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Abstract

Previous neuroimaging studies have suggested a role of amygdala in trait anxiety level, in which amygdala was typically
treated as a whole. To date, it remains unknown whether the morphology of specific subregions of amygdala are associated
with trait anxiety. Here, we employed a shape analysis approach to locate the association between its morphology and trait
anxiety on the surface of amygdala. 24 healthy young participants were included. The boundary of amygdala for each
subject was first manually outlined using high-resolution magnetic resonance (MR) image, followed by 3D surface
reconstruction and parameterization using spherical harmonic description. Two point-wise metrics, direct displacement
between the individual surface and atlas surface and its normal projection, were used to quantify the surface morphology of
amygdala. Statistical analysis revealed significant correlations between the two surface metrics and trait anxiety levels,
which were located around the lateral and central nucleus of right amygdala. Our results provided localized information for
the association between amygdala and trait anxiety, and suggested a central role of the lateral and central nucleus of right
amygdala on trait anxiety.
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Introduction

It has been well-known that amygdala performs a primary role

in emotional processing, such as fear [1], threatening situation

[2,3], and stressful situation [4,5]. And previous studies have

suggested a strong association between structural/functional

characteristics of amygdala and trait anxiety, which is the

potential, or tendency to undergo uncomfortable experience

occurring when a person feels threatened by a situation [6,7].

For example, using functional magnetic resonance imaging

(fMRI), Stein and colleagues found increased activation of bilateral

amygdala during emotional processing in anxiety-prone subjects

[8]. Several resting-state fMRI studies have reported abnormalities

of amygdala-related connectivity in social anxiety disorders, such

as dysfunctions of the fronto-amygdala inhibition [9], decreased

connectivity between amygdala and visual cortices [10], and

increased connectivity between left amygdala and right median

prefrontal cortex [11]. Using histochemical techniques, Mora and

colleagues revealed that amygdaloid dopamine D2-like receptors

that were associated with the modulation of anxiety responses had

a topographically differentiated distribution within amygdala of

rats, mainly in the central amygdaloid nucleus [12]. In addition,

decreased volume of entire left amygdala was observed in

individuals with higher state/trait anxiety measures [13].

In contrast to the traditional volumetric analysis, surface

morphology analysis employs various shape modeling approaches

to represent the surface of various anatomical structures, allowing

for locating regional deformations on the surface [14]. A large

body of research has explored the surface morphology of brain

structures, such as the central sulcus [15], hippocampus [16–18],

and amygdala [19–23]. The key advantage of surface morphology

analysis was the ability of detecting subtle differences (i.e., that

could not be captured by volumetric measures) on the surface of

anatomical objects between subjects. For instance, Posener and

colleagues found no differences in hippocampal volume between

depressed patients and controls, but highly significant group

differences in hippocampal subregional shape using surface

morphology analysis [24]. Similarly, Tamburo and colleagues

observed significant shape differences on the surface of amygdala,

rather than the volume, between late-life depression patients and

normal subjects [25].

Using surface morphology analysis, a few studies have examined

changes of surface morphology of amygdala with affective

disorders. For instance, significant surface contraction around

basolateral nucleus of bilateral amygdala has been reported in late-

life depression subjects [25]. In addition, Peterson and colleagues

have found increased area in the dorsal and ventral surfaces of

amygdala in Tourette syndrome group [26]. However, it remains

unknown whether and how the surface morphology of amygdala is

associated with trait anxiety level across normal subjects.

Here, we investigated the association between 3D surface

morphology of amygdala and trait anxiety in 24 healthy young

participants. Given the central role of amygdala in emotional

processing, we expected to observe location-specific correlations

between surface morphological measures and trait anxiety.
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Specifically, we used quantitative trait measure in State-Trait

Anxiety Inventory (STAI-T) [27] to quantify the level of trait

anxiety for participants. The anatomical boundary of amygdala

for each subject was manually outlined by using high-resolution

structural magnetic resonance (MR) image, followed by 3D surface

reconstruction and parameterization using spherical harmonic

description. A general linear model was applied to detect

significant correlations between surface metrics and STAI-T

scores.

Materials and Methods

Participants
The present study included data from 25 young adults (males,

13; females, 12; age, 17–24 years). All subjects were recruited from

local community and campus. There is no history of neurological

and psychiatric disorders for all subjects. Our protocol was

approved by the Research Ethics Committee of the Beijing

Normal University. Informed written consent was obtained from

each subject. One image from a male was excluded because of

insufficient quality of the structural image (final n = 24).

All participants were asked to finish the STAI-T, and the scores

(4067.56) were used to quantify the level of trait anxiety. In

addition, the self-rating depression scale (SDS) [28] was tested for

each subject, as well.

Image Acquisition and Preprocessing
All scans were performed on the same 3.0 T Siemens Tim Trio

MRI scanner in the Imaging Center for Brain Research, Beijing

Normal University. High-resolution 3D T1-weighted images were

sagitally acquired by magnetization prepared rapid gradient echo

(MPRAGE) sequence: echo time = 3.44 ms; repletion

time = 1900 ms; inversion time = 900 ms; matrix = 2566256; in-

plane resolution = 161 mm; 176 sagital slices; thickness = 1 mm;

and NEX = 1.

All native MR images were first registered into stereotaxic space

[29], using a linear transformation [30]. Simultaneously, images

were corrected for nonuniformity artifacts using N3 algorithms

[31].

Manual Delineation of Amygdala
Raters were blind to the trait anxiety levels of all subjects. The

amygdala boundary in each coronal slice was manually traced

using itk-SNAP (http://www.itksnap.org) software, with which

raters could check the three orthogonal planes at the same time.

The amygdala was delineated according to the protocol that was

developed by the Center for Interdisciplinary Brain Sciences

Research (CIBSR) at the Stanford University School of Medicine

(http://cibsr.stanford.edu) [32].

The most anterior slice of amygdala appeared where anterior

commisure (AC) was the clearest (thickest, longest, and most

continuous). The inferior border was always marked by a white

matter tract just under the amygdala (see the arrow in Fig. 1A). As

for the medial border, it was formed by either high-intensity white

matter or cerebrospinal fluid (CSF). The superior border of the

amygdala was marked by a light white matter tract or a CSF

boundary (see the arrow in Fig. 1B). The lateral border of the

amygdala was marked by the thick, central white matter tract of

the temporal lobe. In some cases, the superior lateral border was

not clearly defined and we drew an arcing line from the superior

border to the white matter boundary on the lateral side of the

amygdala [33,34]. The most challenging part was the segmenta-

tion of transition (jumping) slice where both the amygdala and

hippocampus were present. On these slices, a band of white matter

or CSF could be seen dividing the two structures while the

temporal horn began to enlarge more superiorly along the lateral

side of the two structures (see the arrows in Fig. 1C). Raters must

carefully find out these slices and separate the amygdala and

hippocampus apart, at the same time, make the sagittal view as a

guide [35] (see Fig. 1D).

To estimate the reliability of the manual outlining, two raters

blind to the side of the brain (left or right) traced the boundary of

amygdala on five randomly selected brain volumes. Correlation

coefficients between the raters for the volumes of the left and right

amygdala were 0.90 and 0.91, respectively. After six months, one

rater repeated the delineations of amygdala in five randomly

selected subjects, and the intra-rater correlation coefficients were

0.96 for left side and 0.93 for the right side.

Surface Modeling and Registration
We performed the surface reconstruction using SPHARM

Modeling and Analysis Toolkit (SPHARM-MAT) (http://www.

iupui.edu/&shenlab). The spherical harmonic description method

was one of the best shape descriptors for amygdala [36].

To ensure that objects had a closed and connected spherical

topology, the topology of each manually 3D binary-segmented

image was fixed before surface modeling. The resulting images

were then parameterized based on spherical mapping. Briefly, a

one-to-one bijective mapping was created from the object surface

to the unit sphere (with spherical coordinates parameter domain)

using Control of Area and Length Distortions (CALD) method,

which minimized area distortion cost (ADC) as well as controlled

worst average length distortion cost (LDC) [37]. After surface

parameterization, each point on object surface had a spherical

coordinate representation. Then, each object surface was expand-

ed into a complete set of spherical harmonic basis functions. In this

way, the spherical coordinates were represented as the combina-

Figure 1. Manual delineation of the amygdala. A) The left
amgydala section in the coronal plane. The yellow line represents the
contour of amygdala and white arrow indicates its inferior border on
coronal plane. Picture in lower left corner is the thumbnail of brain in
coronal plane. L and R represent the left and right side, respectively. B)
The left amgydala section in the coronal plane. The yellow line
represents the contour of the amygdala and white arrow indicates its
superior border. C) The left amgydala and hippocampus sections in the
coronal plane. The yellow line represents the contour of amygdala and
blue line describes the border of hippocampus, the white arrow
indicates the temporal horn which begins to enlarge more superiorly
along the lateral side of the two structures. D) The left amgydala and
hippocampus sections in the sagittal plane. The yellow line represents
the contour of amygdala and blue line describes the border of
hippocampus. Picture in lower left corner is the thumbnail of the brain
in sagittal plane. A and P represent the anterior and posterior side,
respectively.
doi:10.1371/journal.pone.0047817.g001
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tions of spherical harmonic basis functions and the coefficients.

The object surface can be reconstructed by selecting the

coefficients of different degrees. More coefficients results in a

more detailed reconstruction [37].

Surface registration was to build the correspondences of the

points on the different surface models and facilitate further

comparisons across subjects. The procedure mainly included three

steps. Firstly, for each object, the first order ellipsoid (FOE)

constructed by selecting the first order spherical harmonic

coefficients was aligned, and the correspondences across all

surfaces were established. Secondly, the resulting surfaces were

averaged to generate a template atlas for each side of amygdala.

Finally, the surface of left or right amygdala of each subject were

further registered to the corresponding template using SPHARM

Registration with ICP (SHREC) algorithm, by minimizing the

mean square distances between the corresponding points in the

object surface and template [37].

Surface Metrics
We adopted two surface metrics that were widely used to

quantify the shape difference between individual amygdala and

the template. One metric was the direct Euclidean distance

between the points in the individual surface and template (i.e. the

average surface) [21]. The other metric was defined as the

projection of displacement between each point in each subject and

the corresponding point in the template to the unit normal of this

point in the template surface [38] (see Fig. 2). Here, a positive

value of the metrics indicated that the individual regional surface

had outward deformation with respect to the template surface and

vice versa. Each metric map was blurred using a 5 mm surface-

based diffusion smoothing kernel [39].

Statistical Analysis
To determine whether the surface metrics of amygdala have

significant linear correlations with trait anxiety, we performed

point-wise general linear models (GLM) with the surface metric as

independent variable and STAI-T score as dependent variable. To

correct for multiple comparison, random field theory was applied

[40]. Specifically, SurfStat (http://www.math.mcgill.ca/keith/

surfstat/) was used to implement the statistical analysis and

p,0.05 (corrected, cluster-level) was considered significant. Given

the fact that trait anxiety was mixed with depression [41], we

further performed the GLM analysis after controlling for SDS

score in the surface clusters that showed significant direct

correlations without controlling for SDS.

Results

Amygdala Volumetry
The number of voxels in the mask of manually-segmented

amygdala was counted as the volume for both left and right

amygdala. The volumes of all subjects (n = 24) are

18956176 mm3 for left amygdala, and 19376159 mm3 for right

amygdala. There was no significant correlation between the

volumes of bilateral amygdala and STAI-T scores (left: r = 20.38,

p = 0.068; right: r = 0.19, p = 0.385).

Local Shape Variation
Statistical analysis showed significant positive corrections

between direct displacement and STAI-T score in one surface

cluster (p = 0.037, cluster-level, corrected), which is around the lateral

and central nucleus of right amygdala. The cluster is displayed in

Fig. 3. Consistently, significant positive correlation between

normal displacement of amygdala surface and STAI-T score was

observed in one cluster with a very similar location (p = 0.043,

cluster-level, corrected), as shown in Fig. 4. There were no significant

correlations in left amygdala, using either of the two surface

metrics (p.0.1, cluster-level, corrected).

As expected, significant positive correlation was found between

the STAI-T score and SDS score (p = 0.008). In order to control

Figure 2. Demonstration of direct displacement and normal displacement. The red surface mesh represents the altas surface constructed
from all subjects, and the purple is an individual surface. Point A and B represent two corresponding points on the two surfaces. The black segment
between point A and point B represents the direct displacement vector. N is the normal direction of point A on the average surface. The black
segment between point A and point C represents the normal displacement (i.e. the projection of the direct displacement).
doi:10.1371/journal.pone.0047817.g002
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for the effect of depression level on morphology of amygdala, we

further tested the correlation of surface metrics with STAI-T

scores within the significant surface cluster of right amygdala (Fig. 3

and Fig. 4), after controlling for SDS scores. For both surface

metrics, the correlation between the averaged surface metrics of

the cluster and STAI-T scores remains significant, after controlling

for SDS scores (direct displacement, r = 0.54, p = 0.008; normal

displacement, r = 0.53, p = 0.01).

Discussion

In this study, we investigated the association between surface

morphology of amygdala and trait anxiety. Significant positive

correlation was observed between surface shape around the lateral

and central nucleus of right amygdala and STAI-T score. After

controlling for depressive level, we still found significant correla-

tion between surface morphology and trait anxiety in the same

location. These results suggested a central role of the lateral and

central nucleus of right amygdala in trait anxiety, which furthered

our understanding of the neural basis for trait anxiety.

Notably, our results showed that the association of morphology

with trait anxiety was confined to the right amygdala. This is

compatible with two hypotheses concerning the lateralization of

emotion processing [42]: the right hemisphere hypothesis [43] and

the valence hypothesis [44]. The right hemisphere hypothesis

suggests that all emotional processing is lateralized to the right

hemisphere, whereas the valence hypothesis suggests that positive

emotion is processed in the left hemisphere, whereas negative

emotions are processed in the right hemisphere. Particularly,

Bourne and colleagues explored the associations between patterns

of lateralization and anxiety, and found that participants with high

levels of trait anxiety were more lateralized to right hemisphere for

processing facial emotion [42]. More directly, Schienle and

colleagues found that trait anxiety was positively correlated with

the activation of right amygdala in young healthy volunteers [45].

In addition, generalized anxiety disorder (GAD) patients showed

greater activation to fearful faces than to happy faces in right

amygdala, while attending to their own subjective fear [46]. In line

with these previous findings, our results further supported the

notion that right amygdala is in charge of reacting to negative

emotion inputs.

The observed positive correlation indicates that the subjects

with higher trait anxiety level had more outward deformation in

right amygdala. This might implicate outward positioning shifts of

right amygdala surface with trait anxiety level. Another possible

implication is that more outward deformation represents a larger

right amygdala. This is compatible with a recent finding showing

larger right amygdala in GAD patients [47]. However, we failed to

find significant correlations between the volumes of bilateral

amygdala and STAI-T scores in our present study. One possible

reason for this negative finding is that the local deformation

change with trait anxiety level is too subtle to make the change of

entire volume notable. Further investigation is warranted to

validate this.

According to a histologically-based probabilistic atlas [35],

amygdala can be divided into three subregions: laterobasal group

(LB), centromedial group (CM), and superficial group (SF). In our

study, the observed significant correlation of surface morphology

with trait anxiety were mainly located around LB of right

amygdala,which mainly consists of the lateral and central nucleus.

It has been demonstrated that the lateral and central nucleus of

amygdala mediate reactions and actions elicited by negative

stimuli. For instance, Amorapanth and colleagues found fear-

arousing stimuli elicited reactive responses through the system

Figure 3. The correlation between direct displacement and trait anxiety. A) The rendering of right amygdala. The figure is shown from
direction of superior to inferior. B) Dorsal view of T-statistic map for correlation between direct displacement of right amygdala and STAI-T scores. C)
Dorsal view of P-statistic map. Only significant surface clusters (p = 0.037, cluster-level, corrected) are colored. Only one cluster (red) was survived as
shown. D) The scatter plot showing averaged direct displacement within the surface cluster versus STAI-T score. The red line is the regression line. E)
Ventral view of T-statistic map. F) Ventral view of P-statistic map. Notably, left amygdala was not shown because no significant results were found.
doi:10.1371/journal.pone.0047817.g003
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composed by lateral nucleus and central nucleus in rats [6].

Another study reported that the basolateral and central nuclei

played an important role in processing aversive information when

investigating the regulation exerted byc-Aminobutyric acid

mechanisms in rats [48]. In a GAD patient study, Etkin and

colleagues observed a significant increase of volume in the right

centromedial subregion of amygdala in patients, by using voxel-

based morphometry [49]. Moreover, the authors found that the

basolateral and centromedial connectivity patterns were signifi-

cantly less distinct in GAD patients than in healthy control [49].

Compatibly, the results of present study suggested an increased

volume of central and lateral volume in right amygdala with high

trait anxiety.

It is worth mentioning that a few studies have suggested

associations between the volumes or activities of amygdala and

depressive level [50,51]. Given that the effect of anxiety is typically

mixed with depressive level, the observed associations among the

surface morphology of amygdala and trait anxiety is possibly

attributed to the effect of depressive level. To test this, we

calculated the correlation between surface morphology and trait

anxiety after controlling SDS scores, and still found significant

correlation within the surface cluster of right amygdala. This

confirmatory result rules out the possibility that the observed

association of surface morphology of amygdala with trait anxiety is

driven by depressive level.

Nevertheless, a few issues need to be addressed. Firstly, we drew

the boundaries of amygdala manually. While the manual

extraction is believed to be accurate, it is time-consuming and

labor intensive. In future, accurate computational segmentation

methods for amygdala need to be developed for automatically

extracting the surfaces of amygdala. Secondly, our study included

subjects with a relatively small sample size, leading to a less

statistical power and therefore possible missing of some significant

results on the surface of amygdala. Further studies with larger

sample size should be conducted in future. Lastly, gender effects

on the subregional shape of amygdala have been observed [22].

The present study however did not take the gender factor into

account, because of the small sample size. Further investigation

with a larger sample size is warranted to address this issue.
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