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Abstract: Zymomonas mobilis, because of its fermentative metabolism, has potential food applications
in the development of leavened baked goods consumable by people with adverse responses to
Saccharomyces cerevisiae. Since Z. mobilis is not able to utilize maltose present in flour, the effect of
sucrose addition (2.5 g/100 g flour) on bread dough leavening properties was studied. For comparison
purposes, leavening performances of S. cerevisiae with and without sucrose were also investigated.
Doughs leavened by Z. mobilis without sucrose addition showed the lowest height development
(14.95 ± 0.21 mm) and CO2 production (855 ± 136 mL). When sucrose was added, fermentative
performances of Z. mobilis significantly (p < 0.05) improved (+80% and +85% of gas production
and retention, respectively), with a dough maximum height 2.6 times higher, results indicating that
Z. mobilis with sucrose can be leavened in shorter time with respect to the sample without addition.
S. cerevisiae did not benefit the sucrose addition in terms of CO2 production and retention, even if lag
leavening time was significantly (p < 0.05) shorter (about the half) and time of porosity appearance
significantly (p < 0.05) longer (about 26%) with respect to S. cerevisiae alone. Results demonstrate that
in the presence of sucrose, Z. mobilis can efficiently leaven a bread dough, thus providing innovation
possibilities in the area of yeast-free leavened products.
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1. Introduction

Saccharomyces cerevisiae is by far the most common microorganism used for alcoholic beverage
and leavened dough production. Human exposure to this yeast species is massive; not only these
products contains S. cerevisiae, but also multi-vitamin food supplements, probiotics preparation, and
even vaccines production [1]. So far, the possibility of adverse responses related to its ingestion is
spreading [2].

While food intolerance is described as an adverse reaction to food not determined by a cell-mediated
immune response [3,4], food allergy is described as an exaggerate immune system response against
food components [5] with consequent antibodies production [6].

In patients with inflammatory bowel disease or Crohn’s disease, S. cerevisiae cell wall components
have been recognized as antigens and anti-S. cerevisiae antibodies (ASCA) can be used as specific
diagnostic markers [7–9]. However, investigations on the physiological mechanisms that may contribute
to the onset of S. cerevisiae allergy and/or intolerance are still scarcely documented within the scientific
literature. Indeed, in all these patients, dietary restrictions avoiding the ingestion of foods in which S.
cerevisiae is present are recommended [10].
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With the aim of fulfilling the requirement of baked goods consumable by people with adverse
responses to the ingestion of S. cerevisiae, scientific research has been focusing great attention toward
the development of yeast-free leavened products. De Bellis et al. [11] recently investigated the use of
Leuconostoc citreum as starter for a liquid type-II sourdough. Because of its similarity to S. cerevisiae
fermentation metabolism, the Gram-negative bacterium Zymomonas mobilis can also be considered as
an attractive alternative to yeast in dough leavening [12]. Z. mobilis, classified as GRAS by FDA [13],
possesses a narrow spectrum of substrates employable as carbon and energy source: only sucrose,
glucose, and fructose can be metabolized through the Entner-Doudoroff pathway, giving ethanol and
CO2 as final products [14].

Nevertheless, in wheat flour, the main fermentable sugar is maltose, whose concentration ranges
from 1.7 to 3 g/100 g [15], while only 0.22–0.43 g/100 g is the sum of glucose, fructose, and sucrose
fermentable by Z. mobilis [16].

To increase glucose availability, Musatti et al. [17] investigated the possibility of obtaining a
gradual glucose release in a model dough exploiting the constitutive maltose hydrolytic activity of
Lactobacillus sanfranciscensis, an obligate heterofermentative key bacterium that dominates in traditional
type I sourdough [18]. The results confirmed that when the two microorganisms were combined at
high cell concentration (9 log CFU/g dough), CO2 production was higher than the mathematical sum of
the gas produced by the single bacteria, but only during the first hours of leavening. The subsequent
efficiency loss may be due to several factors, above all glucose shortage for Z. mobilis, as well as the
decrease of dough pH that can negatively affect both Lactobacillus and Zymomonas metabolism [17].

Another applied strategy to overcome the limited amount of sugars fermentable by the bacterium
may focus on the addition to the dough formulation of sugars (e.g., sucrose and glucose) that Zymomonas
is able to ferment. Oda and Tonomura [12] reported good leavening abilities in presence of 5 g/100
g flour of sucrose, whereas higher amounts (up to 35 g/100 g flour) decrease Z. mobilis fermentative
performances. Musatti et al. [19] demonstrated that in presence of 1 or 5 g/100 g flour, Z. mobilis
efficiently leavens a dough; the higher the glucose addition, the higher the CO2 produced. However,
the highest amount of glucose tested (5 g/100 g flour) was not completely consumed by Z. mobilis;
this could negatively affect the final taste of the bread, imparting high sweetness and modifying its
nutritional properties because of the high glycaemic impact and the amount of Maillard compounds.

To the best of our knowledge, no data are available concerning sucrose addition lower than 5
g/100 g flour in bread dough and not always the leavening performances of S. cerevisiae have been
compared in the same experimental conditions. Note also that sucrose is a cheaper carbon source rather
than glucose (263 vs. 336 Euro/10 kg, Sigma-Aldrich, St Louis, MO, USA). The aim of this work is to
investigate the effect of a low sucrose addition (2.5 g/100 g flour) on the dough leavening performance
of Z. mobilis, in order to limit any possible modification of the sensory and nutritional features of
the final leavened product. For comparison purposes, fermentative performances of the traditional
baking yeast were also investigated and used as benchmark, applying the same cell concentration (7
log CFU/g) used for Z. mobilis. Doughs were characterized in terms of volume development, CO2

production and retention for leavening times up to 24 h. The lag leavening time and leavening rates
were also calculated from the reofermentographic curves obtained for each tested condition. Time
course of microbial population, sugar consumption, and ethanol production were also analyzed.

2. Materials and Methods

2.1. Materials and Samples

A strong Manitoba flour (14 g/100 g proteins; Carrefour, Milan, Italy) was used. Compressed
baker’s yeast (Lievital, Lesaffre Italia S.p.A., S. QuiricoTrecasali, Parma, Italy) and sucrose (Carrefour,)
were purchased at a local supermarket and yeast was stored at 4 ◦C until use within the first two
weeks after purchase. Zymomonas mobilis subs. mobilis type strain DSM 424 (Deutsche Sammlung
von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) was used. Z. mobilis strain
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maintenance and biomass production were performed as reported by Musatti et al. [17]. In the case of
compressed bakers’ yeast, to calculate the cell amount (log CFU/g) to add to the dough in order to
reach the same level of inoculum of Z. mobilis, a weighed portion was suspended in 9× physiological
solution (NaCl 9 g/L); the obtained mixture was subjected to serial decimal dilutions and plated in Yeast
Glucose Chloramphenicol Agar (YGC, Scharlab, Barcelona, Spain), incubated at 25 ◦C for 3–5 days.

Dough samples were produced and tested in duplicate (Table 1), leavened by Z. mobilis or S.
cerevisiae, without or with sucrose addition (2.5 g/100 g flour). Microbial cell inoculum was maintained
constant at a low level (7 log CFU/g dough) similar to a sourdough, being Z. mobilis cell production far
more expensive than that of S. cerevisiae because of the much lower biomass yield [20,21].

Table 1. Dough sample identifications and formulations: ingredients are expressed on flour basis,
while inocula on dough basis.

Sample 1 Flour (g/100 g) Water (g/100 g) Sucrose (g/100 g) Z. mobilis (log CFU/g) S. cerevisiae (log CFU/g)

Z 100 63.3 - 7 -
Zs 100 57.3 2.5 7 -
S 100 63.3 - - 7
Ss 100 57.3 2.5 - 7
1 Z, dough with Z. mobilis; Zs, dough with Z. mobilis containing sucrose; S, dough with S. cerevisiae; Ss, dough with S.
cerevisiae containing sucrose.

2.2. Flour Characterization and Dough Production

Flour mixing properties without or with sucrose addition (2.5 g/100 g of flour) were assessed by
means of a Brabender® Farinograph (Brabender OHG, Duisburg, Germany; 300 g chamber, 30 ◦C),
a worldwide standard for testing flour quality. Flour (300 g) was pre-mixed for 1 min, then water
(sucrose when needed was dissolved in it) was added to the flour up to reach a dough consistency of
500 ± 25 BU (Brabender Unit); water absorption (g/100 g), arrival time (min), dough consistency (BU),
and dough stability (min) were measured. Data were reported as mean and standard deviation values
of two replicates. Dough samples were produced using the same equipment used for testing flour
mixing properties (Brabender® Farinograph) and taking into account the water absorption values
of flour with or without sucrose addition. Sucrose was dissolved in water before addition to flour.
Microbial biomass was added to flour in liquid form, while compressed yeast was suspended in water
immediately before the trial. Kneading was carried out for 8 min at 30 ◦C in order to ensure a complete
hydration of the ingredients and a well-developed protein network. All the samples had a dough
consistency of 500 ± 25 BU that guarantees the workability of the dough by hand or an industrial
forming machine [22]. Dough sample identifications and formulations are summarized in Table 1.
Each dough was produced twice in order to have two technological replicates.

2.3. Microbial Population Counts

Immediately after dough production (t0) and after 8 and 24 h (t8 and t24) of leavening, 5–8 g of
dough were diluted in 45–72 mL sterile peptone water (10 g/L bacto-peptone in deionized water, pH
6.8) and homogenized in a Stomacher 400 Circulator (Seward, Worthing West Sussex, UK) for 5 min at
260 rpm. After decimal dilutions in the same solution, suspensions were plated in appropriate media:
Z. mobilis was plated onto DSM agar (DSM broth added of 15 g/L agar), incubating at 30 ◦C for 3 days
in anaerobic conditions; total bacterial count (TBC) was determined by pour-plating in Tryptic Soy
Agar (TSA, Scharlab) after incubation at 30 ◦C for 48–72 h; TSA was added of 0.1% (v/v) Cycloheximide
(Sigma-Aldrich) for avoiding S. cerevisiae growth. Yeasts were determined by pour-plating in Yeast
Glucose Chloramphenicol Agar (YGC, Scharlab) and incubated at 25 ◦C for 3–5 days. Counts were
reported as logarithms of the number of colony forming units (log CFU/g of dough) as mean and
standard deviation values of two technological replicates.
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2.4. Sugars and Ethanol Determination

Maltose, glucose, and sucrose were determined in duplicate immediately after dough production
(t0) and after 8 and 24 h of leavening by using the maltose, sucrose, and D-glucose enzymatic kit
(K-Masug 11/16, Megazyme, Bray Co. Wicklow, Ireland). Ethanol produced at the same sampling
times was determined by HPLC as reported by Musatti et al. [17]. Results represent the average and
standard deviation values of two technological replicates and are referred to 100 g of flour (g/100 g).

2.5. Dough Leavening Properties

Dough development and CO2 production and retention during leavening were continuously
recorded at 26 ◦C for 24 h by a Chopin Rheofermentometer F3 (Chopin, Villeneuve-La-Garenne Cedex,
France) as reported by Cappa et al. [23]. The following indices were taken from the resulting curves:
dough maximum height (Hm, mm); time corresponding to dough maximum height (T1, h); total
gaseous production (CO2-TOT, mL); CO2 retained (CO2-RET, mL); time of dough porosity appearance
(Tx, h). Two other unconventional indices were extrapolated from the dough development curves:
The lag leavening time (LLT, h), defined as the time before an increase in dough height was noticed;
and the leavening rate (LR, mm/h), as the slope of the first linear part of the curve after LLT. Results
represent the average and standard deviation values of two technological replicates.

2.6. Dough pH Evolution during Leavening

During leavening, pH was continuously recorded on 50 g of each dough sample using a pH-meter
PHM 220 (Radiometer, A. De Mori Strumenti S.p.A., Milan, Italy). Results represent the average and
standard deviation values of two technological replicates.

2.7. Statistical Analysis

Analytical results were treated by one-way analysis of variance (ANOVA), followed by the least
significant difference (Fisher’s LSD) test to highlight significant differences (p < 0.05) among samples.
Data were processed by Statgraphics Centurion (v. 18, Statistical Graphics Corp., Herndon, VA, USA).

3. Results and Discussion

3.1. Flour Characterization

The flour used in the present study is a type 0 Manitoba, a variety of common wheat (Triticum
aestivum) characterized by a high protein content. Flour analysis confirmed a high protein content of
12.89 ± 0.08 g/100 g db. The amount of water necessary to reach a dough consistency of 500 ± 25 BU
(62.0 ± 1.8 g/100 g of flour), the arrival time (2.0 ± 0.3 min), and the dough stability (12.5 ± 0.5 min)
indicated that the dough can withstand long mixing and leavening phases typical of bread and pizza
production (Figure 1).

Indeed, the Italian voluntary classification of wheat [24] defines flour having protein content of
11.5–13.4 and 13.5–14.4 g/100 g db and farinographic stability ≥5 and ≥10 min as “bread-making flour”
and “superior bread-making wheat flour,” respectively.

When sucrose was added to the flour, no significantly (p < 0.05) different water absorption
(57.7 ± 0.7 g/100 g of flour) and arrival time (2.0 ± 0.1 min) values were obtained, whereas dough
stability (18.0 ± 0.3 min) significantly (p < 0.05) increased, indicating that the amount of added sucrose
partially affected the flour-mixing properties (Figure 1).
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Figure 1. Mixing properties of flour without (light blue) and with (blue) sucrose addition (average
values of two replicates, relative standard deviation values ≤10%). BU, Brabender Unit.

3.2. Sugar, Ethanol, pH, and Microbial Evolution during Dough Leavening

Sugar and ethanol evolutions during leavening are reported in Table 2, while time course of
microbial counts and pH are shown in Figures 2 and 3, respectively. In dough leavened by Z. mobilis
(sample Z), maltose remained unfermented and accumulated up to 3.85 ± 0.08 g/100 g flour after 24 h,
because of the hydrolytic action of endogenous amylases [17].

Table 2. Maltose, glucose, sucrose, and ethanol concentrations (g/100 g flour; mean± standard deviation
values of two technological replicates) in doughs leavened at 26 ◦C by Z. mobilis (Z) or S. cerevisiae (S),
without and with sucrose (s) addition (2.5 g/100 g flour) at 0, 8, and 24 h of leavening. See Table 1 for
sample identifications and formulations.

Leavening Time (h)
Sample

Z Zs S Ss

Maltose
0 1.84 ± 0.38 bc 1.49 ± 0.04 ab 2.09 ± 0.04 c 1.27 ± 0.13 a

8 3.08 ± 0.10 b 2.36 ± 0.28 a 2.13 ± 0.09 a 2.55 ± 0.11 a

24 3.85 ± 0.08 b 3.38 ± 0.37 b n.d. 2.21 ± 0.17 a

Glucose
0 0.27 ± 0.05 b 0.03 ± 0.01 a 0.36 ± 0.01 c 0.62 ± 0.02 d

8 0.02 ± 0.01 a 0.07 ± 0.03 a 0.09 ± 0.01 a 0.79 ± 0.05 b

24 n.d. 0.07 ± 0.02 a n.d. 0.35 ± 0.05 b

Sucrose
0 n.d. 2.78 ± 0.36 a n.d. 2.05 ± 0.04 a

8 n.d. 2.76 ± 0.29 b n.d. 0.17 ± 0.07 a

24 n.d. n.d. n.d. n.d.

Ethanol
0 n.d. n.d. n.d. n.d.
8 0.24 ± 0.01 a 0.10 ± 0.07 a 1.18 ± 0.14 b 0.81 ± 0.01 b

24 0.75 ± 0.01 a 1.72 ± 0.01 b 3.49 ± 0.29 d 2.58 ± 0.05 c

n.d.: not detectable (<0.01 g/100 g flour); a–d For each compound, different superscript letters within a raw indicate
significantly different samples (p < 0.05).

On the contrary, the little amount of glucose naturally present in flour was promptly consumed
and converted into ethanol, reaching the maximum value of 0.75 g/100 g flour. Z. mobilis grew slightly
from 7.5 to 8 log CFU/g while TBC sharply increased more than 4 log cycles, from 4 to 8 log CFU/g,
owing to the availability of maltose that can be consumed by other microbial strains rather than Z.
mobilis. Dough pH slowly decreased from 6 to around 5.4 in 24 h, because of the limited production of
organic acids by Z. mobilis [14]. In doughs leavened by S. cerevisiae (sample S), compressed bakers’
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yeast was used within the first 2 weeks of purchase; even if shelf life of compressed yeast usually lies
between 35 and 40 days at refrigerated temperature, intracellular glutathione concentration is high at
the beginning of shelf life and decreases during storage, being considered an indicator of cell stress
tolerance [25]. As expected maltose and glucose were completely consumed at the end of leavening,
resulting in a final ethanol concentration of 3.49 g/100 g flour, significantly (p < 0.05) higher than in
Z dough. During leavening, yeast population increased from 6.8 to around 8.0 log CFU/g after 24
h, while TBC grew less than in Z (only 2 log cycles, from 4 to 6 log CFU/g), because of the limited
amount of sugars consumed by S. cerevisiae and to the antimicrobial effect of ethanol. Dough pH trend
was similar to that of sample Z, because S. cerevisiae produces organic acids, mainly succinic, acetic,
and carbonic acids only during the respiration phase in the first leavening period; when oxygen is
consumed, the organism switches to alcoholic fermentation, organic acid production is inhibited, and
pH stabilized [26]. When sucrose was added to the dough fermented by Z. mobilis (sample Zs), its
concentration started to decrease after 8 h of leavening and was totally consumed at 24 h. From 8
to 24 h, an increase in Z. mobilis population was observed and the final ethanol concentration was
significantly (p < 0.05) higher (1.72 g/100 g) than in Z sample without sucrose addition.
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Figure 2. Microbial counts of Z. mobilis (green), S. cerevisiae (orange) and total bacteria (black) after 0, 8,
and 24 h of leavening at 26 ◦C of doughs fermented by Z. mobilis (Z, light green) or S. cerevisiae (S, light
orange) without and with sucrose (Zs and Ss respectively, green and orange) addition (average values
of two technological replicates; error bars represent standard deviation values). See Table 1 for sample
identifications and formulations.
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Figure 3. Dough development (A,B) and pH decrease (C,D) of doughs leavened for 24 h at 26 ◦C by Z.
mobilis (Z, light green) or S. cerevisiae (S, light orange) without and with sucrose (Zs and Ss respectively,
green and orange) addition (average curves of two technological replicates; relative standard deviation
values ≤9%). See Table 1 for sample identifications and formulations.

No relevant changes were observed in pH trends with respect to Z sample, while a lower TBC
growth was registered from 4 to 6 log CFU/g, because of the presence of ethanol. Dough samples added
with sucrose and leavened by S. cerevisiae (sample Ss) evidenced a certain amount of fermentable sugars,
around 0.5 g/100 g present even after 24 h. Yeast was also found to grow and ferment less (ethanol 2.58
g/100 g) than in sample S, while dough pH remained at higher levels. Such a behavior highlighted that
the presence of sucrose produces an osmotic stress able to inhibit S. cerevisiae metabolism. Note that S.
cerevisiae consumed sucrose more rapidly than Z. mobilis because of the presence of invertase [26,27].
In Z. mobilis, sucrose can be split extracellularly or intracellularly but also levan can be produced via
levansucrase [14]. S. cerevisiae prefers sucrose to maltose, the latter being transported into the cell with
the help of a specific transmembrane transporter before use [28].

3.3. Dough Leavening Properties

Dough technological evaluation results are reported in Table 3 and Figure 3. According to the low
microbial concentration, dough rising needed long time to start. Sample Z without sucrose addition
showed a long lag leavening time, more than double respect to S, confirming the low fermentative
activity of Z. mobilis in comparison to baker’s yeast. Accordingly, T1 was about 60% longer in Z than in
S, and leavening rate was about 65% lower. The majority (86%) of the CO2 produced was retained by Z
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dough, but the lowest dough development was obtained because the CO2 TOT was significantly lower
(p < 0.05) in comparison to the other samples. In a real bread-making process, the dough leavened
using 7 log CFU/g of Z. mobilis should have optimum leavening length shorter than 10 h, because after
this time the dough started to lose CO2.

Table 3. Dough leavening properties (mean ± standard deviation values of two technological replicates)
of samples leavened for 24 h at 26 ◦C by Z. mobilis (Z) or S. cerevisiae (S) with or without sucrose (s)
addition. See Table 1 for sample identifications and formulations.

Leavening Indices 1 Z Zs S Ss

Hm (mm) 14.95 ± 0.21 a 39.7 ± 1.41 b 45.95 ± 2.33 c 49.45 ± 1.06 c

T1 (h) 11.16 ± 0.06 c 11.55 ± 0.21 c 7.87 ± 0.35 b 7.87 ± 0.35 b

LLT (h) 7.12 ± 0.12 d 6.07 ± 0.02 c 3.19 ± 0.12 b 1.56 ± 0.04 a

LR (mm/h) 5.16 ± 0.05 a 6.86 ± 1.54 a 14.56 ± 0.95 c 10.60 ± 0.10 b

CO2-TOT (mL) 855 ± 136 a 1542 ± 38 b 2231 ± 20 c 2086 ± 136 c

CO2-RET (mL) 739 ± 3 a 1368 ± 23 b 1570 ± 27 c 1574 ± 2 c

Tx (h) 10.75 ± 0.78 c 11.26 ± 0.34 c 6.57 ± 0.07 a 8.29 ± 0.12 b

a–d Values with different superscript letters within a row are significantly different (p < 0.05). 1 Hm, dough maximum
height; T1, time at which the dough maximum height occurs; LLT, lag leavening time; LR, leavening rates; CO2-TOT,
gaseous production; CO2-RET, gaseous retention; Tx, time of dough porosity appearance.

S. cerevisiae did not benefit of sucrose addition in terms of CO2 production and retention, but
LLT was significantly (p < 0.05) shorter (about the half) and Tx significantly (p < 0.05) longer, about
26% with respect to S. The dough started to lose CO2 after a longer time because the presence of
sucrose contributed to increase dough viscous characteristics and extensibility [29], thus improving
gas retention capacity [26]. This behavior is also in agreement with the higher farinographic stability
of the dough containing sucrose (Figure 1).

On the contrary, sucrose addition definitely enhanced Z. mobilis leavening performances: Zs
showed a significant (p < 0.05) increase of both CO2 TOT and CO2 RET, around +80 and +85%
respectively, in comparison to sample Z, resulting also in a significantly (p < 0.05) higher Hm, about 2.6
times higher. These results are in agreement with the microbial counts and ethanol concentrations
measured after 24 h leavening (Figure 2; Table 2). Sample Zs showed also a significantly (p < 0.05)
lower LLT of about 1 h, a higher LR (+68%) and a Tx postponed of about 30 min, indicating that Zs can
be leavened in shorter time with respect to the sample Z.

The improvement of Z. mobilis leavening performances achieved in the present study using 2.5
g/100 g flour is even more interesting considering that Z. mobilis is able to completely use the added
sugar. This can have clear benefits in terms of final bread taste as well as in nutritional features and color,
e.g., lower sweetness and less available reducing sugars and formation of Maillard reaction compounds.

4. Conclusions

The work demonstrates that sucrose addition is an effective strategy to improve Z. mobilis
leavening performances, increasing microbial growth, as well as gaseous production and retention,
with a consequent higher dough development. Even if in the tested conditions the same leavening
performances of S. cerevisiae were not achieved, results highlight the high potentialities associated with
the use of Z. mobilis in combination with low sucrose levels (2.5 g/100 g).

Further studies are required in order to investigate the effects of other ingredients on the leavening
performances of Z. mobilis DSM 424. In particular, attention will be paid to the application of Z. mobilis
in doughs with high concentrations of added sugars, salt, and fats; these high osmotic stress conditions
are already reported to affect yeast leavening performance [30]. As well as currently happens for
S. cerevisiae, research should aim at selecting the best performing Z. mobilis strain for each kind of
dough preparation (i.e., bread, croissant, pizza, traditional festivity Italian cake—Panettone). This
diversification would facilitate people with inflammatory bowel disease and/or intolerance reaction to
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S. cerevisiae, which have to avoid S. cerevisiae ingestion, excluding most of the traditional baked goods
from their diet.

Author Contributions: Conceptualization, A.M., C.C., C.A., and M.R.; data curation, A.M. and C.C.; formal
analysis, A.M., C.C., and C.M.; funding acquisition, C.A. and M.R.; investigation, A.M. and C.M.; project
administration, M.R.; resources, C.A. and M.R.; software, C.C.; supervision, M.R.; writing—original draft, A.M.,
C.C., C.A., and M.R.; writing—review and editing, A.M. and C.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by REGIONE LOMBARDIA, Bando Linea R&S per Aggregazioni Programma
Operativo Regionale 2014–2020, Strategia “InnovaLombardia” (D.G.R. n. 2448/2014) Project number, 145007.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Salamati, S.; Martins, C.; Kulseng, B. Baker’s yeast (Saccharomyces cerevisiae) antigen in obese and normal
weight subjects. Clin. Obes. 2015, 5, 42–47. [CrossRef]

2. Rinaldi, M.; Perricone, R.; Blank, M.; Perricone, C.; Shoenfeld, Y. Anti-Saccharomyces cerevisiae autoantibodies
in autoimmune diseases: From bread baking to autoimmunity. Clin. Rev. Allergy Immunol. 2013, 45, 152–161.
[CrossRef]

3. Caselli, M.; Lo Cascio, N.; Rabitti, S.; Eusebi, L.H.; Zeni, E.; Soavi, C.; Cassol, F.; Zuliani, G.; Zagari, R.M.
Pattern of food intolerance in patients with gastro-esophageal reflux symptoms. Minerva Med. 2017, 108,
496–501. [CrossRef]

4. Zar, S.; Kumar, D.; Benson, M.J. Food hypersensitivity and irritable bowel syndrome. Aliment. Pharmacol.
Ther. 2001, 15, 439–449. [CrossRef]

5. Mansueto, P.; Montalto, G.; Pacor, M.L.; Esposito-Pellitteri, M.; Ditta, V.; Lo Bianco, C.; Leto-Barone, S.M.; Di
Lorenzo, G. Food allergy in gastroenterologic diseases: Review of literature. World J. Gastroenterol. 2006, 12,
7744–7752. [CrossRef]

6. Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Fenton, M.J. Guidelines for
the diagnosis and management of food allergy in the United States: Report of the NIAID-sponsored expert
panel. J. Allergy Clin. Immunol. 2010, 126, S1–S58. [CrossRef] [PubMed]

7. Brunner, B.; Scheurer, U.; Seibold, F. Differences in yeast intolerance between patients with Crohn’s disease
and ulcerative colitis. Dis. Colon Rectum 2007, 50, 83–88. [CrossRef] [PubMed]

8. Desplat-Jégo, S.; Johanet, C.; Escande, A.; Goetz, J.; Fabien, N.; Olsson, N.; Humbel, R.L. Update on
anti-Saccharomyces cerevisiae antibodies, anti-nuclear associated anti-neutrophil antibodies and antibodies to
exocrine pancreas detected by indirect immunofluorescence as biomarkers in chronic inflammatory bowel
diseases: Results of a multicenter study. World J. Gastroenterol. 2007, 13, 2312–2318. [CrossRef] [PubMed]

9. Forcione, D.G.; Rosen, M.J.; Kisiel, J.B.; Sands, B.E. Anti-Saccharomyces cerevisiae antibody (ASCA) positivity
is associated with increased risk for early surgery in Crohn’s disease. Gut 2004, 53, 1117–1122. [CrossRef]

10. Bansal, R.A.; Tadros, S.; Bansal, A.S. Beer, Cider, and Wine Allergy. Case Rep. Immunol. 2017, 2017, 7958924.
[CrossRef]

11. De Bellis, P.; Rizzello, C.G.; Sisto, A.; Valerio, F.; Lonigro, S.L.; Conte, A.; Lorusso, V.; Lavermicocca, P. Use of
a selected Leuconostoc citreum strain as a starter for making a “yeast-free” bread. Foods 2019, 8, 70. [CrossRef]
[PubMed]

12. Oda, Y.; Tonomura, K. Dough-leavening ability by Zymomonas mobilis and its application to breadmaking.
J. Food Sci. 1994, 59, 171–174. [CrossRef]

13. Krishnan, M.S.; Taylor, F.; Davison, B.H.; Nghiem, N.P. Economic analysis of fuel ethanol production from
corn starch using fluidized-bed reactor. Bioresour. Technol. 2000, 75, 99–105. [CrossRef]

14. Sprenger, G.A. Carbohydrate metabolism in Zymomonas mobilis: A catabolic highway with some scenic
routes. FEMS Microbiol. Lett. 1996, 145, 301–307. [CrossRef]

15. Stear, C.A. Handbook of Breadmaking Technology; Elsevier Science Publishers Ltd.: Essex, UK, 1990; Chapter 1.8;
pp. 306–372.

http://dx.doi.org/10.1111/cob.12079
http://dx.doi.org/10.1007/s12016-012-8344-9
http://dx.doi.org/10.23736/S0026-4806.17.05379-4
http://dx.doi.org/10.1046/j.1365-2036.2001.00951.x
http://dx.doi.org/10.3748/wjg.v12.i48.7744
http://dx.doi.org/10.1016/j.jaci.2010.10.008
http://www.ncbi.nlm.nih.gov/pubmed/21134576
http://dx.doi.org/10.1007/s10350-006-0749-1
http://www.ncbi.nlm.nih.gov/pubmed/17096175
http://dx.doi.org/10.3748/wjg.v13.i16.2312
http://www.ncbi.nlm.nih.gov/pubmed/17511029
http://dx.doi.org/10.1136/gut.2003.030734
http://dx.doi.org/10.1155/2017/7958924
http://dx.doi.org/10.3390/foods8020070
http://www.ncbi.nlm.nih.gov/pubmed/30781845
http://dx.doi.org/10.1111/j.1365-2621.1994.tb06926.x
http://dx.doi.org/10.1016/S0960-8524(00)00047-X
http://dx.doi.org/10.1111/j.1574-6968.1996.tb08593.x


Foods 2020, 9, 89 10 of 10

16. Martínez-Anaya, M.A.; Pitarch, B.; Bayarri, P.; Benedito de Barber, C. Microflora of the sourdoughs of wheat
flour bread. X. Interactions between yeasts and lactic acid bacteria in wheat doughs and their effects on
bread quality. Cereal Chem. 1990, 67, 85–91.

17. Musatti, A.; Mapelli, C.; Foschino, R.; Picozzi, C.; Rollini, M. Unconventional bacterial association for dough
leavening. Int. J. Food Microbiol. 2016, 237, 28–34. [CrossRef]

18. Gobbetti, M.; Corsetti, A. Lactobacillus sanfrancisco a key sourdough lactic acid bacterium: A review.
Food Microbiol. 1997, 14, 175–187. [CrossRef]

19. Musatti, A.; Mapelli, C.; Rollini, M.; Foschino, R.; Picozzi, C. Can Zymomonas mobilis substitute Saccharomyces
cerevisiae in cereal dough leavening? Foods 2018, 7, 61. [CrossRef]

20. Musatti, A.; Rollini, M.; Sambusiti, C.; Manzoni, M. Zymomonas mobilis: Biomass production and use as
dough leavening agent. Ann. Microbiol. 2015, 65, 1583–1589. [CrossRef]

21. Picozzi, C.; Mariotti, M.; Cappa, C.; Tedesco, B.; Vigentini, I.; Foschino, R.; Lucisano, M. Development of a
Type I gluten-free sourdough. Lett. Appl. Microbiol. 2016, 62, 119–125. [CrossRef]

22. Cappa, C.; Lucisano, M.; Mariotti, M. Influence of Psyllium, sugar beet fibre and water on gluten-free dough
properties and bread quality. Carbohydr. Polym. 2013, 98, 1657–1666. [CrossRef] [PubMed]

23. Cappa, C.; Lucisano, M.; Raineri, A.; Fongaro, L.; Foschino, R.; Mariotti, M. Gluten-free bread: Influence of
sourdough and compressed yeast on proofing and baking properties. Foods 2016, 5, 69. [CrossRef] [PubMed]

24. Aldovrandi, L.; Vitali, F. Criteri di valutazione del frumento tenero da parte dell’industria molitoria.
Molini d’Italia 1995, 46, 16–19.

25. Musatti, A.; Manzoni, M.; Rollini, M. Post-fermentative production of glutathione by baker’s yeast (S. cerevisiae)
in compressed and dried forms. New Biotechnol. 2013, 30, 219–226. [CrossRef] [PubMed]

26. Verheyen, C.; Albrecht, A.; Elgeti, D.; Jekle, M.; Becker, T. Impact of gas formation kinetics on dough
development and bread quality. Food Res. Int. 2015, 76, 860–866. [CrossRef]

27. Struyf, N.; Van der Maelen, E.; Hemdane, S.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Bread dough and
baker’s yeast: An uplifting synergy. Compr. Rev. Food Sci. Food Saf. 2017, 16, 850–867. [CrossRef]
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