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Abstract

Motivation: Characterizing cancer subclones is crucial for the ultimate conquest of cancer. Thus, a

number of bioinformatic tools have been developed to infer heterogeneous tumor populations

based on genomic signatures such as mutations and copy number variations. Despite accumulat-

ing evidence for the significance of global DNA methylation reprogramming in certain cancer types

including myeloid malignancies, none of the bioinformatic tools are designed to exploit subclonally

reprogrammed methylation patterns to reveal constituent populations of a tumor. In accordance

with the notion of global methylation reprogramming, our preliminary observations on acute mye-

loid leukemia (AML) samples implied the existence of subclonally occurring focal methylation aber-

rance throughout the genome.

Results: We present PRISM, a tool for inferring the composition of epigenetically distinct subclones

of a tumor solely from methylation patterns obtained by reduced representation bisulfite sequenc-

ing. PRISM adopts DNA methyltransferase 1-like hidden Markov model-based in silico proofread-

ing for the correction of erroneous methylation patterns. With error-corrected methylation patterns,

PRISM focuses on a short individual genomic region harboring dichotomous patterns that can be

split into fully methylated and unmethylated patterns. Frequencies of such two patterns form a suf-

ficient statistic for subclonal abundance. A set of statistics collected from each genomic region is

modeled with a beta-binomial mixture. Fitting the mixture with expectation-maximization algo-

rithm finally provides inferred composition of subclones. Applying PRISM for two AML samples,

we demonstrate that PRISM could infer the evolutionary history of malignant samples from an epi-

genetic point of view.

Availability and implementation: PRISM is freely available on GitHub (https://github.com/dohlee/

prism).

Contact: sunkim.bioinfo@snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The concept of clonal evolution in cancer (Nowell, 1976) has revo-

lutionized our understanding of cancer biology throughout various

subjects including progression of cancer (Merlo et al., 2006), recur-

rence (Yates et al., 2017), metastasis (Gundem et al., 2015; Turajlic

and Swanton, 2016; Yates et al., 2017) and treatment response

(Almendro et al., 2014; Kreso et al., 2013). Evolution of the cancer

subclones often results in a tumor composed of several genetically or

epigenetically distinct subclones. Therefore, the subclonal diversity

arising from clonal evolution has long been acknowledged as one of

the prominent causes of intratumor heterogeneity (ITH). ITH intui-

tively reflects the adaptive capacity of a tumor to survive changing

conditions. Thus, its utility as a biomarker predicting the aggressive-

ness of a tumor has been widely studied.

Next-generation sequencing (NGS) has offered us an excellent

opportunity to interrogate ITH at an unprecedented resolution.

Accordingly, there have been several important approaches to define

ITH measures in various omics level, including genomic (Mroz and

Rocco, 2013), transcriptomic (Park et al., 2016) and methylomic

(Landau et al., 2014) level. These ITH measures were proven to

have remarkable clinical potentials. However, the best precision and

utilization of ITH can be achieved through the direct characteriza-

tion of cancer subclone itself. Formally, this problem of characteriz-

ing constituent subclones of a bulk tumor only from its molecular
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signature is often referred to as ‘subclonal inference’. A critical ap-

plication of subclonal inference is the reconstruction of the evolu-

tionary history of a tumor (Gerlinger et al., 2012), which harbors

great potential for the precision medicine when exploited (Hiley

et al., 2014). Most existing methods for subclonal inference such as

ABSOLUTE (Carter et al., 2012), THetA2 (Oesper et al., 2014),

SciClone (Miller et al., 2014) or PyClone (Roth et al., 2014) utilize

prevalence of a subclonal genomic variation including somatic copy

number alteration (CNA) or single nucleotide variant (SNV) as a

proxy of subclonal abundance.

Meanwhile, clonal evolution accompanied by the genome-wide,

dynamic reprogramming of DNA methylation has received increas-

ing attention in recent years (Brocks et al., 2014; Ferrando and

López-Otı́n, 2017; Li et al., 2016; Mazor et al., 2016), inspiring

researchers to develop methods to inspect the methylomic evolution

in cancer (Barrett et al., 2017; Li et al., 2014). However, applica-

tions of those methods are limited to detecting methylation patterns

that are likely to have undergone subclonal expansion, and none of

them directly aims to uncover the subclonal population structure of

a tumor sample, thereby enabling the inference of methylome-based

evolutionary tree of the subclones. Therefore, we present a bioinfor-

matic tool named PRISM as a solution for the epigenetic subclonal

inference problem. Motivated by the strategy taken by mutation-

based subclonal inference algorithms, which takes advantage of the

dichotomousness of variant and reference alleles, PRISM tackles the

problem by focusing on the particular genomic region harboring di-

chotomous groups of methylation patterns, namely fully methylated

and unmethylated patterns.

2 Problem formulation and approach

2.1 Terminologies used in this research
In this section, we define terminologies used throughout the re-

search. To help understand the terminologies, a schematic illustra-

tion is in Figure 1A. We define an epigenetic subclone as a clonal

population of cells harboring distinct regional methylation patterns

that exclusively belong to that subclone. Also, the exclusive subclo-

nal methylation pattern will be referred to as fingerprint methylation

pattern or fingerprint pattern for convenience. We defined an epilo-

cus as a short genomic region (typically �100 bp) at which a group

of reduced representation bisulfite sequencing (RRBS) reads was

mapped, and subsequently a fingerprint epilocus is defined as an epi-

locus harboring fingerprint pattern. From each fingerprint epilocus,

a fraction of sequencing reads supporting fingerprint pattern can be

calculated and this fraction will be denoted as fraction of fingerprint

pattern (FF) (Fig. 1C). This value will serve as an estimator of sub-

clonal abundance harboring the particular fingerprint patterns, and

will be used for the intuitive illustration of the core algorithm of

PRISM.

2.2 Overview of algorithm
The main approaches taken by PRISM are based on the following

notions. Each of them is separately discussed in the upcoming

sections.

1. The applicability of PRISM heavily depends on the existence of

fingerprint epiloci, which indeed is not a well-established

conception. A growing body of evidence for the role of genome-

wide DNA methylation reprograming in cancer and our empiric-

al observations on fingerprint epiloci justify the existence of

fingerprint epiloci. Consequently, epigenetic subclones, if they

exist, can be traced with a sufficient number of fingerprint

methylation patterns.

2. Before the PRISM analysis, methylation patterns undergo in sil-

ico proofreading which corrects for the erroneous methylation

states. It is based on DNA methyltransferase 1 (DNMT1)-like

hidden Markov model (HMM) that is designed to mimic the

DNA methylation maintenance process of DNMT1. Notably, in

silico proofreading serves as an effective calibrator of estimated

subclonal abundance, and it also increases the number of finger-

print epiloci enough for inferring epigenetic subclones as shown

in Section 4.1.

3. The estimate of subclonal abundance is drawn from individual

‘one-versus-all the other’ binary pattern decomposition problem

for each fingerprint epilocus. If there are k epigenetic subclones,

these subclonal abundance estimates will be clustered around k

genuine subclonal abundances. Thus, the problem can be viewed

as a k-mixture decomposition problem, which is modeled as a

beta-binomial mixture and solved by the expectation-

maximization (EM) algorithm.

2.2.1 Existence of fingerprint epiloci

Using the prevalence of subclonal variant as an estimate of subclonal

abundance has been a successful strategy for mutation-based subclo-

nal inference (Miller et al., 2014; Roth et al., 2014). PRISM adopts

a similar approach, by considering methylation fingerprint patterns

as subclonal variants. Therefore, justifying the existence of finger-

print epiloci is crucial for the feasibility of PRISM.

Our point of view on the epigenetic subclonal inference problem

is shown in Figure 1A. Aberration of methylation in cancer is char-

acterized by genome-wide hypomethylation, as well as focal hyper-

methylation at regions including CpG islands (Baylin and Jones,

2011). Also, the global alterations of DNA methylation have been

extensively studied in cancer, especially in leukemias (Heller et al.,

2016; Oakes et al., 2016). Although defective epigenetic regulators

are thought to affect DNA methylation reprogramming, the precise

mechanism of the phenomenon still needs to be clarified.

Nevertheless, accumulating evidence suggests that the methylation

landscape of cancer evolves under selective pressure (Mazor et al.,

2016), implying that epigenetic subclones expand due to the

increased fitness conferred by reprogrammed methylomic profile.

Given the existence of epigenetic subclones, we postulated that dis-

tinct methylation patterns (e.g. regional hypermethylation) that

uniquely define the subclone could be found by scrutinizing their

methylation profiles. Therefore, the region with those distinct

methylation patterns (i.e. fingerprint epilocus) became the principal

unit of analysis in PRISM workflow because it could be treated as

evidence of epigenetic subclone.

Furthermore, we have encountered some empirical observations

on fingerprint epiloci in several, if not all, clinical samples from

acute myeloid leukemia (AML) patients. Our preliminary analysis

revealed that the fingerprint epiloci are uniformly distributed

throughout the genome (Supplementary Fig. S1), thereby supporting

our supposition that fingerprint epiloci arise from global DNA

methylation reprogramming. More concrete examples of these find-

ings are going to be discussed in Section 4.3.

2.2.2 In silico proofreading of methylation pattern based on

DNMT1-like HMM

DNA methylation data sequenced by RRBS protocol suffers from di-

verse sources of errors such as the relatively high error rate of

DNMT1 that is responsible for DNA methylation maintenance, or
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incomplete bisulfite conversion. Meanwhile, PRISM utilizes the

exact count of specific methylation patterns, which is vulnerable to

even small amounts of biased errors. Thus, techniques used for sub-

clonal inference at mutation level (Miller et al., 2014; Roth et al.,

2014) are not directly applicable to PRISM. Motivated by the suc-

cessful application of in silico error correction algorithm of DNA

sequencing data for fragment assembly (Pevzner et al., 2001), we

developed a novel in silico proofreading algorithm for methylation

patterns to overcome this difficulty.

Computational modeling of DNMT1 enzymology is at the core

of our methylation error correction algorithm (Figs 1B and 2A). We

called this model as DNMT1-like HMM. It is indeed a generative

model, which produces approximate copies of template methylation

pattern that may contain some errors in them (Fig. 2B). Having

established the generative model for DNA methylation maintenance,

conversely, we can infer the template methylation pattern from the

observed erroneous methylation patterns (Fig. 2B). This inference

constitutes the essence of our error correction algorithm which is

referred to as in silico proofreading of methylation patterns based

on DNMT1-like HMM. Please refer to Section 3.1.2 for the full de-

scription of DNMT1-like HMM-based in sillico proofreading of

methylation patterns.

Fig. 1. Workflow of PRISM. (A) The concept of fingerprint epilocus. White and black circles denote unmethylated and methylated CpGs, respectively. Assume a

bulk tumor comprising four epigenetic subclones (denoted by green, red, blue, sky blue cells) with relative abundance as shown in the figure. We expect finger-

print pattern (illustrated as four consecutive black circles) of the four subclones to be found throughout the genome. Inside the chromosome ideogram, finger-

print epiloci are shown as vertical bars with corresponding colors. Shown below are some detailed examples of fingerprint epiloci with the status of methylation

patterns. For simplicity, only fully methylated fingerprint patterns are considered as fingerprint pattern in the figure. However, fully unmethylated fingerprint pat-

terns will also be taken into account in the post hoc processing step of actual analyses. (B) Preprocessing step. Initially, RRBS mapping result is used for epiloci

extraction, and optional pre-filtering is done to facilitate downstream steps. Methylation patterns obtained by RRBS are susceptible to error (red circles) for vari-

ous reasons. Therefore, DNMT1-like HMM-based in silico proofreading attempts to correct for these errors. Obvious non-fingerprint epiloci will be subsequently

discarded. Finally, we obtain analysis-ready fingerprint epiloci for the main analysis of PRISM. (C) Binary pattern decomposition problem. Analysis-ready finger-

print epiloci consist of nearly dichotomous groups of methylation patterns, namely, fully methylated and unmethylated patterns. Separate counting of fingerprint

and non-fingerprint patterns gives estimates for the relative abundance of subclones. (D) Beta-binomial mixture model fitting and model selection. All the solu-

tions of binary pattern decomposition problems are merged into a single beta-binomial mixture problem. Each k-cluster model is fit by EM algorithm, where k ¼
1; 2; . . . ; 15 by default. Among the model fits, the model that best explains the data are chosen by selecting the model with the minimum BIC. Finally, the subclo-

nal inference result is obtained, and used for further analyses such as functional annotation

i522 D.Lee et al.



2.2.3 k-mixture decomposition for epigenetic subclonal inference

The core analysis of PRISM can be viewed as a k-mixture decom-

position problem after the HMM-based proofreading of methyla-

tion patterns. In this section, we give brief illustration of k-mixture

decomposition problem. Algorithmic details of k-mixture decom-

position are described in Section 3.2.

Subclonal abundance estimates drawn from binary pattern de-

composition problems.

Decomposing methylation patterns for each of fingerprint epiloci

generates an estimate of subclonal abundance, even though we do

not know from which subclone the fingerprint pattern is originated.

Specifically, ‘dichotomous’ epiloci will only be considered as fin-

gerprint epiloci where most of its methylation patterns are fully

methylated or unmethylated, and this binarization significantly

facilitates the whole workflow. Therefore, for each fingerprint epilo-

cus, we can reduce the problem into a ‘binary’ pattern decompos-

ition problem (one subclone versus all the other subclones)

(Fig. 1C). It is because there are only two types of methylation pat-

terns, i.e. fingerprint pattern from one subclone and non-fingerprint

pattern from all the other subclones. To simplify the approach, we

regard fully methylated patterns as fingerprint patterns and fully

unmethylated patterns as non-fingerprint patterns. With that simpli-

fication, finally, a binary pattern decomposition results in two val-

ues for each fingerprint epilocus i: the number of fingerprint

patterns (mi) and non-fingerprint patterns (ui). These two values

(mi, ui) together constitute a sufficient statistic for underlying sub-

clonal abundance, where the maximum likelihood estimator of sub-

clonal abundance is mi=ðmi þ uiÞ which is equivalent to FF.

Determining the subclone from which (mi, ui) is originated is actual-

ly a k-mixture decomposition problem.

Beta-binomial k-mixture decomposition for subclonal inference.

Given a set of statistics from binary decompositions of E finger-

print epiloci, say fðm1;u1Þ; . . . ; ðmE; uEÞg, the problem is to deter-

mine which subclone is responsible for (mi, ui) among k subclones

for each fingerprint epilocus. Conceptually, we can expect subclonal

abundance estimate mi=ðmi þ uiÞ (FF) to be distributed around the

genuine subclonal abundances, and these true subclonal abundances

are likely to be detected by solving a k-mixture problem (Fig. 1D).

In practice, we solve the mixture problem not with subclonal abun-

dance estimate mi=ðmi þ uiÞ but with its sufficient statistics (mi, ui).

Value of mi can be intuitively viewed as a binomial random variable

parameterized by the number of trial mi þ ui and subclonal abun-

dance as its probability. However, a common binomial model often

does not account for the overdispersion of NGS (Heinrich et al.,

2012), and thus underestimates its variance. Therefore, we intro-

duced the beta-binomial model instead of the binomial model and

attempted to solve the beta-binomial mixture model for the exact

counts of fingerprint and non-fingerprint methylation patterns.

3 Methods

3.1 Preprocessing of RRBS mapping result
3.1.1 Extraction of epiloci and methylation patterns from RRBS

data

Epiloci and methylation patterns assigned to them were extracted

from RRBS mapping data. Mapped reads harboring the same set of

CpGs are grouped, and the read groups carrying at least d reads

with at least c CpGs were retained for further analysis. By default, d

was set to 20, and c was set to 4. Since subsequent in silico proof-

reading is a resource-intensive step, we allowed an optional pre-

filtering before in silico proofreading step if a sufficient amount of

data is given. A read group was pre-filtered out if it did not meet any

of the following criteria, which is rather lenient: (i) The two most

frequent patterns together should be fully methylated or unmethy-

lated. (ii) The two most frequent patterns should account for >50%

(by default) of reads mapped at the epilocus.

3.1.2 DNMT1-like generative HMM-based in silico proofreading

of methylation patterns

We suggest that the enzymology of DNMT1 can be elegantly mod-

eled by HMM, as demonstrated in Figure 2A. Suppose a situation in

which DNMT1 tries to maintain methylation patterns on hemime-

thylated DNA duplex. There are two possible states of DNMT1 en-

zyme with respect to the target DNA: DNMT1 attached to DNA

and detached from DNA. Accordingly, our DNMT1-like HMM

consists of two hidden states, attached (a) and detached (d) states.

To account for the processive methylation of DNMT1, we intro-

duced two parameters, processivity of DNMT1 (p) and recruitment

efficiency of DNMT1 to DNA (q) (Supplementary Fig. S2A and B).

For example, the probability of transiting from state a to a is p, and

from state d to d is 1 � q. Then we modeled DNMT1 copying the

methylation status from existing methylation pattern on the

Fig. 2. Description of our DNMT1-like HMM. (A) Schematic diagram of DNA

methylation maintenance. The diagram shows the template methylation

states (black-outlined circles) being copied. Copied methylation states (red-

outlined circles) are yet unknown. We can think of DNMT1 in two states:

detached from DNA (green) and attached to DNA (red). The state of DNMT1

changes as it travels along the DNA. In particular, the transition from attached

state to attached state denotes ‘processive maintenance’, and the transition

from detached state to attached state denotes ‘recruitment’ of DNMT1. As it

is structured in the diagram, we argue that this process can be properly mod-

eled with HMM. Empty circles and filled circles denote unmethylated and

methylated cytosine, respectively. (B) Properties of DNMT1-like HMM. By

modeling the generative process of DNA methylation maintenance, our

model clearly possesses the property of generative model (leftwards arrow).

It means that the probability of an observed methylation pattern is defined by

our model, given a template methylation pattern. We exploit those probabil-

ities to infer template methylation pattern from observed methylation pat-

terns (rightwards arrow). Squares with a and d represent ‘attached’ and

‘detached’ hidden states, respectively
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template strand (template pattern) to the daughter strand by unroll-

ing the HMM configuration by the length of template pattern

(Supplementary Fig. S2C). For each CpG site, emission probability

of observed methylation status depends on both corresponding hid-

den state and methylation state of template pattern. In attached

state, probabilities of emitting observed methylation status (o) from

template methylation status (t) are defined with the error rate of

DNMT1 (�a) as follows:

ea;tðoÞ ¼
1� �a if t ¼ o
�a if t 6¼ o

�
(1)

For example, the probability that methylated cytosine (m) is emitted

from attached state (a) and unmethylated template cytosine (u) is

represented as ea;uðmÞ and its value is �a. Emission probabilities

from the detached state are defined as follows:

ed;mðoÞ ¼
n

1� �d if o ¼ u
�d if o ¼ m

ed;uðoÞ ¼
n

1� �b if o ¼ u
�b if o ¼ m

(2)

here �d and �b denote the overall sequencing error rate and bisulfite

conversion error rate, respectively.

Given the template methylation pattern, we could compute the

probability of any methylation pattern using forward algorithm.

These DNMT1-like HMM-based pattern probabilities were used in

the hard-EM algorithm for subsequent template inference, which fi-

nally results in the set of the most likely template methylation pat-

terns. The details of the forward algorithm and the hard-EM

algorithm used for DNMT1-like HMM-based in silico proofreading

is provided in Supplementary Information.

3.1.3 Identification of fingerprint epiloci

After correcting for the errors, we discarded an epilocus from fur-

ther analysis if it did not meet any of the following criteria, which is

stricter than pre-filtering criteria: (i) The two most frequent patterns

should be fully methylated or unmethylated. (ii) The two most fre-

quent patterns should account for >80% of reads mapped at the

epilocus.

3.2 PRISM model
3.2.1 Establishment of PRISM model

We let mi and ui denote the number of reads at fingerprint epilocus i

which supports methylated patterns and unmethylated patterns, re-

spectively (Supplementary Fig. S3). We modeled two values, mi þ ui

and mi, with beta-binomial distribution parameterized by a and b.

The model for fingerprint epilocus i became as follows:

mi � BetaBinomialðmi þ ui; a;bÞ (3)

We attempted to solve beta-binomial mixture model and derive K

clusters from E fingerprint epiloci in total, where K is defined a pri-

ori. More specifically, for a cluster k, independent parameters ak

and bk were introduced, and the optimal values of ak and bk were

determined by EM algorithm.

For the following descriptions, we let superscripts in parenthesis

denote the iteration number of EM algorithm. All of the cluster

weight pð1Þk were initialized with 1/K. For reasonable initialization of

að1Þk and bð1Þk , we fit Gaussian mixture model with values of

mi=ðmi þ uiÞ, or FFs. Fitting Gaussian mixture model gives mean

and variance for each cluster k, denoted by lk and r2
k, respectively.

We could initialize að1Þk and bð1Þk using the result of Gaussian mixture

fit as follows:

að1Þk ¼
1� lk

r2
k

� 1

lk

 !
l2

k

bð1Þk ¼ að1Þk

1

lk

� 1

� � (4)

In the E-step, L
ðnÞ
ik , the likelihood of aðnÞk and bðnÞk with regard to epi-

locus i was computed with beta-binomial probability mass function

f. Assume we are at iteration n of EM algorithm.

L
ðnÞ
ik ¼ f ðmijmi þ ui; a

ðnÞ
k ; bðnÞk Þ

¼ Cðmi þ ui þ 1Þ
Cðmi þ 1ÞCðui þ 1Þ

Cðmi þ aðnÞk ÞCðui þ bðnÞk Þ
Cðmi þ ui þ aðnÞk þ bðnÞk Þ

CðaðnÞk þ bðnÞk Þ
CðaðnÞk ÞCðb

ðnÞ
k Þ

(5)

Accordingly, the posterior probability of epilocus i being assigned to

cluster k (p
ðnÞ
ik ) can be computed as follows:

p
ðnÞ
ik ¼

pðnÞk L
ðnÞ
ikPK

j¼1

pðnÞj L
ðnÞ
ij

(6)

In the M-step, pðnþ1Þ
k ; aðnþ1Þ

k and bðnþ1Þ
k are computed. The maximum

likelihood estimation of pðnþ1Þ
k is straightforward:

pðnþ1Þ
k ¼

PE
i¼1

p
ðnÞ
ik

E
(7)

However, the maximum likelihood estimation of aðnþ1Þ
k , and bðnþ1Þ

k

given m, u, and pðnÞ, which is not trivial, is done through Newton’s

iteration (Minka, 2000). A more detailed explanation of the max-

imum likelihood estimation of aðnþ1Þ
k and bðnþ1Þ

k is demonstrated in

Supplementary Information.

The termination condition of the EM iteration is described as fol-

lows. For each iteration, we computed log likelihood l(n):

lðnÞ ¼
XE

i¼1

log
XK

k¼1

p
ðnÞ
ik (8)

If jlðnÞ � lðn�1Þj < 0:001, the EM iteration was terminated.

3.2.2 Model selection

We used Bayesian information criterion (BIC) (Schwarz et al., 1978)

to select the model with optimal number of clusters. BIC of a model

with K clusters (MK) is defined as

BICðMKÞ ¼ ð3K� 1Þ log E� 2
XE

i¼1

log
XK

k¼1

pik (9)

Since there are 2K free parameters for a and b, and K � 1 free

parameters for p, MK has 3K � 1 free parameters in total. In prac-

tice, PRISM selects the model with minimum BIC among M1

through M15 by default.

3.2.3 Joint analysis of multiple samples from single tumor

Subclonal inference generally benefits from joint analysis of multiple

sequencing data from the same tumor because different samples

often have different mixing proportion of subclones which increases

the chance of separation for two subclones that could not be sepa-

rated by investigating a single sample due to their similar relative

abundance. Thus many of existing subclone detection tools are able

to analyze several samples jointly to increase their resolution of sub-

clone detection (Miller et al., 2014; Roth et al., 2014). PRISM can

also be applied for two or more samples from a single tumor.
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For the detailed explanation of the multi-sample joint analysis,

please refer to Supplementary Information.

3.2.4 Post hoc processing of clusters and copy number-aware

analysis

After selecting the optimal model, PRISM excludes uninformative

clusters that seem to have arisen from outliers. It also checks

whether it should treat several clusters as single subclones by taking

account of the unmethylated fingerprint, by merging ‘reflected’ clus-

ters. Also, PRISM can utilize CNA information to obtain corrected

methylation pattern counts which reflect methylation patterns origi-

nating from copy number-gained segments. For further details of

post hoc processing step and copy number-aware analysis, please see

Supplementary Information.

3.3 Data retrieval and processing
Methylated and unmethylated cell line RRBS data (Barrett et al.,

2017) were downloaded from European Nucleotide Archive under

accession number PRJEB21102. MCF10A-Er-Src cell line,

GM06990 B-lymphocyte cell line and T-47D cell line RRBS data

were downloaded from Sequence Read Archive under run accession

SRR222454, SRR531452 and SRR222532, respectively. We also

downloaded public AML RRBS data along with corresponding

whole exome sequencing (WES) data from dbGaP under accession

phs001027.v2.p1. For the full description of the data processing

step, please refer to Supplementary Information.

4 Results and discussion

4.1 Impact of in silico proofreading on PRISM analysis
We assessed the impact of in silico proofreading on the accuracy of

the estimated size of subclones (Fig. 3). For that, we obtained two

raw RRBS data representing methylation states of the fully methy-

lated cell line and fully unmethylated cell line. We mixed two raw

RRBS data to simulate a mixture of epigenetically homogeneous cells.

Each of the two raw data were subsampled with 10%, 20%, . . .,

90% of reads to generate benchmark mixtures of the two cell lines.

We then concatenated corresponding pairs of subsampled raw data

such that their mixing ratio (MR) would sum up to 100%. For

example, we joined 30%-subsampled fully methylated cell line

RRBS data and 70%-subsampled fully unmethylated cell line RRBS

data together. This entire step was repeated for 10 times. We then

examined the accuracy of MR estimates given by PRISM, with or

without in silico proofreading.

Running PRISM without in silico proofreading resulted in mark-

edly biased estimations, which consistently underestimated MR

(Fig. 3A). The worst estimation was for the MR of 20%, where the

ratio between estimated MR and true MR was 0.86. The estimations

after in silico proofreading were more ‘calibrated’ to correct estima-

tions (Fig. 3B), and the ratio between the worst estimation of MR

and true MR was 0.96 for MR of 20%. In silico proofreading seems

to correct for the biased error rate of methylation patterns, which is

significantly higher for fully methylated patterns than for fully

unmethylated patterns (Supplementary Fig. S4). Meanwhile, we

were also possible to show that in silico proofreading facilitated

PRISM analysis by considerably increasing the number of finger-

print epiloci for the inference of epigenetic subclones with marginal

introduction of artificial fingerprint epiloci (Supplementary Fig. S5).

4.2 Simulated mixture of tissue cell lines
We generated more realistic benchmark mixtures of cells by mixing

cell line RRBS data established from various tissues to evaluate the

performance of PRISM in practical situations. In particular, three

cell line RRBS data were carefully chosen from ENCODE project

(Varley et al., 2013): (i) MCF10A-Er-Src cell line which is derived

from non-tumorigenic epithelial cells of the mammary gland,

(ii) GM06990 B-lymphocyte cell line from lymphoblastoid and

(iii) T-47D cell line established from mammary ductal carcinoma.

Epigenomic reprogramming plays a crucial role in development,

shaping distinct methylation landscape for each cell type from differ-

ent cell lineage. Therefore, PRISM should be able to detect global

DNA methylation reprogramming event in order to distinguish a

lymphocyte cell line (GM06990) from two epithelial cell lines

(MCF10A-Er-Src and T-47D). Moreover, we asked whether PRISM

could accurately separate non-cancerous (MCF10A-Er-Src) and can-

cerous (T-47D) cell lines, where both of them were derived from the

mammary gland.

In this experiment, it should be noted that merely mixing the

raw data will result in an undesired result because the sequencing

libraries were prepared separately, so the cleavage site of restriction

enzyme may differ between samples. Furthermore, the sequencing

depth of the same epilocus will be strikingly different, which may af-

fect the proportion of reads severely when a mixture is generated.

Therefore, we mixed them with a deliberate approach as follows.

The three raw RRBS data were independently processed and

mapped to the reference genome. Then the epiloci which appear in

all of three alignment results and have 20 or more mapped reads

were retained for the mixing procedure. For each epilocus, simulated

sequencing depth d was sampled from NegBin(5, 0.03) with con-

straint d � 20. We randomly sampled MRs (P1, P2, P3) from

Dirichlet(3, 3, 3), and for each epilocus, bPidc reads were sampled

from each of the three data. The entire mixing step was repeated

two times to generate two independent mixtures (Supplementary

Table S1).

We supposed each cell line as a putative subclone in the mixture,

and let PRISM estimate the number and abundance of the subclones

only from their mixed methylation patterns in the two mixtures.

PRISM identified four subclones (Fig. 4A). Regarding the average

FF of each cluster as MR estimate, we observed that the resulting

MR estimates of subclones 1, 2 and 3 reasonably represented the

true MRs (Fig. 4B and Supplementary Table S2). For subclone 4,

which was unexpected, we could not draw a concrete conclusion on

whether it was an artifact of sequencing procedures, or it was a

Fig. 3. Effect of in silico proofreading. Two raw RRBS data from fully methy-

lated and unmethylated cell lines were mixed computationally. We let PRISM

estimate the true MR of the mixtures (A) without or (B) with in silico proof-

reading. The accuracy of MR estimate was measured as its fraction with re-

spect to the true MR. The expected values for perfect estimations are

represented as dotted lines. MR, mixing ratio
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genuine subclone originated from clonal evolution of the cell line.

By comparing MR estimates with true MRs, we postulated that sub-

clones 1, 2 and 3 represent MCF10A-Er-Src, GM06990 and T-47D

cell line, respectively.

Epiloci assigned to infer subclones were then functionally anno-

tated by seeking for the epiloci overlapping predefined sets of mark-

er genes. Two sets of marker genes that may help distinguish each

cell type were used, which were annotated to GO terms ‘hematopoi-

etic progenitor cell differentiation’ (GO: 0002244) and ‘response to

estrogen’ (GO: 0043627). We annotated an epilocus with a gene if it

had overlap with either of the gene body region or the upstream

3 000 bp region from TSS which accounts for the promoter region.

Subclone 2 exhibited two epiloci associated with the differentiation

of hematopoietic progenitor cells. Each of the epiloci was annotated

with HOXB3 and MIXL1. HOXB3 has been implicated in regener-

ation of hematopoietic stem cell (Björnsson et al., 2003) and early

hematopoiesis (Sauvageau et al., 1997). Meanwhile, MIXL1 is

shown to be required to determine the fate of cells from the primi-

tive streak to blood (Ng et al., 2005), and it has been used as a

marker of primitive hematopoietic stem cell (Davis et al., 2008).

The evidence collectively shows subclone 2 belongs to hematopoietic

lineage. Similarly, subclone 3 carried epiloci for CAV1. The methy-

lation status of CpG shore in its promoter has been reported to be

associated with aggressiveness of breast cancer (Rao et al., 2013).

Therefore, we showed that PRISM successfully reconstructed the

underlying cellular composition.

4.3 Detection of epigenetic subclones in AML dataset
We next applied PRISM for AML data to test if PRISM can draw

clinically meaningful observations. For each subject, a couple of

samples were taken at two time points (diagnosis and relapse) and

sequenced by RRBS. Two-sample joint analysis were done, which

resulted in 3.13 inferred subclones on average (Supplementary Fig.

S6). In this section, we describe our explanatory analyses for subject

AML-105 and AML-109, since both of them had five inferred sub-

clones, which seemed to be sufficient to reveal intriguing clonal dy-

namics. Microscopic inspection of data providers revealed that both

of the samples had relatively normal cytogenetic properties, except

for AML-105 relapse sample, which had a small fraction (�10%) of

cells harboring genomic deletion in q-arm of chromosome 7.

Moreover, no significant CNA was detected from WES data of those

samples (Supplementary Fig. S7). Therefore, we concluded that the

CNA of the samples would not affect our analysis.

For AML-105, initially, diagnosis and relapse samples were ana-

lyzed separately (Fig. 5A). Four and three putative epigenetic sub-

clones were found, respectively. However, the two-sample joint

analysis identified five epigenetic subclones (Fig. 5B), emphasizing

the necessity of multi-sample joint analysis to achieve a reasonable

resolution of subclonal inference. Interestingly, independent analysis

of variant allele frequency (VAF) from WES data (Supplementary

Fig. S8A) revealed that the subclonal abundance inferred by VAFs of

heterozygous somatic mutations within isocitrate dehydrogenase 2

(IDH2) and DNA methyltransferase 3 alpha (DNMT3A) was con-

cordant with the subclonal abundance estimates of subclone 2

(0.61–0.84) identified by PRISM. This indirectly suggests that som-

atic mutations in IDH2 and DNMT3A may have served as driver

events that accelerate subsequent epigenomic evolution, given the

role of IDH2 (Kernytsky et al., 2015) and DNMT3A (Yang et al.,

2015) as epigenetic regulators (Fig. 5E). Additionally, possible epi-

genetic drivers of subclonal expansion were identified by functional-

ly annotating identified subclones (Fig. 5C). We used a set of 68

recurrently mutated genes in AML (Metzeler et al., 2016)

(Supplementary Table S3) since we assumed that the epigenetic aber-

ration of these genes would also be critical for the progression of

AML. Subclone 3 harbored intensively altered methylation (here-

after referred to as epi-mutation) at Wilms’ tumor 1 (WT1), whose

overexpression and mutation have significant implications in AML

(Menssen et al., 1995; Miwa et al., 1992). What is most striking is

that dysregulated WT1 has recently been known to alter the methy-

lation landscape of cells by impeding the activity of TET2 (Rampal

and Figueroa, 2016). Epi-mutations in DNMT3A characterized sub-

clones 1 and 3, while subclone 1 was annotated with additional

gene, GATA binding protein 2 (GATA2). One potential pitfall of

PRISM is that it cannot avoid reporting a cluster of epiloci arisen

from genomic imprinting. However, it can simply overcome by

annotating subclones with known imprinted genes and excluding

the subclone showing a considerably high proportion of imprinted

epiloci (Fig. 5D). A curated list of imprinted genes was obtained

from Geneimprint (Falls et al., 1999). Therefore, subclone 4 was

Fig. 4. PRISM results for simulated mixtures of three tissue cell lines. Epigenetic subclones were jointly inferred with two mixtures. (A) In two-sample inference,

PRISM detected four subclones. (B) The accuracy of estimated mixing proportions. True underlying MRs are shown as X’s. Expected MR and its ‘reflection’ (1 �
MR), which accounts for the unmethylated fingerprint patterns, are shown as colored dots. Three genuine subclones (blue, red and green) were captured by

PRISM. Dotted circles group expected MRs and their closest estimates. (C) Functional annotation of detected subclones. Two sets of marker genes for two bio-

logical processes, ‘hematopoietic progenitor cell differentiation’ and ‘response to estrogen’, were used. S1 through S4, subclone 1 through subclone 4; FF, frac-

tion of fingerprint pattern; MR, mixing ratio

i526 D.Lee et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz327#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz327#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz327#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz327#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz327#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz327#supplementary-data


excluded from further analyses since 20.9% of its epiloci were

known to be imprinted. Finally, we could infer one of the possible

evolutionary histories of subclones regarding both genomic and epi-

genomic events that the subclones underwent (Fig. 5E).

PRISM revealed much intriguing clonal dynamics for AML-109

(Fig. 6). Three subclones were found in each of the separate analysis

of diagnosis and relapse sample (Fig. 6A), while joint analysis of the

two longitudinal samples revealed five subclones (Fig. 6B).

Similarly, independent whole exome analysis revealed a novel sub-

clone at relapse that was not detectable at diagnosis (Supplementary

Fig. S8B). The novel subclone carried somatic mutations in four

AML-related genes, including WT1 and IDH2. Interestingly, func-

tional annotation again discovered altered methylation of WT1

(Fig. 6C). Regarding subclone 4 as a representative of the whole clo-

nal population, WT1 methylation alteration was clonal rather than

subclonal in this case; in other words, it was deemed to have

occurred at the onset of the malignancy. Furthermore, subclone car-

rying epiloci at DNMT3A (subclone 3) showed dramatic increase in

its relative abundance (from 0.062 to 0.921). It implies that sub-

clone 3 had a remarkable evolutionary advantage over other sub-

clones in the tumor niche established by anti-cancer drugs,

presumably due to the combined effect of genomic and epigenomic

variations. Subclone 1 was excluded from the inference of evolution-

ary history because of its significantly high proportion of imprinted

epiloci (Fig. 6D). The reconstructed subclonal evolutionary trajec-

tory (Fig. 6E) verified WT1 epi-mutation as an early event in clonal

evolution, followed by MPL, JAK2 and also DNMT3A epi-

mutation accompanied by several mutations.

5 Conclusion

While it has long been considered that the evolution of the cancer

genome is the primary factor constituting inherent heterogeneity of

a tumor, the evolution of epigenome brings up another dimension to

defining the heterogeneity. Whether the genomic and epigenomic

evolution occur co-ordinatively or independently is still obscure,

and even seem to be case-dependent (Li et al., 2016), which is repro-

duced by comparing PRISM and two SNV-based subclonal inference

methods (Supplementary Fig. S9). Nevertheless, investigating the

epigenomic evolutionary history of a tumor at the resolution of can-

cer subclone provides valuable insight into the epigenetic mechanism

of the progression of the malignancy. It also offers novel implica-

tions for the history of clonal evolution and helps design the thera-

peutic strategy.

Despite the limitation of our research that we could not pro-

vide experimental evidence of the existence of the subclones, we

showed that the inference of epigenetic subclonal population

structure was possible by focusing on the fingerprint epiloci that

seem to have arisen from global DNA methylation reprogram-

ming. Analyzing clonal dynamics of the two AML samples implied

the significance of interplay between epigenetic regulators such as

WT1, IDH2 and DNMT3A in clonal evolution. Moreover, by

combining information of genomic variation, we could gain valu-

able insight into the simultaneous evolution of the genomic and

epigenomic landscapes. Consequently, we carefully suggest that

the development of epigenomic subclonal inference algorithm

brings us one step closer to the multi-omics level characterization

Fig. 5. PRISM results for AML-105. (A) Separate single-sample analyses of biopsies taken at the time of diagnosis and relapse. PRISM detected four and three can-

didate epigenetic subclones for diagnosis and relapse sample, respectively. (B) Two-sample joint analysis. PRISM reported five epigenetic subclones. (C)

Functional annotation of the joint analysis result. Recurrently mutated genes in AML are used for annotation. Each mark denotes epilocus which overlaps with

the corresponding gene or its promoter. (D) The proportion of imprinted epiloci for each of the putative epigenetic subclones. Notably, 20.9% of epiloci assigned

to subclone 4 were annotated to known imprinted genes. Therefore, we excluded subclone 4 from further analyses. (E) Schematic diagram of inferred evolution-

ary history. One of the possible evolutionary histories of identified epigenetic subclones is shown. Mutations and epi-mutations characterizing each subclone are

represented. The horizontal black line represents the time point at which the two biopsies were taken. Considerably, subclone 3 (green) underwent rapid clonal

expansion (from relative abundance 0.369 to 0.738) after chemotherapy. FF, fraction of fingerprint pattern; S1 through S5, subclone 1 through subclone 5
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of cancer subclones, which is one of the ultimate goals of molecu-

lar oncology.
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