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Abstract

Background: Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed
targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently,
experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for
foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that
can realize such behavior.

Methodology/Principal Findings: We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on
biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian
walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly
faced patchy environment where the density alternates.

Conclusions/Significance: Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns
based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia
coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy
environment are also discussed. The model provides a framework for further investigation on the role of internal noise in
realizing adaptive and efficient foraging behavior.
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Introduction

It has been noticed that in nature many predators do random

search as they have to make foraging, searching for foods, decision

with little, if any, knowledge of present resource distribution and

availability [1]. This feature leads to a question of: ‘‘what is the

most efficient statistical strategy to optimize a random search?’’ It

is shown that for sparse targets (i.e low target density), the

efficiency, defined as number of targets (e.g. preys, foods) found

divided by the traveled distance, is maximized when the flight

lengths follows an inverse power law distribution with a heavy tail:

a Lévy walk [2]. Although it has been revised for certain animals

[3], experimental data shows that the movement patterns of

various animals like spider monkeys, goats, solitary fallow deer,

fruit files, zooplanktons and various marine predators like sharks,

sea turtles and penguins fits a Lévy walk statistic [4]–[10].

Further theoretical study shows that while Lévy walks is more

efficient for a search with sparse, smaller and slower targets, the

opposite conditions shows Brownian walks as the favorable

strategy [11]. In a patchy environment where the target density

alternates, other results also show that performing Brownian walks

inside patches of targets with high density increases the search

efficiency as compared to Lévy walks that does not react to the

environment [12][13].

Recent experimental data shows that the movement pattern of

various marine predators, like blue basking shark (Cetorhinus

maximus), bigeye tuna (Thunnus obesus) [14], and terrestrial animal

like goat (Capra hircus) [8] shows Lévy walks pattern in areas with

low abundance of preys or foods and Brownian walks in areas with

high abundance. It is also argued in [7], that natural selection

should favor flexible behaviors in animals, combining different

searching strategies with different searching statistics under

different conditions. Experimental data is also shown therein to

prove that Oxyrrhis marina movement pattern follows Lévy and

Brownian walks depends on the density of their prey (Rhodomonas

sp.).

The underlying mechanism on how Lévy walks pattern is shown

by animals is considered as an interesting topic. In relation with

this, recently, it has been shown that animal foraging can also be

subject to noise in the form of presumably internally-generated

variability in an animal’s choice of movements [4][10][15]. A

foraging behavior mediated by internal noise has been reported in

fruit fly Drosophila, causing them to perform Lévy walks pattern

without any sensory input [4][10], and zooplankton Daphnia,
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affecting the turning angle distribution to maximize the foraging

success [15].

In order to realize Lévy walks pattern, one can surely use

generated random numbers by sampling an approximation of

Lévy stable distribution [16]. Simply transforming a uniformly

distributed random variables to generate power law ones is also a

commonly used method [12][13]. Nevertheless, Gaussian noise is

ubiquitous in nature due to the Central Limit Theorem, and it is

reasonable to assume that efficient, and adaptive, foraging

behavior is mediated by a natural Gaussian noise.

Furthermore, in [17], it is argued that animal movement

pattern can sometimes be better characterized by different

modes, as over long time-scales, simple models often fail to

describe the patterns because of the likelihood that the animals

change movement behavior. Similar idea is also described in

[18]. In the work, a random walks model called the Lévy

Modulated Correlated Random Walks (LMCRW) is proposed by

incorporating a time discrete reorientation behavior with Lévy

statistics, into the background continuous scanning process

modeled as correlated random walks. In ‘‘reorientation’’ mode

the turning angle is uncorrelated and breaks the directional

persistence introduced by the ‘‘scanning’’ model, in which the

turning angle distribution controls the persistence or correlation

length of the random walks.

It has also been shown that such switching of modes in animal

movement pattern can be adaptive to the environment. In relation

with target density, in many natural environments the preys are

actually clustered in patches: areas where the local resource

density is higher than the mean overall resource density [19][20].

As a result, various kinds of animals are observed to perform an

adaptive switching between intensive search mode triggered by the

detection of a prey within patches with high resource density, and

an extensive search between these areas. This movement pattern is

known as area restricted search (ARS), and reported to be

performed by various animals, including some of those which

adaptively choose Lévy or Brownian walks pattern based on target

density: basking shark (Cetorhinus maximus) [21] and zooplankton

(Oxyrrhis marina) [7].

Here, our focus of interest is the role of internal noise in

realizing adaptive and efficient animal movement pattern. This

paper presents a simple computational model based on natural

Gaussian noise that can realize a mode switching between Lévy

and Brownian walks movement pattern based on target density.

Our approach is to borrow a model that attempts to explain Lévy

walks pattern shown by one of the simplest creature, bacteria

Escherichia coli [22]. We extend the model based on biological

fluctuation framework, a recent perspective on how noise may be

utilized in living beings [23][24], without changing the essence of

the stochastic property in Escherichia coli physiological mechanism.

To be more exact, the hypotheses that we would like to test in

this paper are as follow: (1) Whether a behavior of choosing Lévy /

Brownian walks movement pattern, each argued as the favorable

strategy in a low / high target density, can be realized based on the

model. (2) Whether in a commonly faced patchy environment

where the target density alternates, an adaptive behavior will

emerge based on the same model, and whether it can be

beneficial.

To confirm the hypotheses, we built a simulation of a simple,

generic animal whose movement follows the proposed computa-

tional model and analyze the behavior. We compare the realized

behavior with the reported experimental data of zooplankton

Oxyrrhis marina, the simplest animal that is shown to adaptively

choose Lévy or Brownian walks under different target density, and

confirm the similarity. We also perform simulation in a patchy

environment using the same model and observe the realized

behavior and efficiency.

In the next sections, we will first explain a more detailed

knowledge related with the research. After that, the Method

section will explain the proposed model. The Result section will

show the simulation result that supports the hypotheses. In the

Discussion section, the results are further discussed and compared

with other well studied researches like the area restricted search,

before the Conclusion is made.

Lévy Walks and Brownian Walks
The term Lévy flights is used to describe a specialized random

walks in which the flight lengths, the length between two

consecutive change of direction, are drawn from a probability

distribution with an inverse power-law tail [1][2]:

p(l)&l{m ð1Þ

with 1,m,3, and l is the flight length. It means that rare but

extremely long flight lengths can happen in the random walks

pattern. Without tail truncation, sums of those flight lengths

converge to a Lévy stable distribution. For m$3, there is no heavy

tail in the distribution and the sums of the flight lengths converge

to a Gaussian distribution due to the Central Limit Theorem, thus

we recover Brownian walks. The case of m#1 does not correspond

to distributions that can be normalized.

To be exact, a technically correct term is actually Lévy walks: a

Lévy flight with time cost that depends on the flight lengths. A

Lévy walk leads to anomalous diffusion, meaning that the mean

squared displacement from the starting point increases faster than

linearly with time t, while Brownian walks is a normal diffusion

where the increase is linear.

As will be explained in the next section, the computational

model is built based on Escherichia coli mechanism, which purely

utilizes a natural Gaussian noise, with long correlation time as the

key mechanism [22]. Thus, the model can be said as a family of

fractional Brownian motion, a generalized form of Brownian

motion with correlation time [25], and is indeed a model of

correlated random walks. However, here we define the term based

on the movement pattern, not the underlying process. We simply

use the term ‘‘Lévy walks pattern’’ to describe a movement pattern

with heavy tailed power law distribution, and ‘‘Brownian walks

pattern’’ for movement pattern without such heavy tail.

It must also be noticed that the pattern are not generated by a

Lévy process. Therefore, like common assumption about the Lévy

walks pattern found in animals, the flight length distribution has a

large, but finite variance [1]. It means after an extreme long

period, the sum of causing the random search pattern to become a

Brownian walks.

Model of Escherichia Coli Motion
In bacteria, such as Escherichia coli, the motion can be

characterized as a sequence of smooth - swimming runs, punctuated

by intermittent tumbling motions that effectively randomize the

direction of the next run [26] (Figure 1.a). The switching probability

between the two modes is dictated by measurement of attractant

chemical gradient in the environment, obtained from comparison of

current and past concentration. When the bacterium perceives

conditions to be worsening, the tendency to tumble is enhanced and

vice versa. As a result, when the bacterium runs up a gradient of

attractant, it will do chemotaxis, biased random walks toward the

source. However, in the absence of this attractant, the bacterium

will simply do random walks (Figure 1.b).

Levy-Brownian Based on Biological Fluctuation
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Escherichia coli motion is well studied in biology [22][26]–[29]

and engineering [30][31]. However, only recently, unlike the

conventional expectation that the swimming mode duration of

Escherichia coli in absence of gradient follows Poisson-like

distribution, a power law distribution is found [27]. A possible

cause has been explained in [22]. It can be modeled that the

switching probability between swimming and tumbling mode is an

exponential function of an energy barrier [28], whose level keeps

fluctuating due to Gaussian fluctuation of a phosphorylated

protein concentration, Che Y-P inside the bacteria (Figure 1.c).

By approximating the energy barriers by linear expansion as an

average barrier value plus the protein fluctuation, it is shown that

power law duration of the swimming mode, a Lévy walks pattern,

can occur if the concentration of the protein fluctuates with a long

correlation time. Equations (2) to (4) describe the explained

dynamics in a more thorough way [21]. The dynamical two state

models is shown by equation (2), while the linear expansion of the

energy barriers is shown by equation (3) where a0,1 is two

dimensionless constants characterizing the steepness of the

response curves of the motor. Furthermore, equation (4) shows

the simplest model of the dynamics of the CheY-P concentration

where the first term shows the slow adaptation toward the

preferred concentration [Y]0 with a correlation time t, and g(t) is a

Gaussian white noise, representing the fast stochastic driving force.

Pz,{& exp ({
DG0,1(½Y �

kBT
) ð2Þ

DG0,1(½Y �)
kBT

%
DG0,1(½Y �0)

kBT
za0,1

½Y �{½Y �0
½Y �0

ð3Þ

d½Y �(t)
dt

~{
½Y �(t){½Y �0

t
zg(t) ð4Þ

Biological Fluctuation
Recent researches show that certain noise utilizing mechanism

called ‘‘biological fluctuation’’, or ‘‘Yuragi’’ in Japanese language,

plays important role in various stages from molecules to brains in

life sciences [23]. The mechanism is also found in bacteria

adaptation to environmental changes by altering their gene

expression when they are lack of certain nutrient. Based on this

behavior, in [24] a simple model was built to explain the biological

fluctuation. Here, the gene expression is modelled to be controlled

by a dynamical system with some attractors. The model is also

called ‘‘the attractor selection model’’ and represented by

Langevin equation as:

_xx(t)~{+U(x(t))A(t)ze(t) ð5Þ

where x(t) and 2=U(x(t)) are the state and the dynamics of the

model at time t, with potential U(x(t)) can be designed to have

some attractors e(t) is the noise term. A(t) is a variable called

‘‘activity’’ which indicates the fitness of the state to the

environment. From the equation, U(x(t))A(t) becomes dominant

when the activity is large, and the state transition approaches

deterministic. When the activity is small, e(t) becomes dominant,

and the state transition becomes more stochastic. The activity is

therefore designed to be large when the state is suited to the

environment and vice versa.

It should also be noticed that the dimension of x(t) and what it

represents depend on the phenomena tried to be modeled by equation

(5), as shown by Yanagida et al [23]. For example, in [24], x(t) consists

of two variables that represent the concentrations of the mRNAs or

their protein products, i.e. the gene expression. Furthermore, A(t) in

their work represents ‘‘cellular activity’’, a complex function of the

concentrations of ATP and other chemicals, which is increased when

cells approach the attractor, expressing the genes that allows survival

and optimal growth in a given environment.

Methods

In this section, we will explain the computational model based

on the biological fluctuation framework, and the simulation setting

to confirm the realized behavior.

The Computational Model
In order to implement the ‘‘Yuragi’’ equation in (5) for realizing

a Lévy and Brownian walks pattern based on target density, the

first step is to properly choose the state of the attractor selection

model. Borrowing the model from Escherichia coli, in which the

probability of switching between the swimming and tumbling

modes is an exponential function of energy barrier whose level

keeps fluctuating changing due to fluctuation of certain chemical

protein [22], we choose the state of attractor selection model x(t) in

(5) as a representation of this protein fluctuation.

To make the model clearer, one can draw a probabilistic state

machine as shown in Figure 2 (center). Here, ‘‘P’’ equals to ‘‘P+’’ in

Figure 1. Model of Escherichia coli motion. (a) The two basic modes
(b) A biased random walks with attractant, and random walks without
any (c) The energy barrier model of switching probability between the
two modes without attractant.
doi:10.1371/journal.pone.0016168.g001

Levy-Brownian Based on Biological Fluctuation
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Figure 1.c, which is the tumbling probability (i.e. switching from

swimming to tumbling mode). The swimming mode is defined as

moving forward with a certain distance, while tumbling means

changing direction randomly. In this paper, the swimming probability

(i,e, switching from tumbling to swimming mode), or ‘‘P2’’ in

Figure 1.c, is simply considered as 1. It is the simplest case which

assumes the animal stops turning at the next time step. This suits our

purpose, as in this paper we will only confirm the relationship between

the search efficiency and the flight length distribution. While it is

possible to investigate the effect of the turning angle characteristics to

the efficiency like conducted in some researches (e.g. [32][33]), such

aim is outside of the scope of the current paper.

While other function may actually be used, borrowed from

Escherichia coli model, here we relate P(t) and x(t) by an exponential

function :

P(t)~ exp ({x(t)) ð6Þ

To further explain the relationship with Escherichia coli mechanism,

by approximating the barrier fluctuation by linear expansion, as

shown in (3), one can rewrite (2) into (7a) and (7b) as follows:

Pz,{& exp (
{DG0,1(½Y �)

kBT
za9,1

½Y �0
½Y �0

{a9,1
½Y �
½Y �0

) ð7aÞ

Pz,{&kI exp ({kII

½Y �
½Y �0

) ð7bÞ

where:

kI~ exp (
{DG0,1(½Y �)

kBT
za9,1

½Y �0
½Y �0

) ð8aÞ

kII~{
a9,1

½Y �0
ð8bÞ

It can be seen that in our model, x(t) clearly represents [Y](t), the

phosphorylated protein concentration, Che Y-P, inside the

bacteria, with kI and kII chosen as 1 for simplicity. While the

parameter values may change the property of the movement

pattern (i.e. the exponent value), they will not change the essence

of the stochastic process. Furthermore, in Escherichia coli, due to an

assumed reasonable value of these parameters, unlike the

swimming duration, the tumbling duration supposes to follow an

exponential distribution [22], meaning that ‘‘P2’’ in Figure 1.c

approximates certain constant value. In our model, it can be seen

that this constant value is assumed as 1, for the reason explained in

the previous paragraph.

Following the Escherichia coli behavior, Lévy walks pattern

supposes to happen when x(t) fluctuates with a long term

correlation [22]. However, shorter correlation time supposes to

realize a less correlated random walks, with the sum of those flight

lengths converge to Gaussian distribution, i.e. a Brownian walks.

In order to investigate whether a Lévy and Brownian walks

pattern can emerge based on target density, we design the

dynamic of x(t) based on (5), following a simple unimodal potential

function U(x(t)) shown below:

U(x(t))~(x(t){h)2 ð9Þ

causing the dynamics of x(t) shown in (5):

_xx(t)~{
dU(x(t))

dx
A(t)ze(t) ð10aÞ

~{2(z(t){h)A(t)ze(t) ð10bÞ

The first term in (10) represents slow adaptation toward a

preferred value of h, which corresponds to the attractor. The noise

term, e(t) is zero mean Gaussian white noise, represents the

stochastic driving force similar to the Gaussian internal protein

fluctuation in bacteria [22]. The activity A(t) changes the shape of

the potential U(x(t)) and therefore correlation time of state x(t), as

the key mechanism of the model.

From (10a), it can be seen that small value of A(t) will cause

U(x(t))A(t), potential U(x(t)) multiplied by A(t), to be flat and variable

x(t) supposes to fluctuate with long correlation time. Therefore,

Lévy walks pattern in an animal trajectory with certain power law

exponent in (1): 1,m,3, supposes to be realized. When the

activity A(t) has a large value, the shape of U(x(t))A(t) supposes to be

sharp to let variable x(t) fluctuate with short correlation time.

Therefore, Brownian walks pattern supposes to be realized, with

the exponent m equal or larger than 3.

To let Lévy and Brownian walks pattern emerges based on

target density, the activity is defined as a function of sensory input.

When no targets are found, the activity should be low such that the

shape of U(x(t))A(t) is adequately flat and Lévy walks is performed.

However, once some targets are found, the activity should be high,

and the shape of the U(x(t))A(t) should become sharp, supposedly

reduces the correlation time, causing the Lévy walks to switch to

Brownian walks pattern. Here, the activity function can be

summarized in equation (11) to (13).

A(t)~
Amin, if a(t)ƒAmin

a(t), if a(t)wAmin

�
ð11Þ

Figure 2. Model of Lévy and Brownian Walks Under Different
Target Densities Based on Biological Fluctuation. Variable ‘‘x’’
represents fluctuation of internal variable like the pohosporylated
protein in Escherichia coli. The center figure is a probabilistic state
machine between S = swimming and T = tumbling mode that repre-
sents motion of moving forward and change direction randomly, where
P is a function of x. The activity indicates whether the current searching
behavior is suited to the current target density, affecting fluctuation of
x.
doi:10.1371/journal.pone.0016168.g002

Levy-Brownian Based on Biological Fluctuation
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a(t)~Ca(t{1)zkF F (t) ð12Þ

F tð Þ~
1, if one or more targets are found at time t

0, if no targets are found at time t

�
ð13Þ

Anytime one or more targets are found at time t, F(t) will be

triggered to 1. It can therefore be said that F(t) is a step function

whose input is the finding of targets. The definition of finding the

target will be explained in the next section. Furthermore, a(t) is the

running average of the number of targets found as shown in (12),

with 0,C,1, while kF is a constant with a large value in

comparison to Amin.. By employing such function, the correlation

time will be reduced when a target is found and gradually

increases to the original value, if no more targets are found. The

overall principle is shown in Figure 2.

In Escherichia coli, as the movement is dictated by measurement

of attractant chemical gradient in the environment, one can easily

see that in order to model such movement, the activity function

should be a function of the gradient.

The Simulation Setting
In order to understand how the simulated animal will behave, at

first, we observe the generated random walks without sensory

input, and give a range of constant values for the activity. The

position of the attractor is chosen as h = 0.7, corresponds to

P(t)<0.5 according to (6) when x(t) is entrained into the attractor.

In order to let P(t) adequately fluctuates between 0 and 1 as a

function of x(t), the value of x(t) is limited between 0 and 5,

corresponds to those values of P(t). The size of noise e(t) in (10) is

0.5, defined by the standard deviation. The simulated time is

10000 [s]. Equation (10) is discretized with time sampling 0.1 [s]

and the state x(t) transits to the next state x(t+1) at each time step,

changing the tumbling probability from P(t) to P(t+1). For the

swimming mode, the length of moving forward is defined as 1

[unit]. As here we focus on the flight length distribution, for

simplicity, the random turning angle in the tumbling mode is set to

be uniformly distributed from 0 to 360 [deg]. To analyze the

behavior, as the first step, we observe the relationship between the

value of the activity and the generated random walks. We want to

confirm whether at certain values of the activity, which can be

corresponded to the target density by the activity function, the

animal will show Lévy and Brownian walks pattern. From the

chosen range of the activity value, we observe the effect to the

shape of U(x(t))A(t), to the correlation time of state x(t), and the

realized random search pattern performing by the animal.

As the second step, to further confirm the behavior under

changing target densities, we want to investigate whether an

adaptive switching between Lévy and Brownian walks pattern will

emerge in a patchy environment and analyze its benefit. We will

also discuss the behavior from the perspective of area restricted

search behavior. In order to do that, we create the patchy

environment setting, and Figure 3 shows the screenshot of the

created simulation environment from two different scales. Figure 3

(a) shows the screenshot of the whole area. The size of the area is

100061000 [units]. The targets inside the patch are not shown for

clarity. We deploy the simple, generic animal at the center of the

screen at the beginning of the simulation. Here, we use periodic

boundary condition, a common approach used in observing

random search performance [13], which means once the animal

passes the simulation boundary, it will reappear from the other

end. This will present an experiment result that is unaffected by

different boundaries of the area, and, with long enough simulation

time, where the animal starts the search.

Figure 3 (b) shows the zoomed in condition when the animal

approaches some targets, shown by the crosses. One or more

targets are considered to be found, and disappear at the next time

step, if their position is inside the animal sensing diameter, ds,

representing a limited sensing capability of the animal. The Lévy

walks pattern has been shown to be better when the targets are

sparse, that is the target site has a low target density. In other

word, the average distances among the targets are much larger

than this diameter. However, Brownian walks pattern is supposed

to be favorable inside patches with high target density. If the

sensing diameter is infinite, then the animal does not have to do

any search as it will automatically find all of the targets regardless

where the animal is. For further study, one can refer to [1][2][11].

Here, our focus is to investigate whether based on the model, the

animal can have properly choose the more suitable random search

under different target density.

In creating the patchy target setting, we make sure that the

patches are sparsely placed while each patch has higher target

density. One can easily see that if the patches are not sparsely

placed then it cannot be called patchy environment as the overall

target density will become high, in which Brownian walks is shown

to be favorable [11]. On the other hand, if each patch only

contains a few targets then it cannot be called patchy environment

either, as the overall target density will become low in which Lévy

walks is the better strategy [1][2]. Therefore, we deploy 10 circular

shape patches with a small radius of 10 [units] in the 100061000

[units] search area. To make sure that each patch is dense, 100

targets are deployed inside each of them. The animal sensing

diameter ds is 2 [units]. The simulation screenshot showing the

patches, the targets inside them, and ds can be seen from Figure 3.

While investigating the behavior in a more varying target

distribution is a part of our future works, here we simply make

sure that the target density is changing and set the targets inside

the patches and the center of each patch in the whole area to be

uniformly distributed.

To measure the performance of the search, we observe the

search efficiency, defined as the number of targets found divided

by total distance travelled. The criteria is related with the energy

efficiency, as moving forward generally takes more energy than

changing direction randomly, therefore also used widely in animal

random search literatures [11]–[13].

Figure 3. The simulation screenshot for the patchy environ-
ment. (a) From a usual scale, and (b) The zoomed-in condition when
the animal enters a patch of targets.
doi:10.1371/journal.pone.0016168.g003

Levy-Brownian Based on Biological Fluctuation
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To realize the an adaptive switching between Lévy and

Brownian walks in a patchy environment, we choose a certain

minimum value of the activity Amin, and implement the activity

rule explained in (11) to (13) to change the random search depends

on target density. The performance of this adaptive search is then

compared with Lévy and Brownian walks alone, and discussed

afterward from the perspective of area restricted search behaviour.

For every experiment, we perform 20 trials, and use the

commonly known t-test if it is necessary to confirm a statistical

significance of a data comparison.

Results

Here, we observe the generated random walks with different

value of the activity, which can easily be corresponded to different

target densities, as well as the realized adaptive behavior in a

patchy environment.

Generated Random Walks with Different Value of the
Activity

We observe fluctuation of x(t), its correlation time and the

resulting value of m with a range of the activity A(t) values. To

determine whether the realized searching behavior follows a Lévy

or Brownian walks pattern, the most common approach is to plot

the log-log histogram of the flight’s frequency N(l) versus the

lengths l. The frequency is normalized (i.e. divided by the

histogram bin width and total frequency), while the bins are

increased logarithmically. Because the minimum value of l is one,

here we use bin breaks of 1,2,4, and so on. Power law statistic is

indicated if a straight line fits the plotted data. The method is

called ‘‘LBN’’ (logarithmic binning with normalization), recom-

mended in [34], and actually the slope of the fitted line will be

equal to minus of the power law exponent, m in (1). However, the

accuracy of the approach is criticized [3][35], therefore we

reconfirm the power law statistic over exponential by using a

maximum likelihood method explained in [35], and calculates the

value of m using a more recent, accurate, method explained

therein, shown in (9), where L is the whole data set of the flight

lengths. The equation can be used because the minimum value of

the flight length is 1. A Lévy walks pattern will be shown if

1,m,3.

m~1z
1

mean log (L)ð Þ ð9Þ

In order to observe the correlation time of state x(t), we plot the

autocorrelation function, defined as R(x(t)), and calculate the

correlation time, tRX. We use the common definition of correlation

time, that is the time when the autocorrelation value of the state is

already at a factor of 1/e down from its maximum value at t = 0

[36].

Figure 4 (a), (b) and (c) show the corresponding shape of

potential U(x(t)) multiplied by the activity A(t), the resulting

example of fluctuation of x(t) along with the autocorrelation graph

with shown position of tRX in the first 25 [s], with the value of the

activity that corresponds to the trajectory shown in Figure 5. It can

be seen that with small value of the activity, the potential U(x(t))A(t)

Figure 4. Dynamics of the model. (a) The shape of potential
U(z(t)).A(t) (b) The resulting fluctuation of x(t) around the attractor at
h = 0.7 (c) The autocorrelation function R(x(t)) with the correlation time
tRX I, II, III corresponds to A(t) = 1021, 1022.5, 1024 consecutively.
doi:10.1371/journal.pone.0016168.g004
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is flat and let x(t) fluctuate with large correlation time tRX. On the

other hand, with large enough A(t), x(t) fluctuates around the

position of attractor h = 0.7 with a small correlation time tRX.

Figure 5 shows the realized trajectories for certain values of the

activity, with the resulting exponent m that indicates whether the

animal performs Lévy or Brownian walks. It can be seen that the

value of the activity, which controls the effect of the noise, controls

the random walks behavior of the animal. Therefore, it is easy to

see that by properly choosing an activity function such that the

activity value is proportional to the target density, in areas with a

high target density (e.g. there are abundant numbers of patches) or

a low density (e.g. there are only a few patches with a few targets

inside them), the animal would do Brownian and Lévy walks

consecutively, the argued better strategy for those conditions. This

is caused by the value of the activity that most of the time will likely

be high for the first condition, and never increase significantly for

the second one.

Furthermore, Figure 6 shows examples of the log-log graph of

flight lengths frequency N(l) versus the flight lengths l and an

approximated straight line that indicates power law statistic.

Figure 7 explains the behavior of the random search in a more

thorough way. The figures show the relationship between log of the

activity A(t) versus the correlation time tRX (a) and exponent m (b).

The vertical bars show the standard deviation. It can be seen clearly

that when the activity has a small value, causing a long correlation

time, the animal will do a Lévy walks pattern. When the activity gets

larger, the correlation time is reduced and the random search will

have a stronger tendency to become a Brownian walks. When the

activity equals to 1, the value of m already about equals to the

condition if x(t) is simply kept constant at h.

To compare the result with the reported data, Table 1 shows

the power law exponent data of the representative 2D trajectory

pattern of Oxyrrhis marina with different densities of Rhodomonas sp.

preys reported in [7]. It can be seen that the behavior can be

imitated by defining the activity function such that the activity

value is proportional to the targets or preys density.

Adaptive Search in a Patchy Environment
To further investigate the behavior of the animal based on the

model under different target densities, it is interesting to observe

the emergent behavior a natural patchy environment where the

target density alternates, and to see whether it can be beneficial. In

order to investigate this, we implement the activity rule in (11) to

(13) with Amin = 1024 whose properties indicated by the number III

in Figures 4, 5, 6, and 7 such that the animal will do Lévy walks

when no targets are found, that is when the target density is likely

to be low. The constant kF is set to 1021 such that when some

targets are found and F(t) in (12) equals to 1, the animal will

immediately switch to a Brownian walks whose properties

indicated by the number I in Figures 4, 5, 6, and 7. When the

local target density is high, it is likely that the animal will keep

finding another target such that the value of the activity will be

kept high and the animal will keep dong Brownian walks. When

no more targets are found, the animal will gradually switch back to

Lévy walks with the activity A(t) equals to 1024. The value of

constant C in (12) is 0.9.

The trajectory comparison between Lévy, Brownian walks and

the adaptive search is shown in Figure 8. It can be seen that due to

the occasional long flight lengths, as variable x(t) sometimes

fluctuates near a high value as shown in Figure 4.b (bottom), the

Lévy walks pattern finds more patches than the Brownian walks.

This causes higher search efficiency even that the total traveled

distance is also a little bit higher. However, it is interesting to

notice that while Brownian walks finds less number of patches, the

Figure 5. The corresponding trajectory examples. The figure also
shows the values of the activity with the average calculated value of
exponent m, along with the corresponding target density if the activity
function is designed such that the activity value is be proportional to
the to the target density.
doi:10.1371/journal.pone.0016168.g005
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ratio between targets found and visited patches are actually higher,

as the search is more intensive when a patch is found. This

indicates that switching between the two random search behaviors

might be beneficial. It is confirmed in Table 2, which shows the

mean and standard deviation of the efficiency, along with other

criteria. It can be seen that performing the adaptive behavior is

better than either Lévy or Brownian walks alone. The statistical

significance of this result has been confirmed by using t-test.

From the trajectories in Figure 8, it can be seen that, unlike the

Lévy walks which does not react when a target is found, in the

adaptive search, the intensive searches are concentrated near the

patches. This behavior can be explained by comparing the average

activity value of Lévy and the adaptive search shown in Table 2. It

can be seen that for the adaptive search, the average activity inside

the patch, in a log scale, corresponds to the exponent m for a

Brownian walks pattern shown in Figure 7, confirming the switching

behavior. However, outside these patches, the value of the activity is

also slightly higher as it takes sometimes for the animal to gradually

switch back to Lévy walks after it does not find any targets for

certain period. As a result, the exponent m outside the patch will

have a slightly higher value, according to Figure 7 (b).

Parameter C in (7) decides how strong the tendency to switch back

to Lévy walks (see Table 3). Too small value of C is meaningless, as it

will not be able to increase the value of the activity large enough to

make the animal adequately switch to Brownian walks inside the

patches. On the other hand, too large value of C, may cause a longer

time to switch back to the Lévy walks pattern. For the used patchy

environment, C = 0.9 is shown to be the best value.

The results explained in this Result section confirm the

hypotheses that the model can realize a behavior of choosing

Lévy or Brownian walks pattern depends on target density. It has

also been confirmed how an adaptive behavior of switching

between the two random walks will emerge in a commonly faced

patchy environment, and how it can be beneficial.

Discussion

In this paper, we have presented a simple, Gaussian-noise

utilizing, computational model that can imitate animals behavior of

performing Lévy and Brownian walks depends on the target density.

The model proposes two important concepts to realize a noise

utilizing searching behavior: the activity rule that regulates the

fluctuation of certain internal variable(s); and the attractor(s) where

the variable is entrained to when the value of the activity is high.

The proposed model has advantages of universality and

simplicity, as it can be described based on two most basic motions:

moving forward (swimming) and changing direction (tumbling),

and built based on a natural Gaussian fluctuation. By principally

controlling the correlation time of tumbling probability fluctuation

through the activity rule, and relates the rule to target density, we

have shown that based on the model, Lévy walks or Brownian

walks pattern will be realized depends on the target density.

An interesting question of course is whether the used activity

rule that enables the animal to perform such adaptive behavior has

Figure 7. The relationship between activity, correlation time
and power law exponent. (a) Correlation time trz versus the activity
A(t) (b) Exponent m versus the activity A(t). For clarity, the activity is
plotted in a log scale.
doi:10.1371/journal.pone.0016168.g007

Table 1. The Lévy and Brownian walks pattern found in
Oxyrrhis Marina under different prey (Rhodomonas sp.)
densities reported in [7].

Power law Density of Preys

Exponent (m)

.3.0 High (16104 to 16105 cells per ml)

(exponential)

2.1/2.2* Medium (1–26103 cells per ml)

2.1/2.2* Low (16101 to 56102 cells per ml)

*(‘/’ separates the different results between the first and second experiment
performed in [7]).
doi:10.1371/journal.pone.0016168.t001

Figure 6. The corresponding Log-log histogram. Log-log histogram
and the approximated fitted line of normalized flight lengths frequency
N(l) versus the flight lengths l for each activity value shown in Figure 6.
doi:10.1371/journal.pone.0016168.g006
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similarity with the physiological mechanism of Escherichia coli. By

comparing equation (4) and (10), it can be seen that the simplest

model of the dynamics of the CheY-P concentration can be

described by attractor selection model with the preferred

concentration of CheY-P, [Y]0, as a single attractor. It is also

known that CheY, a response regulator protein in bacterial

chemotaxis, in its active, phosphorylated form, exhibits enhanced

binding to a switch component at the Escherichia coli flagellar motor

which induces a change from counterclockwise (CCW) to

clockwise (CW) flagellar rotation and determines the swimming

behaviour [37]. Through this mechanism, in the presence of

chemoattractant, the tumbling probability will be suppressed,

enabling the bacteria to climb up the attractant gradient [38].

While the relationship between CheY-P concentration and the

swimming behaviour of bacteria inside attractant can be explained

in a more detail manner [38], equation (10) adequately describes

this behaviour. It can be seen that when the activity has a high

value, x(t) will be entrained to the attractor, suppressing the

tumbling probability into certain value. The difference here is that

the suppressing of tumbling probability is not caused by a gradient

of chemoattractant, but by an increasing number of targets found.

However, they are similar because the concentration of the

chemicals is identical to the number of molecules in certain area.

In order to model Escherichia coli behaviour of climbing up certain

attractant gradient, one can easily change the equations that relate

the activity with sensory input in equation (11) to (13), to be a

function of the gradient instead of the targets found.

Figure 8. Examples of the realized trajectories in a patchy environment. (a) Lévy Walks (I) (b) Brownian Walks (III) (c) Adaptive search.
doi:10.1371/journal.pone.0016168.g008

Table 2. The properties of Lévy Walks, Brownian walks and
the adaptive search in a patchy environment.

Properties Lévy Walks Brownian Adaptive

(III) Walks (I) Search

(C = 0.9)

Search 1.5460.73 0.8660.82 2.7861.10

efficiency

Targets (1.3260.65) (0.5760.55) (2.2360.83)

found 6102 6102 6102

Travelled (8.4860.26) (6.6760.02) (8.0860.27)

distance 6104 6104 6104

Visited

patches 5.2561.80 1.4561.15 4.7561.16

(out of 10)

Average

activity

value 1024 1021 (1.1460. 27)

inside 61021

patches

Average

activity

value 1024 1021 (5.0361.35)

outside 61024

patches

doi:10.1371/journal.pone.0016168.t002

Table 3. The properties of the adaptive search with different
value of the parameter C in (7).

Properties C = 0.99 C = 0.9 C = 0.5

Search 2.3361.07 2.7861.10 1.6960.63

efficiency

Targets (1.8160.82) (2.2360.83) (1.4160.51)

found 6102 6102 6102

Travelled (7.8160.15) (8.0860.27) (8.4260.27)

distance 6104 6104 6104

Visited

patches 4.0561.54 4.7561.16 4.9061.33

(out of 10)

Average

activity

value (5.5261.30) (1.1460. 27) (0.5060.16)

inside 61021 61021 61021

patches

Average

activity (78.73

value 632.31) (5.0361.35) (1.1760.08)

outside 61024 61024 61024

patches

doi:10.1371/journal.pone.0016168.t003
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It is also interesting to compare the model with other model that

attempts to describe a mode switching behaviour in animal. For

example, in LMCRW, in the ‘‘scanning’’ mode, after each step, the

turning angle is correlated with the previous one and controls the

persistence of the random walks [17]. In this model, such behaviour

can be realized if the definition of the swimming mode is changed

such that the animal also changes the direction according to certain

correlated turning angle distribution after one step of moving

forward. Escherichia coli itself swims in a relatively smooth, straight

line [29]. Therefore, the turning angle at the end of every time step

in the ‘‘scanning’’ mode can be ignored if the movement is to be

modeled by the LMCRW, similar to the condition considered in

this model. The tumbling mode explained in the model is similar to

the ‘‘reorientation’’ mode in LMCRW in which the animal changes

direction randomly with uncorrelated turning angle.

We have also observed the emergent behaviour based on the

same model in a commonly faced patchy environment, meaning

that the target density alternates. As expected, the simulated animal

will adaptively switch between Lévy and Brownian walks. It is also

confirmed that such behaviour is able to increase the searching

efficiency, supporting the previously reported results with similar

theoretical model that does not based on Gaussian fluctuation

[12][13]. We have also explained how the parameter in the activity

rule will affect the switching behaviour and how it relates with the

increase of the searching efficiency. This theoretical result is

interesting, as it suggests that animals that are able to properly

choose Lévy and Brownian walks depends on target density will

behave efficiently in a commonly faced patchy environment.

As have been explained in the Introduction section, another

perspective to explain behaviour pattern of animals in a patchy

environment is area restricted search (ARS) [19][20]. It is

therefore an interesting question how to explain the adaptive

searching behaviour from ARS perspective. Following ARS

explanation as encountered random walks, that is animal remains

in a slow-diffusion state for certain period following an encounter

with target, before transiting to a fast-diffusion state [20], the

model clearly realizes ARS as its emergence behavior under a

patchy environment. This is due to the change between fast, non

linear, diffusion of Lévy walks as the extensive search and slow,

linear, diffusion of Brownian walks as the intensive search.

A change of modes is actually not necessary to create a movement

pattern that can be categorized into ARS. A Lévy walks pattern with

certain exponent value (e.g. m = 2) is enough to produce a pattern

that is similar to ARS. In this model, it can be seen that such pattern

is created because the turning probability keeps fluctuating between

high and low value, which makes the animal sometimes alternate

between extensive and intensive search even without encountering

targets. However, once the animal enters a patch of targets, the

turning probability will be entrained to certain value, triggering an

intensive search inside the patches.

Indeed, aside from Lévy, Brownian or combination thereof,

there are also other ways to stochastically model animal

movement, such as the Lagrangian approach which is also based

on stochastic differential equation (for a nice review, one can refer

to [39]). However, to the author knowledge, most of the

approaches focus on directly modeling how the position of the

animal changes in real physical space, rather than trying to build a

model based on certain assumption of the internal mechanism.

This paper focuses on the role of noise in such internal

mechanism to realize an adaptive and efficient behavior. In

relation with this, stochastic resonance, which has been studied

extensively in the context of sensory system [40], in its most

general form can be said as a process whereby the addition of

random function or ‘noise’ can optimize a physical or biological

process. It is interesting to notice that the described model has

similarity with the concept of stochastic resonance in a sense that

an addition of certain amount of noise will increase the system

performance. To be more exact, without the noise term in

equation (10), the flight length distribution will simply becomes

exponential, causing a Brownian walks, forever. As have been

shown, this can decrease the search performance significantly.

In addition to the flight length distribution, it may also

interesting to discuss how the parameters of the model should be

tuned to better characterize movement of certain animals, in

addition to the flight length distribution. For example, while it is

confirmed that in areas with high density of their prey (Rhodomonas

sp.), zooplankton Oxyrrhis marina follows a Brownian walks pattern,

this pattern looks more like a long straight paths with crossover

(the first figure in reference [7]), meaning that the probability of

changing direction is likely to have a low value. Based on the

model described in this paper, the above explained behaviour can

be realized by assigning a higher value to the attractor, such that

when the activity has a high value, the probability to tumbling will

be entrained to a low value.

It is also an intriguing question whether the same animals that

performs Lévy and Brownian walks pattern under different target

density will also do a certain area restricted search behavior in a

patchy environment, and whether their behavior can be explained

based on the same, possibly noise utilizing, model. As it is common

for animals to perform area restricted search, including basking

shark (Cetorhinus maximus) [17] and zooplankton (Oxyrrhis marina) [7]

that is shown to adaptively choose Lévy and Brownian walks

under different target density, to further investigate this issue is an

interesting future work.

It has been argued in [7] that the searching behavior of

individuals is, at least in part, genetically encoded, and therefore we

should expect natural section to favor flexible searching statistic in

animals under different conditions. Such argumentation is also

mentioned in [18], emphasizing more in the advantage of noise in

optimizing biological process, and therefore the noise should have

been internalized by natural selection, which is indeed supported by

experimental data [4][10][18]. The biological fluctuation frame-

work is aimed to model such internal noise utilizing mechanism.

Here, in principle we have shown how a widely attracting animal

searching behavior can be modeled based on it, in a simple way. It is

an interesting direction to see how the framework may be expanded

for further investigation on the role of noise in realizing an adaptive

and efficient searching behavior in animals.

Conclusion
This paper presents a simple, Gaussian noise utilizing,

computational model that can imitate animal behavior of

performing Lévy and Brownian walks pattern in a low and high

target density. Based on the biological fluctuation framework, the

model is proposed without changing the essence of the stochastic

property of the Lévy walks model of one of the simplest creature,

Escherichia coli. In a patchy environment where the target density

alternates, we have also observed the emergent behavior of

adaptively switching between Lévy and Brownian walks and

confirm the benefit. We have also explained how the parameters of

the model will affect the realized behavior, and discussed the

comparison with existing well studied models as well as the

research direction motivated by the work.
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