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The EEG features of different emotions were extracted based on multi-channel and
forehead channels in this study. The EEG signals of 26 subjects were collected by the
emotional video evoked method. The results show that the energy ratio and differential
entropy of the frequency band can be used to classify positive and negative emotions
effectively, and the best effect can be achieved by using an SVM classifier. When only the
forehead and forehead signals are used, the highest classification accuracy can reach
66%. When the data of all channels are used, the highest accuracy of the model can
reach 82%. After channel selection, the best model of this study can be obtained. The
accuracy is more than 86%.

Keywords: EEG, emotion classification, support vector machine, decision tree, back propagation neural network,
k-nearest neighbor

INTRODUCTION

Emotions play a critical role in everyday life, reflecting a person’s current physical and mental
state and significantly impacting cognition, communication, and decision-making. Emotions are
generally considered to have two dimensions: arousal and valence, with arousal referring to the
emotion’s intensity; valence referring to the specific emotional content, divided into positive,
negative, and neutral feelings (Kim et al., 2013; Bailen et al., 2019). Positive emotions can enhance
subjective well-being and promote physical and mental health, while persistent negative emotions
will affect people’s physical and mental health and work status (Gupta, 2019). Different emotions
arise in response to external environmental stimuli and are accompanied by changes in personal
representations and psychological reactions, measured and identified by scientific methods
(Wolf, 2015).

Previous studies have shown that many signals enable us to identify emotions. Themost intuitive
expression, voice, posture signals, EEG, ECG, EMG, breathing, and other physiological signals can
also measure an emotion. Among many signals that can reflect emotional changes, EEG, with high
temporal resolution and non-artifactual characteristics, has been valued by many researchers and
is a standard method for emotion recognition. There are some features in EEG signals, which have
a strong ability of emotion classification. Petrantonakis and Hadjileontiadis (2010) proposed using
higher-order crossover features to extract EEG features, tested four different classifiers, and finally
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implemented a robust emotion classification method. Chen
et al. (2019) verified that the feature of differential entropy
significantly affects sentiment classification. In the distribution
of brain regions related to emotion classification, there are some
differences in the response of different brain regions to different
emotions. However, most studies on emotion classification
were based on multi-channel EEG signals (Gonzalez et al.,
2019; Goshvarpour and Goshvarpour, 2019). Many valuable
achievements have been obtained regarding the differences and
functions of different brain regions in emotion classification. For
example, a study shows that the prefrontal lobe and occipital lobe
greatly contribute to emotion classification (Asghar et al., 2019).
Firpi and Vogelstein (2011), in a feature selection research work,
it is concluded that electrodes F3, F4, T8 have the best effect on
emotion classification.

Although there have been many studies on emotion
recognition of EEG signals, several problems are still not clear
in previous studies. First of all, most of the available data sets
for emotion recognition use image, video, audio, and other
ways to induce emotional changes. Some researchers used EEG
signals from subjects’ happiness, anger, sadness, and joy videos
to classify these four types of emotions in related studies (Calix
et al., 2012). Other studies classify data based on emotions such
as happiness, relaxation, grief, and fear (Alazrai et al., 2018).
Therefore, the current criteria for emotion classification are
varied due to the high complexity and abstractness of emotion
itself. As a result, many researchers fail to reach a unified
emotional classification standard when doing work related to
emotion recognition. In practice, some studies directly use the
label of evoked data as the label of the final emotion classification,
but it may exist under the negative emotion but does not induce
the negative emotion. Therefore, there is confusion in the sample
classification at the beginning. Secondly, in the extraction of
EEG signals, the previous research found the most relevant
features of emotion from EEG signals. At present, four kinds
of features have been used for the emotion classification of
EEG signals: time-domain features, frequency domain features,
statistical features, and time-frequency domain features (Torres
et al., 2020). Although many of the above features have been
reported, there is still no detailed research to show which EEG
signal feature combinations are most significantly related to
emotion classification. Recently, researchers have proposed that
differential entropy has a good classification effect in emotion
classification. The characteristics of energy proportion and
differential entropy have significant effects on the two-channel
emotion classification (Al-Nafjan et al., 2017). However, Duan
et al. (2013) pointed out that in emotion classification, the degree
of discrimination of signals in high-frequency bands is greater
than that in low-frequency bands, indicating that differential
entropy feature classification in different frequency bands is
different still controversial. In addition, previous studies have
shown that different brain regions choose to extract features, and
finally, there are differences in the effect of emotion classification
(Lin et al., 2009; Zhong et al., 2020).

Therefore, a question worth studying is, when we use the
differential entropy extracted from different brain regions as
the feature of emotion classification, what is the difference in

the classification effect? Which brain region will extract the
features to achieve the best classification effect? Third, there
is a tendency to use as few channels as possible to identify
emotions for portability. One study found that when using only
the forehead electrode (Fp1 and Fp2) and using the gradient
lifting Decision Tree (DT) algorithm to classify happiness and
sadness, its accuracy can also reach 95.78% (Al-Nafjan et al.,
2017). However, no studies have been conducted to compare the
effect of dual and multi-channel classification simultaneously. Is
the classification effect of two-channel still better than that of
multi-channel under the same experimental setting?

Based on the above problems in emotion recognition research,
this study focused on emotions consisting of validity and
arousal when classifying emotions and focused on positive
and negative emotions within these two categories. The EEG
signals were extracted when the subjects watched positive and
negative videos, and four classifiers were selected to identify
emotion classification. In this study, Support Vector Machine
(SVM), DT, Back Propagation Neural Network (BPNN), and
k-Nearest Neighbor (kNN) algorithms were used to examine
the classification effect of energy share and differential entropy
features, the classification effect of differential entropy features
in different frequency bands, and the classification effect
of differential entropy features in different brain regions.
Meanwhile, in the analysis channel, the emotion recognition
is carried out on the multi-channel and prefrontal lobe
dual-channel data to explore whether there is a difference in the
classification accuracy.

MATERIALS AND METHODS

Participants
Twenty-six participants (age range to 18–20, M = 19, SD = 0.48;
50% female) were recruited through flyers. The subjects had
standard visual or corrected visual acuity, normal hearing, and
no significant emotional problems or psychiatric disorders by
the State-Trait Anxiety Inventory (STAI) and Beck Depression
Inventory (BDI). No coffee or alcoholic beverages were
consumed within 24 h before the start of the experiment. All
subjects signed an informed consent form and received some
remuneration at the end of the experiment. If the subjects did
not accept the film’s content during the experiment, they could
choose not to watch the film or terminate the experiment. The
study protocol was approved by the Ethics Committee of the Xian
Jiaotong University.

Stimuli and Procedure
This study used videos that evoked emotion. We used the revised
dynamic video library by Deng et al. (2017), which contains eight
emotional states: happy, sad, and neutral. Each emotional state
consisted of eight video clips, a total of 64 video clips. The length
of each video was 60 s. There was no significant difference in
invalidity and emotional arousal between videos of the same type.
Since this study focused on the binary classification algorithm
for positive and negative emotions, four negative segments
and four positive segments were selected for the subjects to
watch. During the collection, the subjects watched the video
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of the corresponding emotion theme for 4 min. Each subject
was provided with an individual rating in the valence-arousal-
dominance-liking four dimensions, ranging from 1 to 9, one
being the smallest and nine being the largest. After watching
a video, the 9-point rating scale was used to evaluate their
subjective emotional experience while watching the video. In
this study, emotions were analyzed in terms of two dimensions:
valence and arousal. If an individual’s score is greater than 4.5,
the arousal/valence level is high; whereas if the individual’s score
is less than 4.5, the arousal/valence level is low (Koelstra et al.,
2012). The subjects took a 2-min break after the score was
completed to help regain their calm.

EEG Data Acquisition and Preprocessing
The data set was collected in an anechoic darkroom at
Xi’an Jiaotong University and significantly reduced noise,
reverberation, and electromagnetic interference. Brain electric
activity was measured from 32 channels using a modified 10-
to 20-system electrode cap (Neuroscan Inc.). All EEGs were
continuously sampled at 1,000 Hz. An electrode was placed on
the forehead as the ground, and the nose’s tip was the recording
reference. EEG was amplified using a 0.1–100 Hz bandpass.
The vertical EOG was recorded with electrodes placed above
and below the left eye, and the horizontal EOG was recorded
with the electrodes placed outboard of both eyes. All electrode
impedances were maintained below ten kΩ.

Raw EEG data pre-processing was performed using EEGlab
software (Version R2013b, San Diego, USA), an open-source
toolbox running MATLAB environment (Version R2013b,
MathWorks, USA). Pre-processing of resting EEG data included
average reference. Continuous EEG data were band-pass filtered
between 0.5 and 45 Hz and a notch filter between 48 and
52 Hz; These segments were then visually inspected to remove
those with oculomotor or head movement artifacts. Data
were segmented into 2-s–epochs. Eye movement artifacts were
corrected using individual independent component analysis
(ICA) by removing the corresponding components based on the
particular activation curve (Mennes et al., 2010). EEG epochs
contaminated by strong muscle artifacts and any EEG epochs
with amplitude values exceeding ±80 µV at the electrodes were
manually rejected.

Multi-channel Sentiment Classification Analysis
Based on the conventional EEG data processing scheme, when
using multi-channel EEG data for analysis, the data processing
and analysis scheme framework in this study is shown in
Figure 1.

Sample Division
In this study, the emotional state is divided according to the
9-point rating scale, and the EEG clips that do not match
the emotional state and video stimulus tags are deleted. After
preprocessing, the pure EEG was divided into segments with a
length of 1 s. For the whole data set, 5,456 samples were divided,
including 2,756 positive emotions and 2,700 negative emotions.

Feature Extraction
The EEG signals after pre-processing were sliced into segments
of 1 s length. For the whole data set, 5,456 samples can be
sliced, including 2,756 positive emotions and 2,700 negative
emotions. According to the features used in conventional EEG
signal analysis, without considering the specialization to deal
with the emotion classification problem, 59-dimensional features
were selected for this study, which is a total of 1888-dimensional
features for all 32 channels, and this set of features can be used as
the baseline features for this study. The 59-dimensional features
can be seen in Table 1.

It has been shown that the energy share of the sub-band
and the differential entropy feature for the emotion classification
problem is more effective. The frequency band energy and its
percentage can be calculated directly by obtaining the spectrum
through the signal’s Fourier transform.

Differential entropy is an extension of Shannon’s entropy,
which is defined by the following equation (Shi et al., 2013):

h(X) = −
∫
X
f (x) log

(
f (x)

)
dx

where X is the EEG signal time series and f(x) is the probability
density function of X. If the EEG sequence X obeys a normal
distribution, then the differential entropy of the sequence is

h (X) = −
∫
X

1
√
2πσ 2

e−
(x−µ)2

2σ2 log
(

1
√
2πσ 2

e−
(x−µ)2

2σ2

)
dx =

1
2
log(2πeσ 2)

Referring to the observation of Shi et al. (2013) on EEG
signals, the EEG signals on commonly used frequency bands obey
a normal distribution N(µ, σ 2). Therefore, for a fixed frequency
band i, the differential entropy can be calculated by the following
equation:

hi(X) =
1
2
log(2πeσ 2

i )

where σ 2
i represents the variance of the EEG sequence X on

frequency band i. And the EEG sequence X in any frequency
band i has noDC component, i.e., themean value ofX is 0. At this
time, the variance of X can be estimated by using the following
equation:

σ̂ 2
i =

1
N

N∑
n = 1

x2n

{Xn} which is the sequence X. Also, by Parseval’s theorem,
know that:

N∑
n = 1

x2i =
1
N

N∑
k = 1

|Xk|
2
= Pi

where {Xk} is the FFT result of {Xn}, Pi representing the
energy spectrum on frequency band i. From the above derivation,
it can be derived that:
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FIGURE 1 | Flow chart of multi-channel emotion classification algorithm.

TABLE 1 | Basic characteristics of EEG signals.

No. Features No. Features No. Features

1 Mean 21 High δ-wave energy 41 β-wave differential entropy
2 Squared difference 22 δ-wave energy 42 γ-wave differential entropy
3 Standard deviation 23 Theta wave energy 43 Total frequency band center of gravity frequency
4 Maximum value 24 Low α wave energy 44 δ-wave center of gravity frequency
5 Minimum value 25 Highαwave energy 45 θ wave center of gravity frequency
6 Median 26 αwave energy 46 α-wave center of gravity frequency
7 Skewness 27 Low β wave energy 47 β-wave center of gravity frequency
8 Kurtosis 28 Highβwave energy 48 γ-wave center of gravity frequency
9 Zero crossover value 29 βwave energy 49 Total frequency band frequency variability
10 Amplitude 30 Low γ wave energy 50 δ-wave frequency variability
11 First-order Difference 31 Highγwave energy 51 Theta wave frequency variability
12 First level difference normalization 32 γ-wave energy 52 α-wave frequency variability
13 Second level difference 33 δ-wave energy share 53 β-wave frequency variability
14 Second level difference normalization 34 θ-wave energy share 54 γ-wave frequency variability
15 Hjorth Mobility 35 α wave energy ratio 55 Sample entropy
16 Hjorth complexity 36 β-wave energy 56 Approximate entropy
17 Fractal dimension 37 γ-wave energy ratio 57 Fuzzy entropy
18 Instability index 38 δ-wave differential entropy 58 Ranking entropy
19 Total energy 39 θ-wave differential entropy 59 Spectral entropy
20 Low δ-wave energy 40 α-wave differential entropy

hi(X) =
1
2
log(2πeσ 2

i ) =
1
2
log(Pi)+

1
2
log

(
2πe
N

)

Since the length of all samples is 1 s, N is a constant, and
the latter term of the above equation is a constant, which can
be disregarded from the classification point of view. Also, the
coefficient 1/2 does not affect the performance of the feature in
classification.

After obtaining the energy spectrum of each frequency band
of the sample, the logarithm can be obtained to represent the
differential entropy feature of the EEG signal in that frequency
band. This study used this method to calculate the differential
entropy and used it as a classification feature.

A gradient boosting DT is chosen to select the most
effective channel and features from multi-channel multi-
features (GBDT). The algorithm’s feature contribution rate
index is used as the basis for feature selection to filter
the features that contribute the most to the classification
and simplify the model by feature selection to improve the
classification efficiency.

Classification Algorithm
In this study, four algorithms, Support Vector Machine (SVM),
DT, BPNN, and k-Nearest Neighbor (kNN), were chosen
to explore the advantages of the happy and sad emotion
dichotomous classification problems. When using the SVM
algorithm, the kernel function selected in this article is a linear
function, and the hyperparameters of the support vector machine
are optimized through grid search. When using the BP neural
network algorithm, the number of nodes in the input layer is
determined according to the number of eigenvalues of each part.
The number of nodes in the output layer is set to two, because
this article mainly classifies positive and negative emotions. The
value of the number of hidden layer nodes is determined by the
following formula: m =

√
n1, where n is the number of input

layer nodes, l is the number of output layer nodes, and m is the
number of hidden layer nodes. When using the DT algorithm,
first, the classification model of the DT is generated by learning
the training set; second, the model is used to classify samples
of unknown types. This study used the C4.5 DT algorithm, and
the segmentation index is the information gain rate. When using
the knn algorithm, this study used the brute method to select
the best k.
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After the classifier algorithm is determined, we evaluate the
classification performance by dividing the sample data into
10 equal segments that are based on 10-fold cross-validation.
Specifically, each round uses nine segments as the training subset
and the remaining one segment as the test subset. Thus, the
datasets are k non-overlapping data sets, and the datasets are
not perfectly consistent with each other. The evaluation metric
of correctness is calculated in each trial, and the generalization
ability of the model is finally evaluated by averaging the
evaluation metrics after k trials. The basic steps of fold cross-
validation are as follows:

(a) The original data set is divided into 10 subsets with as
balanced sample size as possible;

(b) The first subset is used as the test set, and the second to the
ninth subsets are combined as the training set;

(c) Use the training set to train the model and calculate the results
of multiple evaluation metrics under the test set;

(d) Repeat steps 2–3, and use subsets two to 10 as the test set in
turn;

(e) Calculate the average value of each evaluation index as the
final result.

Dual-Channel EEG Emotion Classification
Process
Considering the need for emotion classification in forehead
dual-channel portable devices, an algorithmic flow for emotion
classification using only forehead electrode signals was also
designed in this study, shown in the figure below.

As shown in Figure 2, there are two changes compared to
the multichannel EEG classification process. The number of
channels is reduced, and the bad leads cannot be replaced by the
peripheral leads’ interpolation of signals. The invalid signalsmust
all be removed entirely in the stage of debugging. The number of
channels is too small to apply the ICA algorithm directly, so the
Ensemble Empirical Mode Decomposition (EEMD) technique
needs to be introduced to decompose each channel’s EEG signal.
EEMD is an improved algorithm of EMD that can extract the
eigenmode components (IMFs) of the original signal that are not
subject to the modal mixing phenomenon (Olesen et al., 2016).
After ICA of all IMF components, the EEG can be removed, and
the subsequent process is the same as in the case of multiple
channels.

RESULTS

According to the above model training and testing scheme, we
arranged five sets of experiments with control variables to find
the classification algorithm to achieve the best results gradually.

This study compares each classification model’s strengths
and weaknesses using the training set accuracy and the test set
accuracy. Also, to take into account the measurement of the
generalization ability of the model, two schemes were used on
the current data collected from 12 subjects, one is to combine the
data from all subjects, train one model and validate its accuracy,
and the other is to train the model for each subject separately
and validate the accuracy on their respective models, and finally

find the average accuracy. In this study, all the subjects’ data were
trained and tested together as a whole, and the accuracy rates
were calculated separately and averaged as an individual.

Classification Effects on the Baseline
Feature Set
In the baseline feature set of all 1,888 dimensions, the
classification effect of each classifier is shown in Table 2.

The Classification Effect of Energy
Occupation Ratio and Differential Entropy
Feature
A study showed that the energy occupation ratio and differential
entropy features have significant effects on two-channel emotion
dichotomous classification, so the effects of extending these two
sets of features to multiple channels are first verified. Also,
to test the effectiveness of linear normalization and standard
normalization methods on classification, the effect of different
normalized features on these classifiers was added. The results of
this set of experiments are shown in Table 3.

From the results of experiments 2–1, it is clear that the
group of features, energy percentage, and differential entropy
has significantly improved the classification effect over the
baseline system, indicating that this group of features can
effectively distinguish emotions. Comparing experiments 2–1,
2–2, and 2–3, for this group of features, neither of the two
types of normalization can improve the classification effect, so
normalization will not be performed in the future when using
these two types of features. Experiments 2–4 and 2–5, on the
other hand, compared the effect of two features, energy share,
and differential entropy, on emotions classification. The results
revealed that the energy-occupancy feature’s performance is only
comparable to the classification result of the full feature. In
contrast, the differential entropy feature’s classification effect
is not much different from that of the energy-occupancy +
differential entropy feature. Thus, in terms of single metrics,
differential entropy is the feature that best captures differences
in sentiment.

Classification Effect of Differential Entropy
Features in Different Frequency Bands
Research shows that the difference between the high-frequency
band signals is more evident than in the low-frequency band.
Therefore, experiments were designed to verify differential
entropy features of different frequency bands on emotion
classification. The results are shown in the emotion dichotomous
classification, the validity of each frequency band EEG signal
is ranked as γ > β > δ > α > θ when considered from
the perspective of differential entropy features, where γ wave,
is the best and β wave is also better. These two frequency
bands are influential for the emotion classification problem. The
remaining three frequency bands can be considered ineffective
in distinguishing emotions compared to the baseline feature
set. Comparing experiments 3–1 with 3–6, when β and γ wave
features are incorporated simultaneously, it is better than using
γ wave features alone. The results of this set of experiments are
shown in Table 4.
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FIGURE 2 | Flow chart of dual-channel emotion classification algorithm.

TABLE 2 | Classification effect on the baseline feature set.

Classifier SVM DT BP kNN

Category Training set Test set Training set Test set Training set Test set Training set Test set

Whole 0.6634 0.6362 0.9880 0.7839 0.8962 0.7949 0.8109 0.7428
Single 0.6995 0.6437 0.9313 0.8127 0.9683 0.9061 0.7996 0.7630

TABLE 3 | Effect of energy proportion and differential entropy on emotion classification.

Classifier SVM DT BP kNN

Category Training set Test set Training set Test set Training set Test set Training set Test set

Experiment 2–1 Energy ratio + Differential entropy

Whole 0.7887 0.7406 0.9765 0.7099 0.8960 0.8079 0.8652 0.8017
Single 0.7772 0.7153 0.9676 0.8219 0.9703 0.9079 0.8641 0.8088

Experiment 2–2 z-score normalization, Energy ratio + Differential entropy

Whole 0.7638 0.7093 0.9765 0.7099 0.8960 0.8079 0.8317 0.7586
Single 0.7234 0.6590 0.9676 0.8219 0.9703 0.9079 0.8293 0.7601

Experiment 2–3 Linear normalization [0, 1], Energy ratio + Differential entropy

Whole 0.7673 0.7183 0.9765 0.7099 0.8960 0.8079 0.8451 0.7615
Single 0.7305 0.6641 0.9679 0.8203 0.9666 0.9059 0.8264 0.7673

Experiment 2–4 Differential entropy

Whole 0.7912 0.7392 0.9773 0.7473 0.9052 0.8292 0.8736 0.8063
Single 0.7757 0.7232 0.9625 0.8179 0.9777 0.9216 0.8513 0.8069

Experiment 2–5 Energy ratio

Whole 0.6876 0.6353 0.9637 0.5794 0.7556 0.6928 0.7462 0.6956
Single 0.6930 0.6301 0.9558 0.7094 0.8803 0.7953 0.7869 0.7138

Classification Effects of Differential
Entropy Feature for Different Brain Regions
Since γ-wave features are significantly more useful than β-
wave features for emotion classification, channel selection was
performed using only the differential entropy of γ-wave to
determine the best brain regions. The channel selection was
performed based on a gradient boosting DT, and Table 5
shows the contribution of 32 channel features to emotion
classification. Notably, our view is also supported by the study
of Jalilifard et al. (2016), in which the SVM was used to
classify emotions using different rhythmic neural oscillations,
and it was found that the classification of gamma rhythms
was best in the left prefrontal region of the brain (FP1), with
β being the second best. Therefore, this part of the results is

based mainly on the differential entropy of gamma waves for
channel selection.

Based on each channel’s contribution rate and location
distribution, five experiments were designed to verify different
feature combinations’ effect on the classification effect. The
electrode combinations are shown in Table 6. The experiments
were conducted according to the above five sets of electrode
combination schemes, and the results are shown in Table 7. From
the above experiments, it can be seen that the electrode group
corresponding to experiments 5–3 has the best classification
effect. Combined with the electrode distribution map, it is clear
that the human brain’s lateral ring region is most effective
in classifying emotions. The schematic diagram of electrode
selection corresponding to experiment 5–3 is shown in Figure 3.
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TABLE 4 | The effect of differential entropy in different frequency bands on emotion classification.

Classifier SVM DT BP kNN

Category Training set Test set Training set Test set Training set Test set Training set Test set

Experiment 3–1 Differential entropy (γ wave)

Whole 0.8609 0.8219 0.9629 0.7408 0.8416 0.8132 0.8657 0.8308
Single 0.8599 0.8077 0.9597 0.8225 0.9342 0.8950 0.8821 0.8379

Experiment 3–2 Differential entropy (β wave)

Whole 0.8270 0.7819 0.9589 0.7069 0.8137 0.7867 0.8267 0.7912
Single 0.8245 0.7614 0.9488 0.7856 0.9180 0.8710 0.8523 0.8011

Experiment 3–3 Differential entropy (α wave)

Whole 0.6894 0.6360 0.9481 0.5915 0.7166 0.6868 0.6941 0.6578
Single 0.6661 0.6024 0.9364 0.6787 0.8175 0.7607 0.7487 0.6816

Experiment 3–4 Differential entropy (θ wave)

Whole 0.6924 0.6184 0.9461 0.5792 0.7011 0.6620 0.693 0.6131
Single 0.6347 0.5732 0.9357 0.6694 0.8098 0.7480 0.7248 0.6603

Experiment 3–5 Differential entropy (δ wave)

Whole 0.7315 0.6674 0.9482 0.5931 0.7246 0.6826 0.7429 0.6959
Single 0.6805 0.6067 0.9393 0.6798 0.8284 0.7645 0.7865 0.7186

Experiment 3–6 Differential entropy (β, γ wave)

Whole 0.8584 0.8226 0.9695 0.7568 0.8771 0.8281 0.8835 0.8422
Single 0.8703 0.8269 0.9566 0.8208 0.9580 0.9095 0.8916 0.8499

TABLE 5 | The contribution of differential entropy characteristics of each electrode to emotion classification.

Rank Electrodes Contribution rate Rank Electrodes Contribution rate Rank Electrodes Contribution rate

1 TP9 0.1383 12 C3 0.0309 23 P7 0.0088
2 Fp2 0.1215 13 P8 0.0197 24 FC1 0.0082
3 T7 0.1013 14 F7 0.0194 25 FT9 0.0082
4 Fp1 0.0758 15 CP6 0.0194 26 Pz 0.0070
5 TP10 0.0682 16 P4 0.0179 27 Cz 0.0065
6 O1 0.0589 17 F3 0.0175 28 F4 0.0049
7 T8 0.0542 18 FC5 0.0173 29 F8 0.0038
8 CP1 0.0387 19 FT10 0.0143 30 P3 0.0037
9 O2 0.0365 20 FC2 0.0124 31 Fz 0.0019
10 Iz 0.0330 21 FC6 0.0103 32 CP2 0.0003
11 C4 0.0320 22 CP5 0.0089

TABLE 6 | The contribution of differential entropy characteristics of each
electrode to emotion classification.

Experiment Electrodes

4–1 Forehead Fp1, Fp2
4–2 Forehead >0.05 Fp1, Fp2, T7, T8, TP9, TP10
4–3 Contribution > 0.03 Fp1, Fp2, T7, T8, TP9, TP10,

O1, O2, Iz
4–4 Selection of electrodes

along the head loop
Fp1, Fp2, T7, T8, O1, O2

4–5 Only half of the electrode
is selected

Fp1, T7, O1

Classification Algorithm Selection
Summarizing the above four sets of experiments, the following
conclusions can be drawn from the four classification algorithms
used in this study:

(1) For DTs and BP neural networks, there is a significant
difference, usually about 10%, between the effect of training
themodels separately for 12 subjects than the effect of training
the models together for 12 subjects’ data.

(2) For DTs, the test set’s accuracy is on average more than 20%
lower than that of the training set, which shows the severe
overfitting of DTs.

(3) SVM and kNN are close to each other, and there is no obvious
problem of overfitting and poor generalization performance.

(4) When using SVM for classification, under the premise of
channel selection, its accuracy can be as high as 86%, which
is better than other classifiers.

Dual-Channel Dichotomy Effect
After several rounds of experimental comparison, in the
two-channel two-classification problem, the best feature
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TABLE 7 | The effect of differential entropy characteristics under each electrode combination on emotion classification.

Classifier SVM DT BP kNN

Category Training set Test set Training set Test set Training set Test set Training set Test set

Experiment 5–1 Forehead

Whole 0.5143 0.5071 0.8970 0.5949 0.6372 0.6296 0.6362 0.6254
Single 0.6703 0.6038 0.9114 0.6956 0.7697 0.7461 0.7642 0.7323

Experiment 5–2 Forehead >0.05

Whole 0.8591 0.8288 0.9490 0.7460 0.7884 0.7727 0.8551 0.8332
Single 0.8895 0.8455 0.9536 0.8125 0.9046 0.8728 0.8906 0.8588

Experiment 5–3 Contribution > 0.03

Whole 0.8845 0.8618 0.9591 0.7703 0.8495 0.8332 0.8275 0.8567
Single 0.8970 0.8614 0.9560 0.8275 0.9066 0.8868 0.8924 0.8648

Experiment 5–4 Selection of electrodes along the head loop

Whole 0.8534 0.8136 0.9465 0.7187 0.8144 0.7933 0.8247 0.7982
Single 0.8598 0.8070 0.9390 0.7703 0.8775 0.8352 0.8473 0.8152

Experiment 5–5 Only half of the electrode is selected

Whole 0.7881 0.6827 0.9144 0.6428 0.7027 0.6956 0.8082 0.6957
Single 0.7669 0.6814 0.9193 0.7180 0.8041 0.7722 0.7849 0.7596

FIGURE 3 | Schematic diagram of the optimal electrode for multi-channel
emotion recognition.

combination is the energy proportion and differential entropy
of the δ, θ, α, β, and γ bands of the two channels, with a total of
20-dimensional features. The best results are shown in Table 8.
As can be seen from the above table, for the dual-channel
two-classification problem, the classification effects of using
SVM classifier, DT, BP, and kNN are 66%, 60%, 66%, and 64%,
respectively. However, considering the pursuit of the model’s
generalization ability in the actual classification, the overall
performance is taken as the main index. Therefore, under this
premise, the best classification model should still choose the
SVM classifier; its accuracy can reach 66%.

DISCUSSION

In this study, we used positive and negative emotion videos
to induce emotions in subjects and extracted EEG features
of different emotions based on multichannel and prefrontal
channels to investigate the effect of classification of positive and
negative emotions.

We first obtained the classification results of the four
classifiers based on a total of 1,888 features across all channels.
In this part of the results, the best performing classifiers are DT
and BP neural network, which can achieve an overall correct
rate of 78% and 79%, while SVM and kNN only have 63% and
74% correct rates. However, since too many features can cause
redundancy of information, in the second section, we use energy
share and differential entropy for sentiment classification based
on our previous study. Our results show that the difference
between the classification effect of ‘‘energy share + differential
entropy’’ and that of a single ‘‘differential entropy’’ indicator is
not significant, which indicates that differential entropy is the
feature that best reflects the difference in sentiment if only a
single indicator is considered. The results are consistent with
Zheng and Lu (2015); that is, the differential entropy feature is
the most stable and outstanding in emotion classification. In the
third part of the results report, we focus on the use of differential
entropy as a metric to explore the classification effects at different
frequency bands. With this part of the analysis, our results show
that in terms of the feature classification effect of differential
entropy in each frequency band, the order of the validity of
EEG signals is γ > β > δ > α > θ, in which the effect of γ

wave is the best, and the effect of β wave is also better. The
differential entropy of these two bands is effective for emotion
classification. The result was consistent with Li et al. (2018)
using a hierarchical convolution neural network (HCNN). Their
study uses a HCNN to classify positive emotional state, neutral
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TABLE 8 | The effect of dual-channel 20-dimensional features on emotion classification.

Classifier SVM DT BP kNN

Category Training set Test set Training set Test set Training set Test set Training set Test set

Whole 0.7270 0.6630 0.9365 0.6037 0.6907 0.6648 0.6894 0.6435
Single 0.7025 0.6227 0.9352 0.6886 0.8100 0.7609 0.7679 0.7035

emotional state, and negative emotional state. The differential
entropy features from different channels are organized into
two-dimensional maps to train HCNN. The results show that
there is a good classification ability on Beta andGammawaves. In
the fourth part of the result report, based on the previous results,
we select only the differential entropy features of the γ-band
to analyze the classification accuracy of different brain regions,
and the results show that when electrodes are selected along the
head loop, there are good results under all four classifiers, and,
from the results of the test set, the SVM classifier has the best
classification results (86.18% accuracy overall), while the DT, BP,
and kNN root class effects were 77.03%, 83.32%, and 85.67%,
respectively. This is one point where this study goes beyond
previous research in that it identifies which regions have the
greatest impact on emotion classification, given the identified
extracted features.

The study also compares the feature classification effects
of differential entropy in different brain regions. The results
showed that when using the differential entropy of γ wave
for channel selection, the lateral annular region of the human
brain is the most effective for emotion classification. This
is a point that this study surpasses previous studies; that
is, on the premise of determining the extraction of features,
we point out which regions have the greatest impact on
emotion classification. Another concern of our study is whether
there is a difference in the classification effect between multi-
channel and dual-channel. The discussion of this problem is
not simply to repeat the experimental process on multiple
channels but to select the best feature combination by comparing
several groups of experiments. Our results show that the
energy ratio and differential entropy of the δ, θ, α, β, and
γ bands of the two channels have a good classification
effect. When using SVM and BP neural network classifiers,
they can reach the classification accuracy of 66%. However,
considering the better generalization ability of SVM in previous
studies (Yao et al., 2019), we suggest that SVM is the best
classifier for the binary classification of positive and negative
emotions based on two-channel data. It’s worth noting that,
the classification efficiency of multi-channel feature classification
is better than two-channel feature classification regardless of
the feature classification effect due to the fact that multi-
channel has more information and can better represent
the information (Lin et al., 2009; Garg and Verma, 2020).
Therefore, to pursue higher classification accuracy, as many
channels as possible should be selected to explore emotion
classification.

Finally, the classification effects of the four classifiers were
compared. In multi-channel EEG emotion classification, SVM
and kNN are better than DT and BP neural network in

classification effect and generalization ability. However, the KNN
algorithm needs to store many training samples and is not easy to
implement on embedded devices. Meanwhile, the computational
complexity of prediction increases linearly with the increase
of training samples. The SVM algorithm, on the other hand,
has stable computational complexity, and the training can
be done offline. Therefore, from the perspective of practical
applications, SVM is superior to kNN. In the two-channel
study, considering the model’s generalization ability, the SVM
algorithm is more appropriate. The conclusion of this study once
again demonstrates the effectiveness of the SVM algorithm in
emotion classification, which is consistent with the research of
Nie et al. (2011). In their research, we use themulti-feature fusion
and SVM classifier method to study the second classification
of emotion, and the accuracy is 87.53%. Altogether, this study
extends the previous findings. Based on the multi-channel
emotion-evoked EEG data, the two types of emotions can be
effectively classified using the energy proportion and differential
entropy of frequency bands best effect by using an SVM classifier.
When only the signals of the two channels of the forehead are
used, the highest classification accuracy can reach 66%.When the
data of all channels are used, the highest accuracy of the model
can reach 82%. After channel selection, the best model can be
obtained in which the accuracy can reach 86%. The electrodes
in the optimal channel combination scheme are all located in
the lateral annular region of the human brain, which provides
a theoretical basis for the follow-up development of portable
headband emotion monitoring equipment.

LIMITATIONS

This study also has some limitations. First, the current study
uses the subject-dependent way for emotion recognition, even
if a single subject’s data is used to train the emotion classifier
for the subject. When the subject is changed, it is necessary to
train a new classifier for the subject. There are great defects in
generalization ability. Second, although our research shows that
better emotion classification results can be achieved by using an
SVM classifier, some studies have shown that when using a deep
learning model to classify emotions, its accuracy is 3.54% higher
than that of the traditional SVM algorithm (Zheng et al., 2014),
which suggests that future research can focus on deep learning
model to explore further how to achieve more efficient emotion
classification results.
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