
RESEARCH ARTICLE

Sequence diagram refactoring using single

and hybridized algorithms

Abdulrahman Ahmed Bobakr Baqais, Mohammad Alshayeb*

Information and Computer Science Department, King Fahd University of Petroleum & Minerals, Dhahran,

Saudi Arabia

* alshayeb@kfupm.edu.sa

Abstract

Data mining and search-based algorithms have been applied to various problems due to

their power and performance. There have been several studies on the use of these algo-

rithms for refactoring. In this paper, we show how search based algorithms can be used for

sequence diagram refactoring. We also show how a hybridized algorithm of Kmeans and

Simulated Annealing (SA) algorithms can aid each other in solving sequence diagram refac-

toring. Results show that search based algorithms can be used successfully in refactoring

sequence diagram on small and large case studies. In addition, the hybridized algorithm

obtains good results using selected quality metrics. Detailed insights on the experiments on

sequence diagram refactoring reveal that the limitations of SA can be addressed by hybrid-

izing the Kmeans algorithm to the SA algorithm.

Introduction

Changes and modifications to software are inevitable. Software organizations strive to improve

their code or adjust it for a new platform, technology or structure. Refactoring is the process

that shows how software can be improved without altering its behavior [1]. To perform refac-

toring, a mechanism should be devised to detect an anomaly or ill-structured piece in the soft-

ware in order to improve it. This is usually accomplished via different approaches but the

principle one in the literature is software metrics [2, 3]. Similar to code refactoring, software

model refactoring, especially UML, has increasingly captured the interest of researchers to

identify ill-structured components [4–7] and refactor them [8, 9].

A sequence diagram is defined by the UML Reference Manual as “a diagram that shows

object interactions arranged in time sequence. In particular, it shows the objects participating

in an interaction and the sequence of messages exchanged” [10]. A sequence diagram is a

dynamic UML diagram that shows the interaction between the components of the system. A

sequence diagram shows how different objects of the system interact over time via messages. It

represents objects as vertical lines and messages as arrows with labels. A sequence diagram is

not intended to depict complex systems due to their extensive detail. Nevertheless, it is useful

for developers because it increases the level of understanding of how different objects are

implemented in the system. A sequence diagram can be considered as a protocol definition of

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Baqais AAB, Alshayeb M (2018)

Sequence diagram refactoring using single and

hybridized algorithms. PLoS ONE 13(8): e0202629.

https://doi.org/10.1371/journal.pone.0202629

Editor: Quanquan Gu, UCLA, UNITED STATES

Received: June 1, 2017

Accepted: August 7, 2018

Published: August 22, 2018

Copyright: © 2018 Baqais, Alshayeb. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data can be found at:

https://figshare.com/articles/Big_data/5770017.

Funding: All funding support received during this

specific study is given by "King Fahd University of

Petroleum and Minerals". No individuals employed

or contracted by the funders (other than the named

authors) played any role in: study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0202629
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202629&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202629&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202629&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202629&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202629&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202629&domain=pdf&date_stamp=2018-08-22
https://doi.org/10.1371/journal.pone.0202629
http://creativecommons.org/licenses/by/4.0/
https://figshare.com/articles/Big_data/5770017


certain tasks [11]. Usually, a sequence diagram is not large and it should correspond to one

scenario only. Fig 1 shows an example of a sequence diagram.

Since the introduction of the search-based algorithm in software engineering [12], many

papers have investigated the use of search-based algorithms in software refactoring [13–16].

Deterministic data mining techniques have also been considered in software refactoring. [17].

To overcome the limitations exist in deterministic data mining algorithms when applied to

software refactoring, researchers proposed hybridized techniques [18, 19].

This paper tends to provide an automatic refactoring of sequence diagram using SA and

also introduces a hybridized algorithm composed of search-based algorithm combined with a

data-mining algorithm. Sequence diagrams depict the communication between different pro-

gram components. Improper design of coupling and cohesion in sequence diagrams will prop-

agate to the source code. This results in having methods with high number of parameters and

methods that communicate with different classes. Hence, refactoring the sequence diagram

helps designers in producing better code.

The aim of this paper is to answer the following three research questions:

1. RQ1: Is there an improvement gained by hybridizing two algorithms: one from the

“search-based” category and the other from the “data mining” category as compared to

implementing a single algorithm? How to evaluate the effectiveness of the hybridized algo-

rithm in refactoring sequence diagrams using quality metrics such as cohesion (LCOM2),

coupling, recall and precision measures?

2. RQ2: To what extent our hybridized algorithm can be effective using another hybridized

algorithm and another refactoring operation?

Fig 1. An example of a sequence diagram.

https://doi.org/10.1371/journal.pone.0202629.g001

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 2 / 26

https://doi.org/10.1371/journal.pone.0202629.g001
https://doi.org/10.1371/journal.pone.0202629


3. RQ3: To what extent the search-based algorithm can be effective in a large case study with

hundreds of refactoring opportunities?

To the authors’ knowledge, there are no articles that discuss the implementation of search-

based or data mining algorithms to refactor sequence diagram models. Hence, the first step is

to apply one search-based algorithm to the sequence diagram refactoring problem. The

selected algorithm is SA. Then, we hybridize SA with a data mining algorithm which is

Kmeans clustering algorithm (KSA). After obtaining the results from the first algorithm, a

hybridized algorithm will be run to show the advantages of hybridizing a search-based and

data mining algorithm together on a software engineering development problem, namely

sequence diagram refactoring. Later, we applied another hybridized algorithm composing of

Hill climbing and Kmeans (KHC) for comparison. We also run KSA for another refactoring

operation which is Extract Message operation.

This paper is organized as follow: Section 2 presents the background and the previous work in

the area of utilizing various algorithms for sequence diagram refactoring; Section 3 discusses the

research methodology and the experiment set-up; Section 4 presents the results, the discussion

and the threats to validity; and finally, Section 5 contains the conclusion and the future work.

Related work

Several studies on refactoring UML models have been proposed. Mens et al. [20] acknowl-

edged the usefulness of performing refactoring on higher abstract levels of a software system,

such as design levels. Sunye et al. [8] started the research in the UML refactoring domain via

their well-known article, Refactoring UML Models. They illustrated refactoring rules on two

popular UML diagrams: class and statechart diagrams. As acknowledged in their paper [8],

finding refactorings in UML diagrams is not straightforward and further research is required.

Misbhauddin and Alshayeb [21] compared different approaches used in the literature for

refactoring UML diagrams. They constructed a criteria-based framework for comparison. The

selected approaches are: graph-based, logic- based, direct manipulation, language specific and

text-based approach. The following criteria were chosen to compare these approaches: object-

oriented concepts, formality, ease of use, conciseness, artifact coverage, expressiveness, granu-

larity, automation, portability and rule handling. Their article provides a holistic view of the

merits and drawbacks of each approach for any researchers interested in refactoring UML

diagrams.

Misbahuddin and Alshayeb [22] searched the literature on UML refactoring using a system-

atic literature review and found that only 16% of papers dedicated to UML refactoring discuss

sequence diagram refactoring.

Al Dallal [23], in his systematic literature review, illustrated that the most common

approach to identify refactoring actions is to utilize quality metrics, with around 32% of all

papers applying refactoring operations. Al Dallal also indicated that clustering techniques for

refactoring were utilized by around 23% of all surveyed papers. The clustering techniques were

mostly based on the similarity between two methods or between a method and attributes. In

addition, Al Dallal asserted that cohesion and coupling metrics are the most commonly used

in the existing studies to apply quality metrics to evaluate the refactoring process.

Maneerat and Muenchaisri [24] proposed machine learning techniques for bad smells

detection of UML diagrams. They applied seven different machine learning algorithms to

detect various bad smells such as: lazy class, message chains, middle man, etc. However, they

restricted their research to class diagrams only.

Fourati et al. [4] applied quality metrics in order to detect anti-patterns in some UML dia-

grams, including sequence diagrams. Their work revealed that the cohesion metric, in line with

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 3 / 26

https://doi.org/10.1371/journal.pone.0202629


other metrics, can aid in detecting some abnormality in the sequence diagram. They illustrated

with examples how quality metrics can unleash four common anti-patterns namely: Blob, Lava

Flow, Functional Decomposition and Poltergeists. However, unlike our research, they did not

apply any search-based algorithms to detect abnormalities and refactoring to refactor them.

Alkhalid et al. [17, 25, 26] applied clustering techniques at different software levels. They

showed that clustering can improve the cohesion and coupling metrics of software code if sim-

ilarity distance is considered. In their papers, they applied four different clustering algorithms

on different open source projects with a fixed and variable number of software entities under

study, which are package, class and function. Their research shows that clustering can be very

promising in providing refactoring decisions to the user which clearly reflects on the quality.

In [17], they applied clustering to a software package and highlighted that these package classes

can be considered the entities while the methods are considered the features, thus an entity-

feature matrix can be constructed to guide the clustering algorithm. In [25], they applied clus-

tering to software classes and assume that the function should be moved to a certain class

based on the number of attributes it accesses. Therefore, the methods are the entities and the

class variables are the features. Similarly in [26], they constructed an entity-feature matrix by

considering the function statements as entities and their attributes as the features.

Ghannem et al. [5] used an interactive genetic algorithm that prompts and interacts with the

designer to help him to refactor a class diagram. Their paper targets a learning-based algorithm

where the algorithm learns from a base of examples in order to generate refactoring decisions to

the user. However, their data is converted from code to UML diagrams using a tool. Their artic-

ulation of the interactive genetic algorithm steps to model refactoring can help researchers to

understand how these heuristic algorithms can be applied to refactor UML models.

Amal et al. [19] proposed a hybridized search-based algorithm to solve refactoring prob-

lems. Our approach is similar to their approach in the sense that both approaches merge two

algorithms: one from data mining and the other from the search-based group. However, there

are some substantial differences between this paper and their paper. Amal et al. used a search-

based algorithm (Genetic Algorithm) as an input to a machine learning algorithm (Artificial

Intelligence Algorithm). Thus, the result of search-based algorithm is used to assist the

machine-learning algorithm to perform better. In our case, it is the opposite; we used the

machine learning algorithm’s (Kmeans) results to help the search-based algorithm (SA) to per-

form better. Furthermore, our approach is fully automated without intervention or interacting

with the designer during the run of the algorithm. In their paper, after a few runs of the GA,

the designer evaluates the results manually before feeding them to the ANN algorithm. In

addition, they applied their approach at the code level, while our approach is targeting the

sequence diagram on the design level. Although, we both used recall and precision to evaluate

our algorithm, our approach takes it one step further by ensuring that any recommended

refactoring must improve two competing software metrics (coupling and cohesion).

In addition to these approaches, representing the refactoring problem as a multi-objective

method has been discussed and implemented for software code, model refactoring and main-

tainability [27–30].

The above approaches suffer from drawbacks, which motivated us to consider the utility of

hybridization. Evolutionary computing methods are known to be computing-intensive [31] due

to the population size and the number of generations required to converge. In addition, there

are many parameters such as crossover operation, mutation operation, and selection operation

etc. that should be set correctly in order for the algorithm to produce promising results.

Clustering is very effective for optimizing cohesion and coupling simultaneously but it is a

computation-intensive algorithm for large data [32]. Search-based algorithms can work only

on one objective, for more than one objective, such as coupling and cohesion considered in

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 4 / 26

https://doi.org/10.1371/journal.pone.0202629


this paper; a multi-objective version should be considered which adds more to the computa-

tional demand. Thus, combining clustering with a simple search-based algorithm such as SA

could produce good results. SA has two parameters that can be easily set. In [14], only one

parameter was shown to have a great impact which is the cooling factor. Thus, it motivated us

to apply this hybridization for a sequence diagram refactoring. Table 1 summarizes the sur-

veyed approaches and compares them with our proposed approach.

Research methodology

In this paper, we use a single and hybridized algorithm to perform refactoring on sequence

diagrams. SA is a search-based algorithm candidate for sequence refactoring. Two hybridized

algorithms are applied namely: KSA as an abbreviation of the combination of Kmeans and SA

[33] and KHC as an abbreviation of the combination of Kmeans and HC.

To illustrate how our KSA algorithm works, we explain the process of each algorithm sepa-

rately and then we explain the hybridized process. Fig 2 shows the steps for the Kmeans algo-

rithm to refactor a sequence diagram. As illustrated in Fig 2, there are two major

preprocessing steps required for this algorithm, which are: extracting entities and features and

constructing a similarity matrix. The extraction of entities and features sub-process is

explained in detail in subsection 3.4, while the construction of the similarity matrix is

explained in detail in subsection 3.5. After these two sub-processes, the Kmeans algorithm is

run, as detailed in subsection 3.1.

Fig 3 shows the steps for the SA algorithm to refactor the sequence diagram. The sequence

diagram should be converted into a medium representation. Since our objective is to hybridize

SA with Kmeans, we used the same representation for both of them.

Fig 4 shows the steps of the proposed KSA algorithm. The details of this algorithm are

explained in detail below.

In the first step, the sequence diagram is converted into an entity-feature matrix. After this,

the data mining algorithm (Kmeans) will use the constructed entity-feature matrix to create

Table 1. Summary of literature review.

Author and Years Methodology Approach Artificial Intelligence

Algorithm

Detection / Refactoring Refactoring

Level

Evaluation Method

Alkhalid et al. 2011, 2010,

2011, [17, 25, 26]

Deterministic Clustering Code detection and

refactoring

Function

Class

Package

Coupling and cohesion

metric

Ghannem et al. 2013, [5] Search-Based Interactive Genetic

Algorithm

Class model detection and

refactoring

Method &

Class

Recall and Precision

Maneerat and

Muenchaisri, 2011, [24]

Deterministic - Class model detection Method &

Class

Accuracy, Specificity,

sensitivity,. etc.

Sahin et al. 2014, [27] Search-Based Genetic Programming and

Genetic Algorithm

Code detection and

refactoring

Method &

Class

Recall and Precision

Ouni et al. 2013, [28] Search-Based Non-Dominated Sorting

Genetic Algorithm–II.

Code detection and

refactoring

Method &

Class

Recall and Precision

Kessentini et al. 20111,

[13]

Search-Based Genetic Programming Code detection and

refactoring

Method &

Class

Recall and Precision

Amal et al. 2014, [19] Hybridization of

Deterministic and Search-

Based

Neural Network and Genetic

Algorithm

Code detection and

refactoring

Method &

Class

Recall, Precision and

Refactoring Efficiency

The proposed approach Hybridization of

Deterministic and Search-

Based

Kmeans and SA Sequence diagram

detection and refactoring

Method &

Class

Cohesion, Coupling,

Recall and Precision

https://doi.org/10.1371/journal.pone.0202629.t001

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 5 / 26

https://doi.org/10.1371/journal.pone.0202629.t001
https://doi.org/10.1371/journal.pone.0202629


clusters. Each cluster groups the most similar objects together. Therefore, in this paper, each

cluster contains messages that have similar features.

In the next step, we have a collection of clusters where each cluster groups the most similar

messages together. This is the initial solution on which the second algorithm will run. The

search-based algorithm (SA) will start from within the clusters returned by the Kmeans algo-

rithm instead of starting randomly from any position. SA will be guided by metrics to refactor

the sequence diagram. The refactoring operations will be “moving messages”, and “extracting

message”. The algorithm will apply the sequence of this refactoring operation on random

points of the cluster returned by the Kmeans algorithm.

Finally, the hybridized algorithm will provide suggestions on sequence diagram refactoring

using the “move message” and “extract message” operations.

Kmeans clustering

Clustering is considered as one type of data mining and machine learning process [34]. Its

popularity is attributed to the increase of interest in the Internet and the huge demand to ana-

lyze large Internet data. Clustering is a process that collects similar data objects in one group

and dissimilar ones in other groups [34]. Clustering algorithms have no idea or guidance on

the objects in advance and iteratively try to collect features from these objects and divide them

into various groups called clusters. Unlike metaheuristics, where problem types play a major

role in determining the difficulty of the problem to be solved by a certain metaheuristic, in

clustering, data types contribute the most to clustering algorithms. This observation is obvious

since metaheuristics collect information from the problem or solution space to guide the

search, where in clustering techniques, the objects data (attributes, features, types, etc.) guide

the clustering algorithm. Although there are numerous clustering algorithms in the literature

[35, 36], many of them are based on similarity measures.

Kmeans is a simple clustering algorithm used to group objects together based on their dis-

tance [34]. At the beginning of the algorithm, the cluster mean is initialized randomly and it is

updated in each iteration. The algorithm continues to gather objects into clusters and updates

Fig 2. Kmeans algorithm steps applied for sequence diagram refactoring.

https://doi.org/10.1371/journal.pone.0202629.g002

Fig 3. SA algorithm steps applied to sequence diagram refactoring.

https://doi.org/10.1371/journal.pone.0202629.g003

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 6 / 26

https://doi.org/10.1371/journal.pone.0202629.g002
https://doi.org/10.1371/journal.pone.0202629.g003
https://doi.org/10.1371/journal.pone.0202629


the mean until a stopping condition is met or the cluster mean is not updated. Fig 5 shows the

pseudo code of the Kmeans algorithm.

Simulated annealing

SA is an optimization algorithm inspired from physics [33]. It has several applications in sci-

ence and engineering due to its simplicity to implement and its few parameters such as: tem-

perature, acceptance probability and the cooling factor. The algorithm starts with a predefined

temperature (T) set by the user. It starts from a random point and calculates the objective func-

tion. In each iteration, the algorithm moves to a neighbor point and calculates its objective

function. If the neighbor point has a better value using the objective function, then the algo-

rithm will select it and move to it. If the value of the neighbor point using the objective func-

tion is lower, then it will accept it with a pre-defined acceptance probability (P). The algorithm

will repeat the same process, decreasing T using another parameter called a cooling factor

(CF). If the CF is large, this is called fast annealing. If the CF is small, this is called slow anneal-

ing. The determination of CF along with the acceptance probability (P) is critical for the algo-

rithm to return better results. Fig 6 shows the pseudo code of the SA algorithm.

Fig 4. KSA algorithm steps applied to sequence diagram refactoring.

https://doi.org/10.1371/journal.pone.0202629.g004

Fig 5. Kmeans algorithm pseudo code.

https://doi.org/10.1371/journal.pone.0202629.g005

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 7 / 26

https://doi.org/10.1371/journal.pone.0202629.g004
https://doi.org/10.1371/journal.pone.0202629.g005
https://doi.org/10.1371/journal.pone.0202629


The proposed solution

There are several general limitations in Kmeans clustering algorithms: 1) the Kmeans algo-

rithm tends to get stuck at a local optimum point; 2) the number of clusters must be specified

in advance; 3) the random initialization of cluster means can be far from all points, and 4) the

Euclidian distance is based on points in two-dimensional planes, and the entity-feature matrix

must be constructed. These limitations are also applicable to problems in software engineering

domain.

Likewise, SA has several limitations similar to other search-based algorithms: 1) the SA

algorithm tends to get stuck at a local optimum point; 2) the first initial number might be far

from the optimal solution; 3) it requires a fitness function; and 4) it has some controlling

parameters such as temperature and probability that must be tuned.

The KSA hybrid algorithm seeks to optimize the performance of the SA algorithm by pro-

viding better initial points of SA using the Kmeans algorithm. The Kmeans algorithm will run

first on the problem where it will extract the points that have a potential improving value and

gather them into one cluster. This cluster then will be passed to the SA algorithm to start ran-

domly from any position within this cluster. This will improve the performance of the SA algo-

rithm by letting it start from a promising point in the search space. Then, at each iteration, the

SA algorithm will move to another point within this passing cluster in order to ensure that the

SA algorithm proceeds from one promising point to another promising point and reduce the

chance of being trapped in local optima. In addition, this communication between the Kmeans

algorithm and the SA will save many iterations where SA will investigate weak points that will

slow the algorithm convergence.

Two experiments have been performed to show the advantages of KSA over SA. Experi-

ment 1A shows the performance using SA alone, while experiment 1B shows the performance

of KSA. KSA does not solve the limitation of Kmeans. Kmeans can still get stuck into local

optima. In the literature, several papers addressed how SA can be used for optimal selection of

initial Kmeans points [37, 38]. The output of these results is that metaheuristics can solve the

initialization problem of Kmeans, but the problem of converging into local optima is still not

solved. On the other hand, other papers show the advantage of Kmeans in reducing the com-

putation time of SA [39]. The clustering algorithm (Kmeans) will take all the points (messages)

and cluster them based on their high similarities with the corresponding classes. Then, the SA

Fig 6. SA algorithm pseudo code.

https://doi.org/10.1371/journal.pone.0202629.g006

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 8 / 26

https://doi.org/10.1371/journal.pone.0202629.g006
https://doi.org/10.1371/journal.pone.0202629


algorithm will save time by picking points that have the potential to reflect on the sequence

diagram refactoring.

The hybridized KSA algorithm starts by providing k cluster centers randomly. Then the

algorithm continues updating the centers of the clusters until all points are assigned to one

cluster; that cluster includes all points that might make a contribution to the problem under

study which is the degree of similarity between two components of sequence diagrams. The

KSA will pick points out of this cluster to ensure that any point taken should have a similarity

value; thus, it improves our designed cost function. This does not imply that Kmeans will

always present the optimal points to SA since as we stated earlier, Kmeans might converge into

local optimum points. Still, even though Kmeans might not provide us with the best SA initial

points, it can help in providing some of the relative points that assists SA into reducing its cost

function faster.

In short, we are considering three cases: the first case is that Kmeans can provide optimal

points to SA if it does not converge into local optima. The second case is: when Kmeans con-

verges into local optima after a few loop iterations, the returned points of Kmeans can still

guide SA. The last case is running SA alone without Kmeans. To solve our problem, the first

two cases are better than the third case as the search space of the problem contains many irrele-

vant points that do not contribute to the cost function. For example, in experiment 3, we have

10000 messages and 100 classes. However, there are only 1000 anti-pattern instances; in other

words; only 1000 points out of this huge search space can contribute to the cost function.

Therefore, KSA is more appreciated than SA alone in this situation. Fig 7 shows the pseudo

code of the KSA hybridized algorithm.

Entities and features

Clustering algorithms depend on grouping entities together, based on the similarity value

found in their features. It is important to select a number of features that reflect the similarity

between entities. Selecting too many features may result in clustering each entity in a separate

group. Likewise, selecting too few features may end up with crowding a few clusters with many

entities that do not relate to each other. Hence, the selection of features should be considered

when designing clustering algorithms to solve a particular problem.

Entities are the objects that we want to cluster. In our proposed solution, a sequence dia-

gram can be treated as a set of entities with different features. Our objective is to refactor

sequence diagrams using a hybridized algorithm and evaluating the results using selected qual-

ity metrics. To achieve this, we are going to group similar messages in the most suitable class.

For sequence diagram refactoring, methods are considered entities. Each message has two fea-

tures 1) the name of the function it is sending to or receiving from; 2) message type (a direct or

an iterative message). In the entity-feature matrix, we record how many features of the

Fig 7. KSA hybridized algorithm pseudo code.

https://doi.org/10.1371/journal.pone.0202629.g007

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 9 / 26

https://doi.org/10.1371/journal.pone.0202629.g007
https://doi.org/10.1371/journal.pone.0202629


message each class shares, which can be none, one or more features. In our case study, we used

the method parameters as the message features as explained in section 3.5. However, our algo-

rithm works on any other representations of features.

In a sequence diagram, cohesion can be defined as the number of messages a class is able to

access within itself. The highest cohesion is required since it will reduce the number of com-

munication messages with other classes. There are different metrics for measuring cohesion.

We selected LCOM2 [40] as the cohesion metric as in [25] for comparison purposes and for its

applicability to our proposed solution that is based on similarity. LCOM2 is found to be more

suitable for our study because it considers calculating the shared attributes between methods;

other cohesion metrics are found to be less relevant. For example, LCOM3 and LCOM4 do

not consider the number of attributes that are shared between two methods [41]. Loose Class

Cohesion (LCC) represents the connection between public methods without considering the

sharing of instance variables, so similarity between methods are not considered which ren-

dered the usefulness of clustering algorithm.

We define coupling as the number of direct messages the class is sending to or receiving

from other classes. Reducing the coupling value is desirable due to the fact that it will reduce

the communication messages between classes.

A higher similarity of features indicates similarity of functionality, which in turn increases

cohesion and reduces the coupling of message communication between different classes. The

advantage of such processes is to increase the quality of the model, as cohesion and coupling

are desirable features in object-oriented software systems.

Similarity matrix

A similarity matrix is a matrix where rows represent features and columns represent entities.

The value inside each matrix cell represents how many features there are in one entity. The

application of the Entity-Feature matrix for software refactoring was originally proposed by

Lung et al. [42].

Since clustering algorithms are based on similarity distance, clustering algorithms are

applied for software refactoring to enhance cohesion and coupling. Cohesion implies that if a

class has many similar features of a particular method, then that method should be a member

of that class. Thus, by knowing which class has the most similarity with a method, we can

move that method to that class. Similarly, coupling refers to the communication between two

different entities. By knowing which method should belong to which class, we can reduce the

number of communication messages between these entities. Software developers aim to

increase the cohesion of the software and minimize its coupling.

Table 2 is adopted with some modifications from Alkhalid et al. [25] to compare with the

authors’ results. In their paper, Alkhalid et al. applied only clustering algorithms to refactor

software classes. In this paper, we use a hybridized algorithm. We use this table for comparison

purposes and due to the scarcity of sequence diagram data that is representative enough in

order to show the benefits of the proposed approach.

Fig 8 shows the sequence diagram example represented by Table 2. As we can see, we have

four classes and sixteen messages. Variables belong to class1 are named by the letter ‘a’ fol-

lowed by a sequence number. Likewise, variables of class2, class3 and class4 are named by the

‘b’, ‘c’ and ‘d’ respectively followed by a sequence number. Each message contains parameters.

These parameters are the features that we are looking for in order to apply the algorithm. For

instance, Message 1 denoted by M1 in the diagram representing a message that is sent from

class2 to class1 and it has three parameters: a1, b1, and b2. The parameter variable a1 belongs

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 10 / 26

https://doi.org/10.1371/journal.pone.0202629


to class1 and the parameter variables b1 and b2 belong to class2. Message2 represents a method

that calls itself and thus in this case it has only the variables named with ‘a’.

Table 2 shows the entities and features of a sequence diagram case study. Value 1 in the

intersection of the Class 1 column and Message 1 row indicates that class 1 has only one fea-

ture of message 1 while class 2 has two features of the same message. Class 3 and class 4 do not

share any features with this message. Thus, to increase cohesion, the algorithm will propose

moving message 1 to class 2. We implemented this table internally using array. Table 2 has 64

values and thus it was represented by an array that starts from 0 and ends with 63.

Table 3 shows the self-messages in each class. This is similar to the adopted case study.

However, in the adopted case study, the relationships are between classes and methods. In this

paper, we modify the relations to be between classes and messages. Therefore, we have 4 classes

and 16 messages where each class has self or communicating messages. Tables 4 and 5 show

the initial cohesion and coupling values of each class respectively, while Table 6 indicates the

necessary refactoring operations in order to reach an optimal state in terms of cohesion and

coupling metric values.

The cohesion values are generated using the LCOM2 metric. To calculate the LCOM2 of a

class: first, count the number of messages that share features, denoted as (Ms). Then, calculate

the number of messages that do not have any features in common, denoted as (Mn). If (Mn)—

(Ms) > 0, the LCOM2 is (Mn–Ms). Otherwise, LCOM2 is zero. Therefore, LCOM2 can be

non-negative. Table 4 shows the value of cohesion for each class based on the LCOM2 metric.

Table 5 shows the coupling values of the sequence diagram before refactoring. In this paper,

coupling refers to the coupling between classes. It indicates the number of messages communi-

cated between two classes. For instance, Class 1 has a coupling value of 1 because it has only

one message (Message 1) that is communicated to another class (which in this case is class 2).

Table 6 shows the number of refactoring operations that are required to move the system

into an optimal state in terms of cohesion and coupling. In this paper, we use the “move mes-

sage” operation, which is similar to the “move method” operation used by Alkhalid [25]. As

shown in Table 6, though classes 1, 2 and 3 already have an optimal LCOM2 value of zero,

they are still involved in the refactoring process. Applying refactoring on class 4 only might

Table 2. Similarity matrix between entities and features.

Class 1 Class 2 Class 3 Class 4 Array Index

Message1 1 2 0 0 0–3

Message2 2 0 0 0 4–7

Message3 2 0 0 0 8–11

Message4 2 0 0 0 12–15

Message5 0 2 0 0 16–19

Message6 0 0 1 2 20–23

Message7 1 2 0 0 24–27

Message8 0 0 0 2 28–31

Message9 0 0 2 0 32–35

Message10 0 0 2 0 36–39

Message11 0 0 2 0 40–43

Message12 0 0 2 0 44–47

Message13 2 1 0 0 48–51

Message14 1 0 2 0 52–55

Message15 0 0 0 2 56–59

Message16 0 0 0 2 60–63

https://doi.org/10.1371/journal.pone.0202629.t002

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 11 / 26

https://doi.org/10.1371/journal.pone.0202629.t002
https://doi.org/10.1371/journal.pone.0202629


reduce the LCOM2 of class 4, but increase the coupling or even the LCOM2 of the other clas-

ses. Thus, balancing both metrics is essential.

Fig 8. Sequence diagram case study.

https://doi.org/10.1371/journal.pone.0202629.g008

Table 3. Classes and belonging messages.

Class Self-messages

1 2, 3 and 4

2 5 and 7

3 9, 10, 11 and 12

4 15 and 16

https://doi.org/10.1371/journal.pone.0202629.t003

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 12 / 26

https://doi.org/10.1371/journal.pone.0202629.g008
https://doi.org/10.1371/journal.pone.0202629.t003
https://doi.org/10.1371/journal.pone.0202629


Results & discussion

In this section, we show the results of our two experiments: one using the SA algorithm and

the second using our hybridized KSA algorithm. The experiment was carried out using an

Intel-based computer powered by a 3.30 GHz processor and 4 GB memory. The code was

implemented on a Windows 7 system using Java. The parameter setting of both algorithms is:

Kmeans has two parameters: the number of clusters and the randomized function for clus-

ter’s center. Since we have four classes in our case study, we set the number of clusters to be

four; the center of each cluster is determined randomly using the following function:

Ck ¼ 1þ 9:00 � rand:nextDoubleðÞ; where C represents the center and k 2 f1; 4g ð1Þ

SA has two parameters to be set: initial temperature and the Cooling Factor. The cooling

factor is fixed in all experiments, but the initial temperature is changed. The parameter settings

of SA are shown in the result sections. These parameters are set arbitrarily using trial and error

until this setting found to return good results.

The objective of this experiment is to answer RQ1 “Is there an improvement gained by

hybridizing two algorithms: one from the “search-based” category and the other from the

“data mining” category as compared to implementing a single algorithm?” How to evaluate

the effectiveness of the hybridized algorithm in refactoring sequence diagrams using quality

metrics such as cohesion (LCOM2), coupling, recall and precision measures?

Experiment 1.A: Refactoring sequence diagram model using SA

We implemented an SA algorithm on the above case study to provide suggestions to the users

on how to move messages between the different classes in order to maximize cohesion. This is

a demonstration experiment to show the limitation of the SA algorithm. However, when we

run our hybridized algorithm, the four selected metrics are discussed. The SA algorithm is

based on a random initialization of one point. The algorithm can randomly pick any point out

of the 64 points shown in Table 2. After this, the algorithm determines the class to which the

selected message should belong. Then, based on similarity features, the algorithm will recom-

mend either moving the message to another suitable class or recommend to keep the selected

Table 4. The cohesion value of the classes in our case study.

Class Relations between messages Cohesion Value

Class 1 M1 \M2, M1 \M3, M1 \M4, M2 \M3, M2 \M4, M3 \M4 Mn = 2, Ms = 3

LCOM = Max (2–3,0) = 0

Class 2 M5 \M6, M5 \M7, M5 \M8, M6 \M7, M6 \M8, M7 \M8 Mn = 3, Ms = 3

LCOM = Max (3–3,0) = 0

Class 3 M9 \M10, M9 \M11, M9 \M12, M10 \M11, M10 \M12, M11 \M12 Mn = 1, Ms = 5

LCOM = Max (1–5, 0) = 0

Class 4 M13 \M14, M13 \M15, M13 \M16, M14 \M15, M14 \M16, M15 \M16 Mn = 4, Ms = 1

LCOM = Max (4–1, 0) = 3

https://doi.org/10.1371/journal.pone.0202629.t004

Table 5. The coupling values of the classes in our case study.

Class Coupling

Class 1 1

Class 2 2

Class 3 0

Class 4 1

https://doi.org/10.1371/journal.pone.0202629.t005

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 13 / 26

https://doi.org/10.1371/journal.pone.0202629.t004
https://doi.org/10.1371/journal.pone.0202629.t005
https://doi.org/10.1371/journal.pone.0202629


method in the same class. After all the recommendations of the SA algorithm, the LCOM2

value is calculated. LCOM2 measures lack of cohesion, hence reducing the value of this metric

is desirable. Therefore, in the above example, Class 4 has an LCOM2 value of 3 which needs to

be reduced.

We ran SA algorithms 10, running the SA algorithm returns this sequence of random num-

bers (57, 55, 37, 38, 25, 2). The first number is 57, which corresponds to the array index 57 in

Table 2. Here, 57 corresponds particularly to the number of features that “Message15” shares

with “Class2”. As shown in the table, there is no common feature between “Class2” and “Mes-

sage15” and subsequently, picking up this point will make no contribution to reducing cohe-

sion or increasing coupling. In this case, the SA algorithm will pick another point randomly if

the probability threshold is not met yet.

The next point the algorithm selects is 55. Again, 55 corresponds to the number of features

in common between “Class4” and “Message14” which in this case is null. Therefore, picking

up this point will not improve cohesion or coupling and the algorithm continues to pick

another point as long as the probability threshold is still satisfied. The third point is 37, which

also does not have any impact on the cohesion or coupling value. The same applies to all

remaining points.

In another run, the following sequence of numbers was generated (3, 61, 40, 23, 29, 2). In

this sequence, point 23 corresponds to the number of features in common between “Mes-

sage6” and “Class4”. According to Table 2, Message6 initially belongs to “Class2”, though it is

more similar to “Class4”. Therefore, the SA will recommend moving “Message6” to “Class4”.

Table 7 shows the results of running SA algorithm using the case study. The algorithm, in 7

iterations, was unable to find any refactoring that reduces cohesion. Thus, the LCOM values

remain the same. LCOM values are unchanged by running SA algorithm on this case study

since the algorithm failed to provide any recommendation.

Limitation of this approach. The algorithm will pick any point randomly. The algorithm

might start from a very bad point such as the “0” point in Table 2. This will affect the

Table 6. The required refactoring operation in each class to reach an optimal cohesion and coupling state.

Class Required Refactoring operation

Class 1 1

Class 2 1

Class 3 1

Class 4 2

https://doi.org/10.1371/journal.pone.0202629.t006

Table 7. Results of the first run of SA algorithm.

No. Point KSA recommendation

1 47 Keep it

2 37 Keep it

3 31 Keep it

4 39 Keep it

5 48 Keep it

6 1 Keep it

7 47 Keep it

LCOM 0 0 0 3

Initial Temperature 10000000.0

Running Time 4.5 seconds

https://doi.org/10.1371/journal.pone.0202629.t007

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 14 / 26

https://doi.org/10.1371/journal.pone.0202629.t006
https://doi.org/10.1371/journal.pone.0202629.t007
https://doi.org/10.1371/journal.pone.0202629


algorithm’s performance since the algorithm might waste some iterations picking up the “0”

value which is not useful because it indicates no common feature of a message in a class. In

addition, the existence of these bad points might converge the algorithm quickly to local

optima. Consider the situation where the algorithm picks this sequence of values randomly (2,

0, 0, 0, 0, 0, 0, 0, 0, 0). In this sequence, the algorithm starts from a good point where it has a

maximum similarity of features, but it keeps going to one weak neighbor to another. After a

few iterations, the acceptance probability will be low and the algorithm will hit the condition

criteria, forcing it to terminate.

Experiment 1.B: Refactoring sequence diagram model using a hybridized

SA and clustering algorithm

We propose the hybridized SA algorithm and the Kmeans using a pipeline fashion [43]. Pipe-

line hybridization means that algorithm “A” runs fully and its results are taken to algorithm B

as inputs. This type of hybridization has been investigated in several papers concerning

Kmeans and SA algorithms [18, 44, 45]. The clustering algorithm (Kmeans) will take all the

points (messages) and cluster them based on their high similarities with the corresponding

classes. Then, the SA algorithm will save time by picking points that have the potential to

reflect on the sequence diagram refactoring.

When we run our hybridized KSA algorithm, the following sequence of points appear (38,

49, 4, 25, 1, 1, 59). This is the final results of points picked up by our hybridized algorithm.

Before we delve more deeply into analyzing these results, let us look at the intermediate results.

The KSA algorithm starts by providing four cluster centers randomly since we have four clas-

ses. These centers are at the points {4.3, 6.3, 9.3, 3.9}. Then the algorithm continues updating

the centers of the clusters until all points are assigned to one cluster which includes all points

that might make a contribution to the cohesion metric, that is, the points that indicate that

there are similar features between messages and classes. Now, the KSA will pick up points out

of this cluster to ensure that any point taken should have a similarity value and hence it might,

but not necessarily, reduce cohesion or increase coupling.

If we check all the points in this sequence as returned by KSA: (38, 49, 4, 25, 1, 1, 59), we

find that all these points have similarity values. Unlike running SA alone where SA might go

for many iterations picking up non relevant points (points with no similar features values),

KSA only picks the right point, thus increasing the speed of the algorithm. Table 8 shows the

points, the representation of the points and the recommendations by the KSA algorithm.

LCOM values of class 3 are reduced by one as a result of the suggested recommendation of

moving Message 13 to Class 1.

The following details show the answer of RQ1 “How to evaluate the effectiveness of the

hybrid algorithm in refactoring sequence diagrams using quality metrics such as cohesion

(LCOM2), coupling, recall and precision measures?”

Table 8 shows the values of LCOM2, coupling, recall, precision and the ratio. Moving mes-

sage 13 to class 1 will reduce the cohesion of class 4 to 2 where its initial value is 3, as shown in

Table 4. In addition, the coupling of class 2 is reduced to 1 where its initial value is 2, as indi-

cated in Table 5; however, the value of LCOM2 for class 1 is still 0. This is an optimal value of

cohesion and moving the message leaves it in this state. Meanwhile, the KSA algorithm recom-

mends one refactoring operation out of 5 required operations to lead the system into an opti-

mal state. So the recall is 1/5 or 20%. The recommendations provided by the algorithm are

correct, so again the precision is 1 correct refactoring operation out of 5 which is 20%. The

ratio indicates how many iterations result in the refactoring operation in comparison to the

number of iterations the algorithm undertakes. In this run, the algorithm runs for seven (7)

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 15 / 26

https://doi.org/10.1371/journal.pone.0202629


iterations where only one iteration recommends a refactoring operation. So the ratio is 7. The

ratio can tell us how good the algorithm is for finding the good results. A ratio of 7 is not con-

sidered a good value since the algorithm has to waste six other iterations to find one good

point in one iteration.

All recommendations of KSA are correct and whether it recommends moving messages or

leaving them in their original class, the algorithm is able to determine the class for each mes-

sage. Our case study involves four classes with three classes have a good cohesion value and the

fourth having a high cohesion value. This is a difficult scenario for the algorithm since picking

75% of space points will not result in a good value. Thus, we run another experiment by relax-

ing the probability threshold to allow the algorithm to run for a few more iterations.

In the second run, as shown in Table 9, we relaxed the acceptance probability so the algo-

rithm can continue for more iterations than the first run before it terminates. In this run, the

algorithm picked 11 random points recommending 4 refactoring operations. So the recall of

Table 8. Results of the first run of KSA algorithm.

No. Point Representation KSA recommendation

1 38 Message10, Class3 Keep it

2 49 Message13, Class2 Move Message13 to Class1

3 4 Message2, Class1 Keep it

4 25 Message7, Class2 Keep it.

5 1 Message1, Class1 Keep it

6 1 Message1, Class1 Keep it

7 59 Message15, Class4 Keep it

Metric /Class 1 2 3 4 Recall 20%

LCOM2 0 0 0 2 Precision 20%

Coupling 1 1 1 1 Ratio 7/ 1 = 7

Initial Temperature of SA 10000000.0 Termination Condition Temperature > 1 Cooling Factor Temperature /10.0

Running Time 3 seconds

https://doi.org/10.1371/journal.pone.0202629.t008

Table 9. Results of the second run of KSA algorithm.

No. Point KSA recommendation

1 4 Keep it

2 12 Keep it

3 46 Keep it

4 0 Move Message1 to Class2

5 31 Move Message8 to Class4

6 8 Keep it

7 22 Move Message6 to Class4

8 23 Keep it

9 17 Keep it

10 49 Move Message13 to Class1

11 22 Keep it

Recall 80%

Precision 80%

Ratio 11/ 4 = 2.75

Initial Temperature 100000000000.0

Running Time 4.5 seconds

https://doi.org/10.1371/journal.pone.0202629.t009

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 16 / 26

https://doi.org/10.1371/journal.pone.0202629.t008
https://doi.org/10.1371/journal.pone.0202629.t009
https://doi.org/10.1371/journal.pone.0202629


the algorithm in this run is 4 out of 5 or 80%. All the recommended refactoring operations by

the algorithm are correct, so the precision is 80% too. The ratio is considerably good; the algo-

rithm runs 11 iterations to find 4 refactoring operations, which means the ratio is 2.75. This is

far better than the first run. We did not calculate coupling and cohesion in this run until all

necessary refactoring operations are recommended by the algorithm.

In the third run, as shown in Table 10, the KSA algorithm was able to recommend all neces-

sary operations in order to reach the optimal state, but it has to run for 21 iterations. The

LCOM2 and coupling values are now optimized. The LCOM2 value of class4 now is 0 and the

coupling of the four classes are 0 too. When the LCOM2 value is decreased, it indicates better

cohesion. The value of the coupling metric decreases as well which is a desirable result too.

The recall value in this experiment is 5 out of 5 which is 100%. All of these recommendations

are correct, so the precision is 100%. However, the ratio is 4.2 since the algorithm takes 21 iter-

ations to find 5 correct operations. This means that the algorithm, on average, has to go for 4

iterations to find one good refactoring. Fig 9 shows the refactored system as recommended by

our algorithm.

In comparison to [25], where they applied only clustering and class4’s LCOM2 was

decreased by 2, in our experiment, class4 was decreased by 3. Moreover, they used the Cou-

pling Through Abstract Data Type (CTA) as a coupling metric. The CTA value for class1 is

increased by 1, for class2 it is decreased by 1, there is no change for class3 and a decrease by 3

Table 10. Results of the third run of KSA algorithm.

No. Point KSA recommendation

1 4 Keep it

2 12 Keep it

3 46 Keep it

4 0 Move Message1 to Class2

5 31 Move Message8 to Class4

6 8 Keep it

7 22 Move Message6 to Class4

8 23 Keep it

9 17 Keep it

10 49 Move Message13 to Class1

11 22 Keep it

12 34 Keep it

13 49 Keep it

14 38 Keep it

15 54 Move Message14 to Class3

16 38 Keep it

17 12 Keep it

18 31 Keep it

19 23 Keep it

20 48 Keep it

21 1 Keep it

Metric /Class 1 2 3 4 Recall 100%

LCOM2 0 0 0 0 Precision 100%

Coupling 0 0 0 0 Ratio 21 / 5 = 4.2

Initial Temperature 100000000000.0

Running Time 5 seconds

https://doi.org/10.1371/journal.pone.0202629.t010

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 17 / 26

https://doi.org/10.1371/journal.pone.0202629.t010
https://doi.org/10.1371/journal.pone.0202629


for class4. In this paper, we opt to select a coupling between the messages’ metric due to the

difficulty of applying CTA in sequence diagrams. The coupling metric in our paper was

decreased by 1 for all four classes.

The purpose of Experiment 2.A and 2.B is to answer RQ2: To what extent our hybridized

algorithm can be effective using another hybridized algorithm and another refactoring

operation?

In order to provide a fair comparison between the running time of these two algorithms,

we opted to compare the SA algorithm against the (SA) code section of the KSA. KSA is a

hybridization of two algorithms and in most cases, it is expected to take a longer time doing

the clustering part. However, comparing the running time of the SA section of the KSA against

the running time of the standalone SA algorithm is in line with our research objective. SA will

have to randomly pick a point out of the full set of the available points, while the SA section in

the KSA will pick a point out of the output of Kmeans. When the SA succeeds in finding an

optimized value in one iteration, it will start a new iteration immediately. However, when it

fails, few lines must be executed before starting a new iteration such as: checking the stopping

Fig 9. The refactored sequence diagram as recommended by KSA algorithm.

https://doi.org/10.1371/journal.pone.0202629.g009

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 18 / 26

https://doi.org/10.1371/journal.pone.0202629.g009
https://doi.org/10.1371/journal.pone.0202629


criteria threshold and updating the temperature parameter. Thus, in the KSA, we expect the

SA section of this algorithm to run faster than the standalone SA; this is because the probability

of SA to fail in finding good points is smaller in the KSA than in the standalone SA. Since this

is a randomized algorithm, we ran the algorithm 5 times and took the average.

RQ2: To what extent our hybridized algorithm can be effective using another hybridized

algorithm and another refactoring operation?

Experiment 2.A: Comparison with KHC

Table 11 shows the results returned by running a hybridized algorithm of Kmeans and Hill

Climbing (HC) algorithms. We run the experiment eight times and recorded the results. The

table shows the experiment number, the picked random point and the algorithm’s recommen-

dation. In the first five experiments, the algorithm does not find any refactoring opportunity

and that is why it terminates after one run. In the sixth experiment, the algorithm finds two

refactoring opportunities. The first refactoring opportunity reduces the cohesion and thus

allows the algorithm to go for iteration. Though the second iteration results in recommending

a refactoring opportunity but since it does not reduce the cohesion metric, the algorithm ter-

minates. In the eighth’s run, we see a similar phenomenon. Though the algorithm is able to

find a refactoring opportunity, but since this refactoring has no impact on the cohesion metric,

the algorithm terminates.

In comparison with SA, HC is very inefficient in working in such difficult case study. SA’s

strength in relaxation on the termination condition allowing for more iterations even if the

refactoring opportunity is not found or the cohesion metric is not reduced, makes it more suit-

able than HC algorithm. Nevertheless, hybridizing HC with k-mean has its merits over run-

ning HC alone. As explained in the KSA section, hybridization directs HC to pick useful

points (points with nonzero values as shown in Table 2).

Experiment 2.B: KSA algorithm for Extract Message Refactoring

In this experiment, we show how KSA algorithm is applicable in refactoring extract message

operation. Extract message operation is similar to the extract method in code refactoring. If

the message has features that belong to more than one class, then we will create a set of new

messages where each message contains features belonging to one class only. For instance, Mes-

sage13 has two features belonging to Class1 and one feature belonging to Class2. In Move mes-

sage operation, the algorithm will recommend moving this message from Class4 to Class1. In

Table 11. Results of running KHC on our case study.

Experiment No. Point KHC Recommendation

1 46 Keep it

2 38 Keep it

3 8 Keep it

4 38 Keep it

5 12 Keep it

6 23 Move Message 6 to Class4

Move Message13 to Class1

7 51 Keep it

8 54 Move Message14 to Class3

LCOM 0 0 0 1

Running Time 2 seconds

https://doi.org/10.1371/journal.pone.0202629.t011

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 19 / 26

https://doi.org/10.1371/journal.pone.0202629.t011
https://doi.org/10.1371/journal.pone.0202629


Extract Message operation, the algorithm will recommend creating a new message belonging

to Class2 containing the features of Class2. We will name this message as Message13.1 to show

that it is a new message extracted from the Message13. Table 12 shows the results:

The purpose of Experiment 3 is to answer RQ3: To what extent the search-based algorithm

can be effective in a large case study with hundreds of refactoring opportunities?

Experiment 3: Large case study

In this experiment, we used a large case study in order to see the effectiveness of a search-

based algorithm namely: SA in refactoring sequence diagram. The anti-pattern of this case

study is depicted in Fig 10 and the refactored diagram is depicted in Fig 11. Fig 10 shows that

Bankserver class should communicate with InterestRate class to compute one function. It

would be better if the function setInterestRate is inserted in the bankServer class and thus the

class will reference its message. This operation will reduce the number of classes and will

reduce the communication between different classes and increase the communication of loop

messages which indicates high cohesion.

Using search-based for large case study, we applied SA to detect a sequence anti-pattern in

a large case study. We ran it for 25 times and recorded the number of instances detected in

each run. Then we calculated the average and the standard deviation of these runs as shown in

Table 13.

The case study contains a ten thousand messages with a thousand anti-pattern instance. We

set the number of non-optimizing iterations of SA to 997. So the number of iterations the SA

goes in each run can be found by adding the number of detection to 997. For example, in the

first run, SA goes for 636 + 997 = 1633 iteration.

In this experiment, we are not able to list all refactoring suggestions of the algorithm due to

space limitations. For example, in the first run: there are 636 refactoring recommendations

found by the algorithm. Since the objective of this experiment is to show the performance of

SA in a large case study and since SA is working randomly, we calculated the average and the

Table 12. Results of running KSA for Extract Message Refactoring on our case study.

No. Point Representation KSA Recommendation

1 24 Message 7, Class2 Keep Message 7

Create 7.1 to Class1

2 52 Message14, Class4 Move Message 14 to Class3

Create Message 14.1 to Class1

3 8 Message3, Class1 Keep it

4 8 Message3, Class1 Keep it

5 48 Message13, Class4 Move Message 13 to Class1

Create Message 13.1 to Class2

6 4 Message2, Class1 Keep it.

7 59 Message15, Class4 Keep it.

8 12 Message4, Class1 Keep it.

9 8 Message3, Class1 Keep it.

10 8 Message3, Class1 Keep it.

11 46 Message12, Class3 Keep it.

Parameter Value Recall 40%

Initial Temperature 100000000000.0 Precision 40%

Cooling Factor temperature /10 Ratio 11/2 = 5.5

Threshold Temperature > 1

Running Time 4 Seconds

https://doi.org/10.1371/journal.pone.0202629.t012

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 20 / 26

https://doi.org/10.1371/journal.pone.0202629.t012
https://doi.org/10.1371/journal.pone.0202629


standard deviation of around 25 runs. Table 13 shows the details of this experiment. SA in

average was able to find 66% of all instances in the case study.

Threats to validity

There are a number of threats that affect the generalization of the results of this research. We

ran our experiments on one case study. Other case studies with different characteristics may

provide different results. However, we have adopted this case study from the literature in

order to ensure the validity of our hybridized approach on a published case study. Another

Fig 10. Original sequence diagram.

https://doi.org/10.1371/journal.pone.0202629.g010

Fig 11. Refactored sequence diagram.

https://doi.org/10.1371/journal.pone.0202629.g011

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 21 / 26

https://doi.org/10.1371/journal.pone.0202629.g010
https://doi.org/10.1371/journal.pone.0202629.g011
https://doi.org/10.1371/journal.pone.0202629


possible threat is that all algorithms are based on random initializations. This might lead to dif-

ferent results in each run. However, since our objective is to show the gain that can be acquired

from the hybridization of data mining and search-based algorithms, we can assume that

regardless of the initialized points, SA always will gain benefits from the results returned by the

Kmeans algorithm.

The proposed hybridized algorithm implements a one-way communication from the

Kmeans to the SA algorithm. This can aid the SA whenever it starts and can still have signifi-

cance on the performance for small problems. However, for larger problems where SA runs

for many iterations that modify the elements of the Kmeans clusters, there is no way for SA to

seek help from the Kmeans algorithm to cluster the points again. For such problems, a full

integration of the two algorithms with many levels of communication will be very helpful. This

can be accomplished in future research.

In a larger problem, where there are many points that do not contribute to the results, clus-

tering algorithms can be very helpful in passing only the good points to the SA algorithm. In

our case, the maximum similarity is 2 and the minimum similarity is 1. The range is very

short. However, in other problems, the range can span over a wide range between the maxi-

mum and the minimum similarity of features. The Kmeans algorithm can divide this range

into different clusters, where SA can start from one cluster and move to a neighbor in another

Table 13. Number of anti-patterns detected in each run of SA.

No Number of instances detected

1 636

2 645

3 648

4 585

5 664

6 707

7 648

8 701

9 575

10 634

11 680

12 612

13 656

14 686

15 664

16 703

17 696

18 679

19 633

20 647

21 667

22 636

23 663

24 655

25 702

Average 656.88

Standard Deviation 34.47018

Ratio of Average anti-pattern detection 656.88/1000 = 66%

https://doi.org/10.1371/journal.pone.0202629.t013

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 22 / 26

https://doi.org/10.1371/journal.pone.0202629.t013
https://doi.org/10.1371/journal.pone.0202629


cluster. In addition, in a very large space, the resulting cluster from the Kmeans can be huge as

well, with points that have different values resulting in a minor improvement to the SA

algorithm.

Cohesion and coupling do not capture all aspects of software quality; however, since our

objective is to show the effectiveness of the proposed algorithm using multiple competing met-

rics. Coupling and cohesion metrics are two competing metrics that have been used previously

in other research and found to be effective in such context.

Search-based algorithms applied to software engineering introduce some construct validity

as outlined by [46]. Construct validity is concerned whether the used measurements are rele-

vant and meaningful to the study. One of these threats is the validity of the cost of executing

the fitness function. Although, in our paper, we explained that KSA is able to reach to an opti-

mal state of refactoring using 21 iterations, it is not clear how costly these iterations are with

respect of time and resources.

Another possible threat is that we used software quality metrics along with precision and

recall metrics to assess the effectiveness of the approach. We reason that KSA is better than SA

due to the quality improvement measured by these metrics. However, these set of metrics have

been previously used in many studies and have been shown to be relevant for such goal.

Conclusion and future work

Data mining algorithms and search-based algorithms use different approaches to solve optimi-

zation problems. Clustering algorithms run based on the similarity between data, while

search-based algorithms search the problem space using a guided fitness function. Both of

these algorithms suffer from several limitations. In this paper, we have shown how two

instances of these algorithms can communicate with each other to overcome some of the limi-

tations and produce better results. The application of these algorithms has been tested on a

sequence diagram refactoring case study. The experiments show the advantages that can be

gained by hybridizing data mining and search-based algorithms on a software engineering

domain problem.

Three runs were performed to show the results returned by the KSA algorithm. The KSA

algorithm, after 21 iterations, was able to recommend all the necessary refactoring operations

in order to reduce the LCOM2 value, thus increasing cohesion and reducing the coupling. In

terms of recall and precision, if we allow the algorithm to run longer, going through more iter-

ations, it is evident that it is going to retrieve or recall more recommended operations. How-

ever, it is interesting to note that the algorithm does not give any incorrect refactoring

operation. In all three runs of the algorithm, precision is always equal to the recall value, imply-

ing that there is no false recommendation.

We compared our results in the case study with another publication. As they used a differ-

ent coupling metric, a full comparison could not be made, yet their LCOM2 value decreased

by 2 for one class while our algorithm decreases the LCOM2 value by 3.

Hybridizing SA with clustering shows interesting results. Hybridizing HC with clustering

also provides good results. Running search based algorithm on another refactoring operation

and on large case studies supports the merit of this approach.

Another future direction is to use other software metrics with advanced data mining algo-

rithms and search-based algorithms.

Acknowledgments

The authors acknowledge the support of King Fahd University of Petroleum and Minerals in

the development of this work.

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 23 / 26

https://doi.org/10.1371/journal.pone.0202629


Author Contributions

Data curation: Abdulrahman Ahmed Bobakr Baqais.

Formal analysis: Mohammad Alshayeb.

Methodology: Abdulrahman Ahmed Bobakr Baqais, Mohammad Alshayeb.

Project administration: Mohammad Alshayeb.

Validation: Abdulrahman Ahmed Bobakr Baqais.

Writing – original draft: Abdulrahman Ahmed Bobakr Baqais, Mohammad Alshayeb.

Writing – review & editing: Abdulrahman Ahmed Bobakr Baqais, Mohammad Alshayeb.

References
1. Fowler M, Beck K. Refactoring: Improving the Design of Existing Code. 1 edition ed. Reading, MA:

Addison-Wesley Professional; 1999 July 8, 1999. 464 p.

2. Simon F, Steinbruckner F, Lewerentz C, editors. Metrics based refactoring. Fifth European Conference

on Software Maintenance and Reengineering, 2001; 2001.

3. Mahouachi R, Kessentini M, Ó Cinnéide M. Search-Based Refactoring Detection Using Software Met-

rics Variation. In: Ruhe G, Zhang Y, editors. Search Based Software Engineering. Lecture Notes in

Computer Science. 8084: Springer Berlin Heidelberg; 2013. p. 126–40.

4. Fourati R, Bouassida N, Abdallah HB. A Metric-Based Approach for Anti-pattern Detection in UML

Designs. In: Lee R, editor. Computer and Information Science 2011. Studies in Computational Intelli-

gence: Springer Berlin Heidelberg; 2011. p. 17–33.

5. Ghannem A, Boussaidi GE, Kessentini M. Model Refactoring Using Interactive Genetic Algorithm. In:

Ruhe G, Zhang Y, editors. Search Based Software Engineering. Lecture Notes in Computer Science:

Springer Berlin Heidelberg; 2013. p. 96–110.

6. Ghannem A, Kessentini M, El Boussaidi G, editors. Detecting Model Refactoring Opportunities Using

Heuristic Search2011 2011. Riverton, NJ, USA: IBM Corp.

7. Mahouachi R, Kessentini M, Ó Cinnéide M. Search-based refactoring detection. Proceedings of the

15th annual conference companion on Genetic and evolutionary computation; Amsterdam, The Nether-

lands. 2464680: ACM; 2013. p. 205–6.

8. Sunyé G, Pollet D, Traon YL, Jézéquel J-M. Refactoring UML Models. In: Gogolla M, Kobryn C, editors.

�UML� 2001—The Unified Modeling Language Modeling Languages, Concepts, and Tools. Lecture

Notes in Computer Science: Springer Berlin Heidelberg; 2001. p. 134–48.

9. Kessentini M, Langer P, Wimmer M, editors. Searching models, modeling search: On the synergies of

SBSE and MDE. Combining Modelling and Search-Based Software Engineering (CMSBSE), 2013 1st

International Workshop on; 2013 20–20 May 2013.

10. Rumbaugh J, Jacobson I, Booch G. The Unified Modeling Language Reference Manual,. 2 edition ed.

Boston: Addison-Wesley Professional; 2004 July 29, 2004. 721 p.

11. Frankel DS. Model Driven Architecture: Applying MDA to Enterprise Computing. 1 edition ed. New

York: Wiley; 2003 January 17, 2003. 352 p.

12. Harman M, Jones BF. Search-Based Software Engineering. Information and Software Technology.

2001; 43(14):833–9.

13. Kessentini M, Kessentini W, Sahraoui H, Boukadoum M, Ouni A, editors. Design Defects Detection and

Correction by Example. 2011 IEEE 19th International Conference on Program Comprehension (ICPC);

2011 2011/06//.

14. O’Keeffe M, Cinnéide MÓ. Search-based refactoring: an empirical study. Journal of Software Mainte-

nance and Evolution: Research and Practice. 2008; 20(5):345–64. https://doi.org/10.1002/smr.378

15. Ouni A, Kessentini M, Sahraoui H, Hamdi MS, editors. The Use of Development History in Software

Refactoring Using a Multi-objective Evolutionary Algorithm2013 2013. New York, NY, USA: ACM.

16. Rasool G, Arshad Z. A Lightweight Approach for Detection of Code Smells. Arabian Journal for Science

and Engineering. 2017; 42(2):483–506.

17. Alkhalid A, Alshayeb M, Mahmoud SA. Software refactoring at the package level using clustering tech-

niques. IET Software. 2011; 5(3):276–84. https://doi.org/10.1049/iet-sen.2010.0070

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 24 / 26

https://doi.org/10.1002/smr.378
https://doi.org/10.1049/iet-sen.2010.0070
https://doi.org/10.1371/journal.pone.0202629


18. Jourdan L, Dhaenens C, Talbi E-G. Using Datamining Techniques to Help Metaheuristics: A Short Sur-

vey. In: Almeida F, Aguilera MJB, Blum C, Vega JMM, Pérez MP, Roli A, et al., editors. Hybrid Meta-

heuristics. Lecture Notes in Computer Science: Springer Berlin Heidelberg; 2006. p. 57–69.

19. Amal B, Kessentini M, Bechikh S, Dea J, Said L. On the Use of Machine Learning and Search-Based

Software Engineering for Ill-Defined Fitness Function: A Case Study on Software Refactoring. In: Le

Goues C, Yoo S, editors. Search-Based Software Engineering. Lecture Notes in Computer Science.

8636: Springer International Publishing; 2014. p. 31–45.

20. Mens T, Demeyer S, Du Bois B, Stenten H, Van Gorp P. Refactoring: Current Research and Future

Trends. Electronic Notes in Theoretical Computer Science. 2003; 82:483–99. https://doi.org/10.1016/

S1571-0661(05)82624-6

21. Misbhauddin M, Alshayeb M, editors. Model-Driven Refactoring Approaches: A Comparison Criteria.

Sofware Engineering and Applied Computing (ACSEAC), 2012 African Conference on; 2012 24–26

Sept. 2012.

22. Misbhauddin M, Alshayeb M. UML model refactoring: a systematic literature review. Empirical Software

Engineering. 2013; 20(1):Page 206–51. https://doi.org/10.1007/s10664-013-9283-7

23. Al-Dallal J. Identifiying Refactoring Opportunities in Object-Oriented Code: A Systematic Literature

Review. Information and Software Technology. 2015; 58:231–49.

24. Maneerat N, Muenchaisri P, editors. Bad-smell prediction from software design model using machine

learning techniques. Eighth International Joint Conference on Computer Science and Software Engi-

neering; 2011 11–13 May 2011.

25. Alkhalid A, Alshayeb M, Mahmoud SA. Software refactoring at the class level using clustering tech-

niques. Journal of Research and Practice in Information Technology. 2011; 43(4):285–306.

26. Alkhalid A, Alshayeb M, Mahmoud S. Software Refactoring at the Function Level Using New Adaptive

K-Nearest Neighbor Algorithm. Advances in Engineering Software. 2010; 41(10–11):1160–78.

27. Sahin D, Kessentini M, Bechikh S, Deb K. Code-Smell Detection as a Bilevel Problem. ACM Trans

Softw Eng Methodol. 2014; 24(1):1–44. https://doi.org/10.1145/2675067

28. Ouni A, Kessentini M, Sahraoui H, Boukadoum M. Maintainability defects detection and correction: a

multi-objective approach. Automated Software Engineering. 2013; 20(1):47–79. https://doi.org/10.

1007/s10515-011-0098-8

29. Mkaouer MW, Kessentini M. Chapter Four—Model Transformation Using Multiobjective Optimization.

In: Ali H, editor. Advances in Computers. Volume 92: Elsevier; 2014. p. 161–202.

30. Ouni A, Kessentini M, Sahraoui H. Chapter Four—Multiobjective Optimization for Software Refactoring

and Evolution. In: Ali H, editor. Advances in Computers. Volume 94: Elsevier; 2014. p. 103–67.

31. Jin L, Keqing H, Bing L, Chengwan H, Peng L, editors. A transformation definition metamodel for model

transformation. International Conference on Information Technology: Coding and Computing; 2005 4–6

April 2005.

32. Rui X, Wunsch D II. Survey of clustering algorithms. IEEE Transactions on Neural Networks. 2005; 16

(3):645–78. https://doi.org/10.1109/TNN.2005.845141 PMID: 15940994

33. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science. 1983; 220

(4598):671–80. https://doi.org/10.1126/science.220.4598.671 PMID: 17813860

34. Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques, Second Edition (The Morgan Kauf-

mann Series in Data Management Systems): Morgan Kaufmann; 2006 January 13, 2006.

35. Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya AY, et al. A Survey of Clustering Algorithms for

Big Data: Taxonomy and Empirical Analysis. Emerging Topics in Computing, IEEE Transactions on.

2014; 2(3):267–79. https://doi.org/10.1109/tetc.2014.2330519

36. Rui X, Wunsch D II. Survey of clustering algorithms. Neural Networks, IEEE Transactions on. 2005; 16

(3):645–78. https://doi.org/10.1109/tnn.2005.845141 PMID: 15940994

37. Selim SZ, Alsultan K. A simulated annealing algorithm for the clustering problem. Pattern Recognition.

1991; 24(10):1003–8. https://doi.org/10.1016/0031-3203(91)90097-O

38. Perim G, Wandekokem E, Varejão F. K-means initialization methods for improving clustering by simu-

lated annealing. Advances in Artificial Intelligence–IBERAMIA 2008. 2008:133–42.

39. Merendino S, Celebi ME, editors. A Simulated Annealing Clustering Algorithm Based On Center Pertur-

bation Using Gaussian Mutation. FLAIRS Conference; 2013.

40. Chidamber SR, Kemerer CF. A metrics suite for object oriented design. Software Engineering, IEEE

Transactions on. 1994; 20(6):476–93.

41. Al Dallal J. Measuring the discriminative power of object-oriented class cohesion metrics. IEEE Trans-

actions on Software Engineering. 2011; 37(6):788–804.

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 25 / 26

https://doi.org/10.1016/S1571-0661(05)82624-6
https://doi.org/10.1016/S1571-0661(05)82624-6
https://doi.org/10.1007/s10664-013-9283-7
https://doi.org/10.1145/2675067
https://doi.org/10.1007/s10515-011-0098-8
https://doi.org/10.1007/s10515-011-0098-8
https://doi.org/10.1109/TNN.2005.845141
http://www.ncbi.nlm.nih.gov/pubmed/15940994
https://doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
https://doi.org/10.1109/tetc.2014.2330519
https://doi.org/10.1109/tnn.2005.845141
http://www.ncbi.nlm.nih.gov/pubmed/15940994
https://doi.org/10.1016/0031-3203(91)90097-O
https://doi.org/10.1371/journal.pone.0202629


42. Lung C-H, Xu X, Zaman M, Srinivasan A. Program restructuring using clustering techniques. Journal of

Systems and Software. 2006; 79(9):1261–79. http://dx.doi.org/10.1016/j.jss.2006.02.037

43. Talbi EG. A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics. 2002; 8(5):541–64. https://doi.

org/10.1023/a:1016540724870

44. Perim G, Wandekokem E, Varejão F. K-Means Initialization Methods for Improving Clustering by Simu-

lated Annealing. In: Geffner H, Prada R, Machado Alexandre I, David N, editors. Advances in Artificial

Intelligence–IBERAMIA 2008. Lecture Notes in Computer Science. 5290: Springer Berlin Heidelberg;

2008. p. 133–42.

45. Liu J, Liu T. Detecting community structure in complex networks using simulated annealing with -means

algorithms. Physica A: Statistical Mechanics and its Applications. 2010; 389(11):2300–9. http://dx.doi.

org/10.1016/j.physa.2010.01.042

46. Barros M, Dias-Neto A. Threats to validity in search-based software engineering empirical studies.

Relatórios Técnicos do DIA/UNIRIO. 2011;(0006).

Sequence diagram refactoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0202629 August 22, 2018 26 / 26

http://dx.doi.org/10.1016/j.jss.2006.02.037
https://doi.org/10.1023/a:1016540724870
https://doi.org/10.1023/a:1016540724870
http://dx.doi.org/10.1016/j.physa.2010.01.042
http://dx.doi.org/10.1016/j.physa.2010.01.042
https://doi.org/10.1371/journal.pone.0202629

