,
and contribute to prediction schemes for NA binding27. The same
potential patch analysis applied to the solubility data, was used to
examine DNA-binding and non-DNA-binding protein datasets.
Separation of the DNA/non-DNA-binding subsets is strikingly
similar to that for the insoluble/soluble subsets (Fig. 1e). There is
some enrichment for known DNA-binding proteins in the insoluble
subset, 13 of 56, as compared with 16 of 111 in the soluble subset.
Clearly though not all DNA-binding proteins are present in the
insoluble subset.

Generally in NA binding, non-specific charge interactions typ-
ically function alongside more specific interactions arising from
hydrogen-bonding and shape complementarity. Such additional
interactions may play a role in distinguishing an interesting pair of
DNA-binding homologues, IHF in the insoluble subset and HUa in
the soluble subset. Maximal positive patches (measured as a ratio to
the threshold) are consistent with the subset membership, whether
calculated for the monomer (IHF 1.38, HUa 0.26) or the dimeric
biological units (IHF 3.31, HUa 0.45). Although these two proteins
are closely related structurally, they have very different positive
potential distributions and solubility in the cell-free system.
Functionally, HUa and IHF have divergent DNA substrate prefer-
ences28, that may be related to their positive charge distributions.

It appears that larger positive patches exert an influence towards
protein aggregation in the cell free expression system20. If this is also
the case for intracellular expression, then it might be anticipated that
it would be countered by a cell maintaining lower levels of proteins
with larger positive potential patches. Abundance of mRNA is not
entirely representative of protein level29. Indeed, at a fixed time point
for a single cell, correlation between protein and mRNA level can be
absent, due to the much shorter lifetime of mRNAs as compared with
proteins30. Currently though, mRNA levels measured from popula-
tions of cells, which are correlated with protein level30, provide the
most extensive data. An anti-correlation (R 5 0.283, p 5 5.75 3

1023, not shown) was found between largest positive patch size and a
log measure of mRNA levels in E. coli31. Again the positive potential
is differentiated from negative potential, for which the largest patch
gives no significant relationship with mRNA level (R 5 0.124, p 5

0.138, not shown).

Positive and negative charge, arginine and lysine. Sequence-based
calculation of the fraction of charged groups that are either
positively-charged or negatively-charged at neutral pH separates

soluble and insoluble subsets (p 5 1.417 3 1023, not shown).
Consistent with the patch calculations, a higher fraction of positive
charge tends towards insolubility. With a greater separation of
soluble and insoluble subsets for the (3D) patch-based property,
relative to the sequence-based charge fraction, the structural
property appears to be a crucial component in a physico-chemical
understanding of the cell-free expression data.

Thus far, positively-charged amino acid sidechains, at neutral pH,
have been combined. Taking the maximum positive charge patches
of Fig. 1c, calculation of Arg enrichment in these patches (compared
with the Arg to Lys content overall for each protein) gives a separa-
tion (p 5 0.023, not shown), with more Arg in the maximum positive
patches of the insoluble subset. Next, looking at the maximum num-
ber of Arg in any geometric patch of radius 13 Å, there is also sepa-
ration (p 5 3.884 3 1024, Fig. 1f). Only a small number of the
insoluble proteins have a geometric patch containing less than
4 Arg. The Lys to Arg ratio calculated directly from protein sequence
also separates (p 5 0.037, not shown), with very few of the insoluble
dataset having this ratio greater than 1.

Discussion
Our results indicate that factors contributing on average to separa-
tion of the structurally annotated soluble and insoluble subsets in
cell-free expression20, are non-polar surface (moderate contri-
bution), and positively-charged patches (major contribution, par-
ticularly where Arg is more prevalent than Lys). Correlation
between largest positive patch and insolubility implies that this prop-
erty, or another feature to which it is strongly related, acts in some
direct or indirect way to promote protein-protein interactions. It
could be argued that a concentration of positive charge may tend
towards lower folded state stability through unfavourable charge
interactions, and thus influence solubility via (partial) unfolding.
However, a similar influence would be expected for negatively-
charged patches, which is absent. Through what other mechanisms
could positive charge clustering contribute to insolubility? Given that
the characteristic for insolubility observed in the current work closely
matches that for NA-binding proteins, a hypothetical mechanism
based on an intermediate step of binding to NA is presented. This
model applies only to media rich in NA, such as during expression. A
second area of discussion is around the growing literature on nega-
tive charge and the solubility of purified proteins.

Fig. 3a shows an equilibrium model for protein binding to nucleic
acid, based on a relatively weak interaction of 15 kJ/mole. This corre-
sponds to 3 close salt-bridges or greater than 3 flexible 1/2 charge
interactions, consistent with a net charge threshold of about 4.5
(Fig. 1c). Briefly, having estimated maximal concentrations of
charged protein (positive) and NA (negative) sites each at 4 mM,
concentration ramps up to the these values are used to account for
subsets of protein and NA sites possessing the appropriate

Figure 2 | ROC plots for insoluble and soluble subset separation. (a) ROC plot (AUC 5 0.85) showing separation by positive potential. TPR is true

positive rate and FPR false positive rate. (b) ROC plot (AUC 5 0.62) quantifying the separation by non-polar to polar surface ratio (13 Å radius patch).
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unshielded charge (see Methods for more detail). This simple cal-
culation (Fig. 3a) shows that a weak interaction, coupled with
relatively high concentrations, leads to a substantial fraction of (tran-
sient) complexes. The diagonal drawn on Fig. 3a relates to equal
concentrations of interacting components, and thus also applies to
the case of direct protein-protein interactions.

Fig. 3a does not address the issue of how charge-based complexa-
tion between protein and nucleic acid might lead to protein insolu-
bility. Available data indicate that nucleic acid constitutes at most a
small fraction of inclusion body material for proteins expressed in E.
coli32, although nucleic acid can affect the rate of aggregation33. In

Fig. 3b, a scheme is outlined that indicates how transient protein-
nucleic acid interactions could lead to a lowering of the activation
energy for folding/unfolding transitions, thereby accelerating pro-
tein-protein complexation and insolubility if this complexed state
ultimately leads to kinetically trapped aggregates. Increased polyanion
hydrophobicity leads to a reduction in protein stability in protein-
polyanion complexes34. Nucleic acids have a substantial non-polar
component and Fig. 3b schematises non-polar interactions between
bases and partially unfolded regions of protein. This could lead to
protein-protein interactions if partially unfolded proteins transiently
bound to the polyanion are adjacent to each other. Such a mechanism
could contribute to seeding protein aggregation, effectively concen-
trating a population of proteins undergoing folding transitions,
through transient condensation onto polyanions.

A study of net charge, within sequence windows of 21 amino acids
in the yeast proteome, found that larger net positive charge was
substantially under-represented in comparison with the equivalent
net negative charge35, and when present was often associated with
NA binding. This is consistent with net positive charge on proteins
being moderated unless functionally associated with nucleic acid
binding, perhaps to avoid pathways such as that hypothesised in
Fig. 3b. Generally, NA-binding proteins such as transcription factors
can be difficult to express36,37.

It is worth stating the fundamental points that relate protein sur-
face charges to protein solubility. The hydration of charged groups is
correlated with protein solubility in aqueous solutions38. Beyond this,
solubility often decreases near to the isoelectric point as net charge
and electrostatic repulsion decreases, allowing non-specific attractive
interactions to form. Additionally, near to the pI, proteins with
anisotropic charge distributions sample attractive interactions
between patches of opposite charge, which are screened with increas-
ing ionic strength39. Within this general framework, there are several
reports that bear on the relative role of positive and negative surface
charges in protein solubility. A strong preference for Asp/Glu over
Lys/Arg was observed in a phage display screen for substitutions that
enhance resistance to aggregation in human antibody variable
domains40. Addition of an acidic tag to a positively-charged intra-
body enhances expression41. It has been reported that many chaper-
ones possess regions of negative charge, and that acidic regions
modulate the anti-aggregation activity of Hsp9042. The current work
suggests that surface charge chaperoning may be a contributing fac-
tor. A growing body of data is becoming available with which to test
such hypotheses43.

Solubility measurements for 7 proteins in different precipitants
show that negative surface charge correlates with increased solubil-
ity, independent of the nature of the precipitant44. These experi-
ments, which reflect protein-protein interactions between folded
(purified) proteins, are quite different to the cell-free translation
study20 on which the current work is based, but given the importance
of charge, we made patch calculations for these 7 proteins. No cor-
relation is seen for maximum positive patch size and solubility (R 5

0.393, p 5 0.191, not shown), but a relationship may be present
between overall Lys to Arg ratio and solubility (R 5 0.720, p 5

0.034, not shown), with (again) a higher ratio tending towards more
soluble. One interpretation is that the Arg sidechain is particularly
prone to interactions. Solubility in the cell-free system could be
related more to the avoidance of basic clusters (and perhaps NA
binding), whereas the purified protein experiments may be probing,
in part, a more general stickiness associated with the Arg sidechain.
The authors of the precipitant-based solubility study concluded that
strong water binding by acidic amino acids may underpin the
results44. The balance between negative and positive amino acid side-
chain charges in fine-tuning solubility, remains to be established.

It is of interest that Arg has been identified as a ubiquitous interacting
amino acid in informatics studies, with an elevated propensity (relative
to average surface occurrence) for interfaces in both protein-protein and

Figure 3 | Weak interactions and association in a crowded environment.
(a) Two species interact with an energy of 15 kJ/mole. Concentrations are

varied (0 to 4 mM) for protein interacting sites (horizontally) and NA

interacting sites (vertically). The heat map shows the proportion of

interacting protein sites that are complexed (scale bar under the map). See

text for more detail. (b) A hypothetical scheme is drawn in which protein-

NA interactions are mediated by charge interactions (upper left), followed

by partial unfolding concomitant with NA base – protein interactions

(upper right), then protein-protein association through non-polar

interactions (lower right), and finally dissociation of protein from NA

(lower left).
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protein-NA complexes45,46. Cation – p interactions, involving Arg, are
common at protein-protein interfaces47, and Arg is also common in
protein crystal contacts at low ionic strength48. Arginine content of
antigen-combining sites in antibodies is correlated with increased
non-specific binding49. The excipient properties of Arg are also of inter-
est. Solutions of Arg can be effective in solubilising proteins50, an effect
that becomes more pronounced in mixtures with Glu51. This solubility
enhancement is related to an increase in the number of Arg and Glu
molecules forming interactions with the protein52. The interacting prop-
erties of Arg cover a range of systems. We suggest that such diversity
may lead to a correlation of Arg enrichment with insolubility, whether
clustering into patches (with Lys) for polyanion binding, or more gen-
erally over a protein surface.

Reduction of positive patches should be of use as a design tool for
expression systems, and substituting Arg with other charges could
aid the maintenance of high concentrations of purified protein in
solution. The hypothesis of protein basic patch interactions with NA
in expression systems could be investigated with uncoupling of tran-
scription and translation, to vary relative mRNA and protein levels53.
There is much yet to establish about the association between basic
clusters, and Arg enrichment, and insolubility, given for example the
report that green fluorescent protein engineered to bear high net
positive or negative charge expresses in E. coli and is much more
soluble than wild-type protein54. In this case perhaps the extreme net
charges provide sufficient repulsive interactions to overcome other
effects.

Methods
Soluble and insoluble datasets and DNA-binding/non-binding protein datasets.
Subsets for soluble and insoluble E. coli protein expression in the cell-free system were
defined following the authors’ description20. Specifically, soluble proteins are those
with a solubility of more than 70%, and insoluble with a solubility of less than 30%.
Percentage solubilities had been obtained, following cell-free expression of
radiolabelled protein, as the ratio of soluble protein (supernatant from a
centrifugation step) and total protein20. Members of the soluble and insoluble subsets
with structures in the PDB4 were obtained through cross-referencing with UniProt55.
A further filtering step was applied with a cull for sequence identity at a 90% identity
threshold, using the PISCES tool56. This procedure allows the retention of
homologues, since they may have different surface charge and polarity distributions.
Final subsets of 111 (soluble) and 56 (insoluble) E. coli proteins were available for
processing.

Sets of DNA-binding and non-binding proteins were obtained from earlier
work57,58. Most of these PDB ids were accessible and ran successfully through the
electrostatic potential patch analysis (128 DNA-binding proteins, 108 non-binders).
Calculations were also made for a set of 7 proteins for which solubility data were
available in precipitant studies44, using the same PDB ids specified in that work.

Charge, potential and polarity calculations. For polarity analysis, a sphere of radius
13 Å was centred on each non-hydrogen atom. Polar and non-polar solvent
accessible surface area was then summed for all non-hydrogen atoms within that
sphere, using a 1.4 Å radius solvent probe and polar/non-polar character assigned
according to atom type and functional group23. The relative polarity of a patch is then
calculated as the ratio of non-polar SASA to polar SASA, and the maximum value of
this ratio (i.e. most non-polar region) recorded for each protein. When the polar and
non-polar SASAs are summed for each patch, the average of this distribution over
patches is about 1300 Å2. In comparison, a typical evolved interface between proteins
buries about 1600 Å2 in total, although this is quite variable59. Considering that the
entirety of each of the two contributing surfaces will not be buried in an association, a
patch radius of 13 Å seems reasonable in generating a footprint for non-specific
protein-protein interactions.

Electrostatic potential was calculated around each protein using a Finite Difference
Poisson-Boltzmann methodology22, with negatively-charged Asp, Glu sidechains and
C-termini, and positively-charged Lys, Arg and N-termini. Ionic strength was 0.15 M
in the calculations. The resulting potential map was contoured at thresholds of 1/2
kT/e. Importantly, the contours were drawn on a single shell of the calculation grid
(on the solvent side of the protein), so that the number grid points in each contoured
patch effectively represents the size of that patch. Grid step for electrostatic potential
calculation was a constant 0.6 Å, independent of protein. A parallel approach was
introduced to confirm that positive charge location underpins the contours of positive
potential. The patch analysis described for surface polarity was also used to record the
maximum net charge within a geometrical patch. For this purpose, sidechain charges
were approximated at Cb atoms to minimise the effects of sidechain conformational
variation.

Receiver Operator Characteristic (ROC) plots were generated for the ability of
calculated features to discriminate between soluble and insoluble proteins. As the

numerical value of a feature is varied and applied as a threshold to the datasets,
corresponding true positive rates (TPRs) and false positive rates (FPRs) are calculated
and given in a ROC plot. Area Under the Curve (AUC) is used to estimate effec-
tiveness for separating datasets, with 1.0 equating to complete separation and 0.5 to
random. The Mann-Whitney U test was applied to the calculated feature subsets. The
probability of occurrence of these particular feature values, if there is no difference in
the underlying distributions, is given. A significant difference is inferred if this
probability is , 0.05.

To investigate whether a relationship exists between calculated features and
expression at the mRNA level, protein IDs for soluble and insoluble datasets were
mapped to mRNA abundances for E. coli proteins31.

A model for non-specific protein-nucleic acid charge interactions. The model of
Fig. 3a is based on a 15 kJ/mole interaction, or about 3 salt-bridges, since typical pKa
shifts for a surface salt-bridge are 1 pH unit or 5–6 kJ/mole60. Total concentration of
protein was calculated for an estimate of 2.35 3 106 protein molecules61 in an E. coli
cell of side 1 mm, giving 4 mM. Summing the estimated contributions of tRNAs and
mRNAs61 and comparing with protein molecular weight, gives a ratio of about 1510,
nucleic acid to protein. Each protein molecule, of average molecular weight 40 kD61,
might bind to a polyanion through a single positive patch, whereas each polyanion
nucleic acid molecule has multiple binding sites. With a single base molecular weight
of about 0.32 kD, assuming that binding sites could recur approximately every 12
bases, then two factors of 10 approximately cancel and the maximum concentrations
of positively and negatively-charged binding sites are roughly equal. Although 4 mM
is set as this maximum, only a subset of proteins will exhibit positive patches above a
certain threshold, whilst there are many factors that will contribute to structuring of
nucleic acids and the masking of negative charge. Thus linear concentration ramps,
up to 4 mM, are applied in Fig. 3a for interacting subsets of protein and nucleic acid.
The heat map is then generated as the proportion of the interacting subset of proteins
that is bound to nucleic acid, as the concentrations are altered, given the 15 kJ/mole
interaction.
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