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Microvascular invasion (MVI) is one of the most important factors leading to poor prognosis for hepato-
cellular carcinoma (HCC) patients, and detection of MVI prior to surgical operation could great benefit
patient’s prognosis and survival. Since it is still lacking effective non-invasive strategy for MVI detection
before surgery, novel MVI determination approaches were in urgent need. In this study, complete blood
count, blood test and AFP test results are utilized to perform preoperative prediction of MVI based on a
novel interpretable deep learning method to quantify the risk of MVI. The proposed method termed as
‘‘Interpretation based Risk Prediction” can estimate the MVI risk precisely and achieve better perfor-
mance compared with the state-of-art MVI risk estimation methods with concordance indexes of
0.9341 and 0.9052 on the training cohort and the independent validation cohort, respectively.
Moreover, further analyses of the model outputs demonstrate that the quantified risk of MVI from our
model could serve as an independent preoperative risk factor for both recurrence-free survival and over-
all survival of HCC patients. Thus, our model showed great potential in quantification of MVI risk and pre-
diction of prognosis for HCC patients.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hepatocellular Carcinoma (HCC), with its mortality ranking the
3rd among all cancer-related death worldwide, has become one
major challenge for human health. The prognosis of HCC patients
remained poor, mainly resulted from the high potential of recur-
rence and metastasis. Microvascular invasion (MVI), a marker rep-
resenting aggressive tumor behavior, has been reported to
correlate with worse prognostic outcomes, especially after poten-
tially curative surgery [1–3]. The accurate determination of MVI
presence in HCC could great assist clinical decision and thus effec-
tively benefit patients’ prognosis with prolonged survival.
Currently, numerous studies have dedicated their efforts to the
precise diagnosis and risk evaluation of MVI. The traditional strat-
egy of histologic examination provides the gold standard for MVI
detection [4], while the fact that its diagnosis was based on biopsy
or surgical samples greatly limited its value in preoperative evalu-
ation [5]. In recent days, novel approaches integrating imaging fea-
tures have become one of the noteworthy directions of MVI
detection and achieved excellent performance [6,7]. Meanwhile,
some predictive models based on clinical features were also pro-
posed [8]. On the other hand, liquid biopsy, a quick and non-
invasive strategy to acquire tumor information with greatly
reduced risk of medical complication, also draw more and more
attention. Liquid biopsy provided a potent tool to facilitate MVI
detection without requiring tissue samples information, making
it highly suitable in preoperative MVI evaluation scenario. Detec-
tion of MVI ahead of surgical operation could be invaluable, as
the MVI itself is a key factor affecting surgery strategy making
for commonly applied options including hepatectomy and liver
transplantation [9]. Complete blood count, blood test for liver dam-
age and AFP test are three most common liquid biopsy tests that
HCC patients received regularly to obtain information regarding
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blood cells, specific types of enzymes and metabolites, all of which
could reflect patients’ disease status. Previous studies have linked
the blood counts as a serum biomarker for tumor progression
[10], while liver function abnormality has also been considered
as an indication for HCC burden [11,12]. Meanwhile, AFP were con-
sidered as one of the most noteworthy circulating biomarker for
MVI presence [13]. Considering the close relationships between
the circulating system and tumor metastasis, comprehensive uti-
lization of these three tests might provide a precise evaluation of
MVI risks. However, the large number of parameters presented
great difficulty for building an accurate predictive model for MVI
based on traditional modeling strategies.

Over the last few years, we have seen the fast development of
deep learning, which has become one of the most promising
research focuses on the medical field [14–17]. Under a relatively
fixed structure, deep learning algorithms can learn features from
big data through continuously iterating their weights, which could
overcome the difficulty of non-linear mapping between the input
and output data, making it suitable for constructing a predictive
model for clinical outcomes influenced by numerous of different
factors, such as MVI. To our best knowledge, there are still very
few studies focusing on predicting MVI presence with deep learn-
ing methods. Cucchetti et al. [18] firstly used a 3-layer fully-
connected neural network, i.e., artificial neural network (ANN) to
predict MVI with four variables including serum AFP; Men et al.
[19] utilized contrast-enhanced MR images to predict MVI by a
method combining 3D convolutional neural network (CNN) and
long-short term memory (LSTM). Despite the accomplished pro-
gress, the ‘‘black box” issue stands between the theories and
real-world applications. The black box issue of deep learning
means that there is so little information about ‘‘What does the
model exactly depend on to give this prediction”, leading to the
doubt about the reliability of the models. The explanation of
machine learning models has now attracted increasing attention
[20,21], and it is an obstacle that needs to be overcome in practical
applications.

To explore the possibility for MVI risk evaluation based on liq-
uid biopsy, we utilize deep learning methods to fully investigate
the relationship between MVI and blood parameters. An Interpre-
tation based Risk Prediction method, abbreviated to the IRP
method, was proposed to predict MVI risk based on complete
blood count and blood test results. A deep learning explanation
method termed as ‘‘Local Interpretable Model-agnostic Explana-
tions (LIME)”, proposed by Ribeiro et al. [22], was used to explain
the features learnt by the deep learning models and build a scoring
model to predict MVI risk of HCC patients. Our results revealed
several parameters significantly correlated with MVI risk including
Lactate dehydrogenase (LDH), Gamma glutamyl transpeptidase
(GGTP) and Aspartate amino transferase (AST). The proposed
method could precisely predict the MVI risk of HCC patients with
superior performance compared to other state-of-art scoring mod-
els, while also provide quantification for the impact of each param-
eter on the prediction results. Further validation of the model using
an independent cohort also demonstrated excellent performance
in MVI prediction. Considering that our model was built based on
the routine blood test, it could greatly benefit future clinical eval-
uation of patients’ prognosis and clinical outcomes.
2. Materials and methods

2.1. Patients of the training cohort

A total of 1007 patients received liver resection surgery at
Mengchao Hepatobiliary Hospital of Fujian Medical University
from 2014 to 2019 were enrolled as the training cohort for this
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study. The results of complete blood count, blood tests, and AFP
tests were acquired within 2 days before surgery, and clinical
information as well as pathological examination results were also
obtained (Supplementary Tables S1 and S2). The pathological iden-
tification of MVI is determined by the presence of cancer cell nests
in vessels lined by endothelial cells under a microscope. For each
tumor sample, 4 Paraffin blocks corresponding to 4 different junc-
tion region of tumor and adjacent liver tissues were used to iden-
tify MVI by at least 3 experienced pathologists according to Clinical
guideline [23]. In this study, the collection and usage of all patients’
information were approved by the Ethics Committee of Mengchao
Hepatobiliary Hospital of Fujian Medical University and followed
principles of the Declaration of Helsinki. The results of complete
blood count, blood test, and AFP tests contained 18 blood parame-
ters including Lactate dehydrogenase (LDH), Gamma glutamyl
transpeptidase (GGTP), Plateletcrit (PCT), AST/ALT ratio (AST/
ALT), Platelet count (PLT), Alkaline phosphatase (ALP), Aspartate
amino transferase (AST), Prealbumin (PAB), Neutrophil count
(NC), Direct bilirubin (DBIL), Mean corpuscular hemoglobin
(MCH), Total bilirubin (TBIL), Leukocyte count (WBC), Lymphocyte
count (TLC), Mean corpuscular hemoglobin concentration (MCHC),
Serum creatinine (SCR), Erythrocyte count (RBC) and Alpha Feto-
protein (AFP), which were used as inputs for the following deep
learning algorithms.

2.2. Preprocessing

The following three steps were applied as the preprocessing of
data to deal with the missing values. First, the blood parameters
with more than 20% missing values were removed. Second, the
patients’ data with more than 20% missing variables were
removed. Finally, the remaining missing values were filled through
the MI method using SPSS. A total of 916 patients were finally
included to build the model.

2.3. Study design

Fig. 1 shows the pipeline of the IRP method for MVI risk predic-
tion. We first trained a deep learning model by letting the neural
network learn the relation between the blood data and MVI. After
the network was well trained, an explainer was applied to explain
the features learned by the learner. To further assess the explained
features and build the MVI prediction model, we constructed a
scoring system by the explained features to quantify the risk of
MVI. To perform internal validation of the model performance,
we deploy both 5-fold cross validation and bootstrap procedure,
and the whole pipeline was repeated for each validation process.
After that, a final model was trained using all patients in the train-
ing cohort.
2.4. Data augmentation

Recently, the deep learning method has been considered as a
data-hungry technology [24–26]. Lack of training data could lead
to over-fitting and poor performance in the real-world applica-
tions. Therefore, we performed data augmentation to better train
our model. Considering that the concentration of various parame-
ters in the blood usually fluctuates with time, we proposed a data
augmentation method of blood data based on Gaussian distribu-
tion. For each blood parameter i, the largest 10% of the samples
and the smallest 10% of the samples are excluded to prevent the
impact of extreme values. Then the difference between the mini-
mum and maximum values Di is taken to calculate the perturba-
tion of each dimension. For a given sample, the generated new
data array is:



Fig. 1. The pipeline for the proposed IRP method. (A) Is the fully-connected neural network used for learning the features between the input blood test data and MVI. Each of
four blue hidden layers has 32 neurons. Before the last fully-connected layer, batch normalization was applied to accelerate training and avoid overfitting. (B) Shows the
result of the explanation of the learner obtained by the interpretation method ‘‘LIME”. The length of each column represents the impact of the corresponding variable on MVI
(or NOT MVI). (C) Is the scoring model formed from (B). Each variable has an independent score according to its value. The sum of all the scores predicts the risk of MVI. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Nijð1!nÞ ¼ Oi þ Di � G ð1Þ
where O1!n is the original data array of the sample and G is the ran-
dom number array generated under Gaussian distribution with a
mean value of 0 and a variance of 0.052. We added a small distur-
bance on the original data by this function to simulate the fluctua-
tion of blood data in a certain range.
2.5. Learn the features using a DL model

Considering the input blood parameters may have inner rela-
tion, we constructed a fully connected neural network to learn
the features between the 18 blood parameters and MVI using Keras
with Tensorflow as backend. The constructed network structure
contained 6 layers, which is shown in Fig. 1A. Within the network,
each hidden layer contained 32 neurons. The binary cross-entropy
loss was applied as the loss function. A batch normalization layer
was applied to avoid overfitting and accelerate the training
process.
2.6. Explain the features learned by the learner

We used Local Interpretable Model-Agnostic Explanations
(LIME) [22], proposed by Ribeiro et al., to explain our well-
trained deep learning model. The LIME algorithm in processing
our numerical blood data can be divided into the following six
steps:
1. Set the coordinate system of the original blood data as O. Divide

the data of each dimension equally into M groups according to
its value, then re-encode it into 1 to M to form a new data coor-
dinate system P.

2. Randomly generate K points in coordinate system P, and inverse
these K points to coordinate system O.
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3. Use the well-trained machine learning model to calculate the
prediction values of these K data points in O. Then bring each
calculated predicted value into the coordinate system P as the
value of each data point.

4. Encode the patient data to be analyzed into the coordinate sys-
tem P according to the method in 1. Calculate the Euclidean dis-
tances from K generated points to the patient data point in P.

5. Do ridge regression using these K data points in P. This regres-
sion is weighted by a function of Euclidean distances calculated
in 4, the greater the distance, the less the weight.

6. Taking the regression equation as following:

Y ¼
XN

i¼1

aiXi þ b ð2Þ

where N is the number of input data dimension X , and b is the
intercept. ai is the impact of each data dimension on MVI. In our
experiment, considering the training samples we have, M was set
to 4, and K was set to 5000.

Through the LIME algorithm, we could knowwhich data dimen-
sion and which value range the machine learning model depends
on to give the current judgment. To get the overall impacts of all
blood parameters on MVI, all original patient data in the training
set were analyzed using LIME, and the average of their results
was calculated weighted by the patient’s categories (MVI or NOT
MVI).

2.7. Construct MVI scoring model

To further assess the explained result and give the prediction of
MVI risk for HCC patients, the overall average impacts of each
blood parameter were recombined into a scoring model (Fig. 1C).
In the scoring model, every blood parameter for each patient was
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scored separately. The sum of scores of all dimensions and a basic
score, which is acquired by linear transformation, was taken as the
MVI Risk Estimation (MRE). By correlating the MRE gained from
the scoring model with the ground-truth MVI ratios, we finally
obtained a risk prediction model for MVI.
2.8. Concordance index

Concordance index (C-index) was used to assess the accuracy in
the prediction of MVI risk of the scoring model. As one of the most
frequently used metrics in survival analysis and morbidity analy-
sis, C-index is the proportion of the paired individuals whose
survival time meet the prediction. When it comes to morbidity,
C-index is the proportion of the paired patient groups whose inci-
dences of disease meet the prediction. It is usually considered as a
good model if the C-index is around 0.70, and below 0.50 indicates
an invalid model [27]. In our study, patients were grouped accord-
ing to their MRE. To assess the model more precisely, different
numbers of groups were applied, and the average value of the
C-index was used as the final result.
2.9. 5-fold cross validation

To evaluate the performance of our model, we deployed 5-fold
cross validation. To perform 5-fold cross validation, we first ran-
domly divide all 916 patients in the training cohort into 5 non-
overlapping subsets with each subset containing approximately
same number of patients. Then, one of the subsets were selected
as test set while the other four combined were selected as the
training set. After conducting above mentioned modeling process,
C-index for the used training set and test set were obtained. These
steps were repeated for 5 times and all divided subsets were used
as test set for once, generating 5 models and corresponding
C-index on their respective training set and test set. The average
C-index of 5 models is used to evaluate the prediction performance
of the model under the current network structure and parameter
settings. After the internal validation, final learning process was
performed using all patients in the training cohorts.
2.10. Independent validation

To further evaluate MRE’s performance, an independent valida-
tion cohort of HCC patients was enrolled. This cohort included
1085 additional HCC patients received standard HCC management
at Eastern Hepatobiliary Surgery Hospital of Second Military Med-
ical University (n = 535) or Mengchao Hepatobiliary Hospital of
Fujian Medical University (n = 550), with all 18 blood parameters
for deep learning model available (Supplementary Table S1). The
clinical information for this cohort was also collected (Supplemen-
tary Table S3). The collection and usage of all patients’ information
were approved by the Ethics Committee of the two centers, and the
requirement of written informed consent was waived, and all pro-
cedures were performed in accordance with the Declaration of
Helsinki.
2.11. Survival analysis

To evaluate the relationship between MRE and patients’ sur-
vival, univariate and multi-variable Cox regression analysis were
performed. We further divided patients based on the cut-off of
median for MRE in each cohort and use Kaplan-Meier survival
analysis to evaluate the differences between the survival of the
two groups.
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3. Results

3.1. Construction of the deep learning model and the scoring model

A total of 1007 patients received surgical operation were
enrolled as the training cohorts for our study. After filtering based
on data availability of complete blood count and blood test results,
916 patients remained for downstream analysis. Extracting data
from complete blood count and blood test results generated 17
blood related parameters. These 17 blood parameters, along with
AFP, were used for downstream learning process. To provide an
accurate evaluation of MVI risk, we first build a deep fully con-
nected neural network to learn the features between the 18 blood
parameters and MVI. The constructed neural network contained 4
hidden layers, and each hidden layer contains 32 neurons. The
detailed structure of the neural network is shown in Fig. 1A.

Although the nonlinear mapping between layers in our models
can sufficiently deal with the nonlinear relationship between input
and output, it should be also noticed that it causes so called ‘‘black
box” issue [21,28] for deep learning. How to convert this nonlinear
relation into understandable and quantified representation is the
key to the breakthrough of the ‘‘black box” issue. To address this,
an explainer, i.e., LIME, was applied to provide an understandable
interpretation of the nonlinear relation between 18 blood parame-
ters and MVI occurrence after the deep learning model was well
trained. Based on the idea of perturbing inputs for explanations,
LIME is capable to handle almost any data type, such as image, nat-
ural language, and numerical data type, and it is very suitable for
interpreting our model. For each sample in the training set, LIME
output the impact of every blood parameter on MVI occurrence.

To better quantify the risk of MVI, we constructed a scoring
model according to the explained results obtained by LIME. The
four intervals of each blood parameters have their corresponding
scores, and these scores would be assigned to patients according
to the value of each feature. Then, the sum of scores for all 18 fea-
tures and a base score were calculated to present the overall MVI
risk, or to say, MRE of patients. The relevance between the MRE
and the ground-truth MVI probability was quantified by C-index.

To validate the performance of our built-up model, we per-
formed 5-fold cross validation and bootstrap procedure. 5-fold
cross validation result showed that our proposed process achieved
high performance, with an average c-index of 0.9176 in training set
and an average c-index of 0.83242 in test set. The detailed results
of each internal validation were available in Supplementary
Table S4. After internal validation, all patients within the training
cohort were used to generate the final deep learning model and
corresponding scoring model.
3.2. Interpretation results showed the most important factors related
to MVI occurrence

The explainer of the deep learning model, e.g., LIME, provided a
quantified evaluation of the impact for each blood parameter on
MVI occurrence. Fig. 2A shows how LIME works on a single patient
(patient ID: 2014005480). For this patient, 14 blood parameters,
including LDH, PLT and GGTP, indicated this patient has a low risk
of having MVI, while 4 blood parameters such as SCR and MCHC
indicated a high risk of getting MVI. Integration of all related
parameters and their impacts showed that this patient has an
over-all low risk of MVI, which is consistent with the pathological
reports showing no MVI in this patient. To obtain the overall aver-
age impact of each input variable on MVI, all the samples in the
training set were analyzed by LIME. The average of the explanation
results was calculated and weighted by samples’ categories. The
value of each blood parameter dimension is divided into four inter-



Fig. 2. (A) The explanation results of a single sample. 11 variables contribute to no MVI and 6 variables contribute to MVI. The pathological report showed this patient did not
have MVI. The length of each column represents the impact of the corresponding variable on MVI (or NOT MVI). (B) Top-10 high impact feature and value range pairs. (C)
MRE-Probability Curve of the proposed model. The MRE are mostly located between 0 and 100. With the increase of the MRE, the risk of MVI rises. The linear correlation
coefficient R2 achieves 0.9415.
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vals in our experiment. Therefore, the impact scores of all 18 � 4
parameter dimensions and value range pairs, which covers the
whole input data space, were obtained. The detailed impact scores
830
were available in Supplementary Table S5. Fig. 2B shows the top
twenty blood parameter and value range pairs that have the great-
est impact on MVI occurrence. In our model, LDH plays the most
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important role with a mean absolute score of 6.49 in the prediction
of MVI, followed by GGTP and AST with the mean absolute score of
5.65 and 5.13, respectively. Noteworthily, AFP, with its well-known
correlation with MVI, ranked 5th among all blood parameters and
had a mean absolute score of 3.93. The patient’s risk of MVI
increases significantly if variables such as LDH, GGTP, AST reached
certain higher levels, while the risk reduces if these variables
dropped down to lower than a certain value. This result could help
us to determine which blood parameters should be paid more
attention to.

3.3. The scoring model achieved better performance on C-index
compared with the state-of-art method and independent validation
proved its applicability

The MRE scoring model based on LIME explaining results pro-
vided quantifiable evaluation of MVI risk for HCC patients.
Fig. 2C shows the correlation between the MRE and MVI probabil-
ity. Most MRE were located between 0 and 100. With the increase
of MRE, the probability of MVI increased. C-index was used to
quantify the relevance between the MRE and the ground-truth
MVI probability. Our proposed method achieved good accuracy in
estimating the risk of MVI, with a C-index of 0.9341 in the whole
training cohorts. To better validation this scoring model’s perfor-
mance, we further collect another cohort, constituted of a total of
1085 HCC patients, all with 18 blood parameters utilized by our
model available. MRE showed excellent consistence with patients’
MVI risk, achieving a C-index of 0.9052. As shown in Table 1, com-
pared with the state-of-art method of scoring the MVI risk [7], our
proposed method achieved better performance with less data for
modeling judging by C-index. It’s also well known that MVI is cor-
related with tumor size. To explore the application of MRE in
tumor with relatively small size, we calculated C-index for small
HCCs (nodule < 2 cm) additionally, achieving 0.85 and 0.822
respectively in the training cohort and independent validation
cohort. Considered that our model was built based solely on results
of blood tests and did not require any additional information from
surgical operation or imaging, it could great benefit non-invasive
evaluation of MVI risk for HCC patients.

3.4. Relationship between MRE and clinical features

With MRE accurately predict MVI risk in HCC patients, we fur-
ther explored if the model’s score might be related to other clinical
features. We first divided patients in the training cohort into two
groups, one group with MRE above median and the other with
MRE below median, defined as high-risk group and low-risk group.
Comparison of the clinical features between the two groups
showed that, higher MRE was related with larger tumor
(p < 0.0001), more possibility to have satellite nodules
(p < 0.0001), and lower Edmondson-Steiner grade (p = 0.0025),
all indicating tumor progression. These results are not surprising
since MVI is also an indicator of cancer progression. Meanwhile,
we also noticed significant more probability of having less com-
plete tumor envelope (p = 0.027) and tumor thrombus
(p < 0.0001) for the high-risk group, indicating that tumors have
greater potential of metastasize. The more sever condition of
tumor also lead to rising difficulty in surgical resection, reflected
Table 1
Comparison of concordance index of different scoring methods.

Method Training Set Samples Testing Set Sam

Nomogram * 707 297
IRP Method 916 1085
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by significant more blood loss during surgery (p < 0.0001). Note-
worthily, significant differences in alcohol assumption history
(p < 0.05) were also revealed. However, we did not observe any dif-
ferences in Child–Pugh score between the two groups. We also
divided the training cohort into groups according to MVI presence,
and observe similar correlations between MVI and tumor size,
satellite nodules Edmondson-Steiner grade, tumor envelope as
well tumor thrombus (all p < 0.0001). However, we did not see sig-
nificant change in alcohol assumption between the two groups,
suggesting that previous correlation between alcohol assumption
history and MRE might reflect its influence on circulating system
rather than MVI risk. Similar analysis was conducted for the inde-
pendent validation cohort and yield accordant results (Supplemen-
tary Table S6), further supporting that the MRE could indeed reflect
the risk of MVI by providing quantification of tumor progression
status.
3.5. MRE could serve as an independent pre-surgical risk factor for RFS
and OS

The occurrence of MVI has long been considered as an impor-
tant factor related to HCC prognosis. Since our model was built
based on the correlation between the predicted scores and MVI risk
of HCC patients, it is natural to investigate whether these scores
showed relevance with HCC survival and recurrence. Fig. 3 shows
the Kaplan-Meier curves of overall survival (OS) and recurrence-
free survival (RFS) for the two patient groups in both training
cohort and independent validation cohort. For the overall survival,
the log-rank P-value of 5.36E-13 was achieved for the training
cohort (Fig. 3A), and P-value of 8.7E-5 was achieved in the inde-
pendent validation cohort (Fig. 3B). Considering the relatively short
follow-up time for some patients, the differences might be more
significant when conducting longer term of follow-up. Meanwhile,
survival analysis also shows that the recurrence-free survivals in
the two risk groups are drastically different, with log-rank P values
of 2.72E-17 (Fig. 3C) and 2.49E-09 (Fig. 3D) in the training cohort
and the independent validation cohort, respectively. These associ-
ations pointed out that the predicted MRE from our model was a
significant factor affecting the recurrence of HCC, and further had
a great impact on patients’ prognosis.

When performing univariate Cox regression analysis for the
MRE as well as other clinical parameters in the training cohort,
we found that the derived MRE served as one of the most signifi-
cant factors affecting both RFS and OS, which is shown in Table 2.
Other clinical parameters correlated with patients’ prognosis
include age, weight, parameters reflecting tumor progression
including tumor maximum diameter, Edmondson-Steiner grade,
number of tumor and parameters reflecting how resection goes
include the blood lose and intraoperative blood transfusion (all
p < 0.05). To further evaluate the application of our model in
pre-surgery prognosis evaluation, we performed multi-variable
Cox analysis including the MRE and all clinical parameters (weight
and BMI were removed since they were unavailable in the inde-
pendent testing cohort) that could be acquired before the surgical
operation. Noteworthily, the MRE derived by our model remained
as one independent risk factor for both RFS and OS (Table 3), with
the complete formula shown as follows:
ples Training Set C-index Testing Set C-index

0.81 0.80
0.9341 0.9052



Fig. 3. Survival and recurrence-free survival differences of training and testing set under the MRE threshold of 50: survival of training set (A), survival of testing set (B),
recurrence-free survival of training set (C), recurrence-free survival of testing set (D).

Table 2
Univariate Cox Regression Analysis for MRE in included HCC patients.

B SE Wald Sig. Exp(B) 95.0% CI for Exp(B)

Lower Upper

RFS 0.021 0.002 122.230 0.000 1.021 1.017 1.025
OS 0.024 0.003 72.640 0.000 1.025 1.019 1.031

Table 3
Multivariate Cox Regression analysis of pre-surgery parameters in included HCC patients.

Parameter B SE Wald Sig. Exp(B) 95.0% CI for Exp(B)

Lower Upper

RFS Sex 0.273 0.131 4.330 0.037 1.314 1.016 1.699
Imaging tumor maximum diameter 0.012 0.003 23.983 0.000 1.012 1.007 1.017
MRE 0.088 0.015 35.891 0.000 1.092 1.061 1.124

OS Imaging tumor maximum diameter 0.068 0.023 8.860 0.003 1.070 1.023 1.119
MRE 0.018 0.004 19.865 0.000 1.018 1.010 1.026
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SCORERFS ¼ 0:273� Sex þ 0:088� Imagingtumormaxdiameter �þ0:012

�MRE
SCOREos ¼ 0:068� Imagingtumormaxdiameter þ 0:018�MRE

Using the above formulas, we calculated the prognostic risk
score for the independent validation cohort and divided them
using median of the score as cut-off. Kaplan-Meier curves of the
divided two groups showed that they have dramatically different
prognosis (Supplementary Fig. S1), further supporting the value
of MRE in prognosis evaluation. Thus, our model could also be uti-
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lized to evaluate patients’ status and this evaluation could be
achieved even before the surgical operation, providing an impor-
tant strategy for better prognosis management.

4. Discussion

Microvascular invasion is one of the most crucial factors leading
to HCC recurrence after liver hepatectomy and transplantation.
Quantifying the risk of MVI occurrence before surgery would help
to determine the therapeutic schedule and is conducive to the
achievement of precision medicine. It also helped surgical decision
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making between liver resection and liver transplantation, with MVI
being a strong contra indication to the second option. An accurate
evaluation strategy that minimum the collateral risk to patients is
in demand and our method meets the urgent need by utilizing the
blood test results to predict the risk of MVI for HCC patients based
on the interpretation of the deep learning model. This approach,
which could be termed as a liquid-biopsy for MVI, achieved high
performance, and might further aid HCC patients’ clinical
management.

So far, the golden standard for MVI determination is via patho-
logical examination on tumor tissue samples collected during sur-
gery. Other methods usually have disadvantages preventing them
from clinical applications. For example, biopsy for confirmation
of MVI has been proven unreliable [5], which is largely due to
intratumoral heterogeneity, and could increase the risk of the
tumor metastasis [29,30]. Meanwhile, medical imaging often fails
to detect MVI resulted from the limitation of the imaging
approaches [31]. Blood test served as a non-invasive strategy to
acquire tumor information, can relieve the distress of patients
compared with the needle biopsy. Also, Studies have reported that
blood tests presented parameters correlated with MVI of HCC
patients [13,32–36], while it is hard to precisely quantify the dif-
ferences of their impacts on the prediction of MVI. In the present
study, the proposed IRP method could not only offer the quantified
impact on MVI for each involved blood parameter but also con-
struct a prediction model for preoperative estimation of MVI risk
for HCC patients. Interestingly, although the model in the present
study was constructed by the blood parameters and MVI, the
MRE of HCC patients showed significant relevance to the survival
and recurrence-free survival with a log-rank P-value of 1.8E-4
and 8.6E-12 in the enrolled cohort, respectively. The finding is
not unexpected since MVI itself is one of the most critical factors
leading to HCC recurrence and a key marker that could help guide
treatment selection [5,37–39]. The revealed correlation between
MRE and patients’ prognosis therefore offers a novel solution to
provide quantifiable evaluation for HCC clinical outcome based
on easy-to-obtain variables. Furthermore, the MREmight represent
an integrated status reflecting the influence tumor burden laid on
the circulating system. However, we must notice that the correla-
tion between these blood parameters and MVI was previously
rarely reported, which is accordant with the scientific consensus
that Machine learning solutions are usually difficult to directly
relate to existing biological knowledge. Our model might reflect a
rather complicated dynamical status at which these blood param-
eters let us get a glimpse on, and further investigation is still
required to fully understand how they are connected.

It is worth noting that the whole modeling process was carried
out by the machine learning method automatically, without prior
knowledge, making the proposed method also suitable to other
similar risk prediction tasks. In the present study, the deep learning
model learned the features between 18 pre-selected blood param-
eter and MVI occurrence, and automatically converted the well-
learned features into the form we can understand by the explana-
tion method. The explained results demonstrated that which vari-
ables are the most important factors leading to MVI occurrence and
should be paid more attention to, such as LDH, GGTP, and AST.
Meanwhile, the evaluation of the MVI risk for each HCC patient
is also of importance. In this study, the explanation results of all
the blood parameters were combined to form a scoring model to
give the estimate of MVI risk for HCC patients, and the assessment
of scoring model validated the accuracy of the interpretation
results. Since the deep learning model supports input data with
any length, any variable considered to have potential value in pre-
dicting MVI can be used as the input data for modeling. In scientific
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research, the effectiveness of newly discovered indices can be pre-
validated by adding them to existing models. Compared with the
traditional machine learning method, the prediction model built
on the explanations of machine learning models offers more trans-
parency, users can find the basis for the predicted results, making
the model more reliable. Moreover, there are some studies applied
the deep learning method to predict MVI for HCC [17,19], while
these deep learning models involved numerous computations of
the neurons in the artificial neural network, making it use the
high-performance computer as the basic hardware equipment,
limiting its wide use. The computation process of the scoring
model in this study is not only easier to be understood than the
‘‘black box” model but also convenient to be computed. It is suit-
able to be used in most clinical scenarios.

There are some more issues needed to be declared in this sec-
tion. A new data augmentation method was proposed in this paper
to generate more training data. Although there is no research
declares that how much training data is enough to train a model,
it is generally believed that as the data dimension of the input layer
increases, the amount of training data required to achieve the same
accuracy also increases. The study has shown that data augmenta-
tion methods can indeed improve the performance of the deep
learning model, but the improvement is limited by the equivalent
amount of real data [40] so that real data should be added as much
as possible.

It’s also important to point out that while building our model
solely based on blood test results make it one of the most conve-
nient and cost-efficient approach for MVI risk evaluation, the inte-
gration of MRE and other strategies might still possess potential for
a more comprehensive and more accurate determination for MVI
presence. Many other clinical features have also been reported to
related with MVI such as large tumor size [41] non-smooth tumor
margin [42], and Circular RNAs such as ciRS-7 [43]. The combina-
tion of different strategies of multi-omics has shown great promise
and become one of the most important research focus recently. In
future multi-omics integration, our model will sure provide irre-
placeable insights and help build a more comprehensive view for
MVI evaluation.
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