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ABSTRACT
Retrieving historical fine particulate matter (PM2.5) data is key for evaluating the long-term impacts of
PM2.5 on the environment, human health and climate change. Satellite-based aerosol optical depth has been
used to estimate PM2.5, but estimations have largely been undermined by massive missing values, low
sampling frequency and weak predictive capability. Here, using a novel feature engineering approach to
incorporate spatial effects frommeteorological data, we developed a robust LightGBMmodel that predicts
PM2.5 at an unprecedented predictive capacity on hourly (R2 = 0.75), daily (R2 = 0.84), monthly
(R2 = 0.88) and annual (R2 = 0.87) timescales. By taking advantage of spatial features, our model can also
construct hourly gridded networks of PM2.5.This capability would be further enhanced if meteorological
observations from regional stations were incorporated. Our results show that this model has great potential
in reconstructing historical PM2.5 datasets and real-time gridded networks at high spatial-temporal
resolutions.The resulting datasets can be assimilated into models to produce long-term re-analysis that
incorporates interactions between aerosols and physical processes.
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INTRODUCTION
Fine particulate matter (PM2.5) consists of sus-
pended and inhalable particles that generate en-
vironmental and health effects [1–7]. Suspended
PM2.5 is the primary cause of visibility reduction in
China and parts of the United States. When settling
on the ground or water, these particles can exert dif-
ferent impacts on ecosystems depending on their
chemical composition, including affecting ecologi-
cal diversity, depleting soil nutrients and acidizing
lakes and streams [8,9]. Inhalable PM2.5 can pen-
etrate the respiratory system to aggravate respira-
tory symptoms [10,11] and increase mortality from
cardiovascular and respiratory diseases after long-
term exposure to PM2.5 [5,6,12]. In addition to the
profound impacts on the environment and health,
interactions between aerosols and radiation also
affect climate change directly or indirectly in the
long term [1,13–17]. To evaluate the long-term im-
pacts of PM2.5 on the atmospheric environment, hu-
man health and climate change, it is critical to obtain

historical PM2.5 datasets at high spatial-temporal
resolutions. Nevertheless, the national hourly PM2.5
monitoring network from the Ministry of Ecology
and Environment was not established until 2013. As
a result of the limited PM2.5 observations, retriev-
ing historical PM2.5 datasets is becoming a research
hotspot.

With broad spatial coverage and relatively long
observation periods (∼20 years), satellite-retrieved
aerosol optical depth (AOD), a measure of the
aerosol extinction of the solar beam, has been in-
creasingly used to estimate large-scale PM2.5 con-
centrations for thepast twodecades [18–24]. For ex-
ample, Huang et al. [20] predicted monthly PM2.5
concentrations on the North China Plain (NCP)
from Multi-Angle Implementation of Atmospheric
Correction (MAIAC) AOD using random forest
that improved monthly prediction R2 (coefficient
of determination) to 0.74. Additionally, using the
MAIAC AOD, Xiao et al. [25] constructed monthly
PM2.5 datasets from 2000 to 2018 to evaluate their
spatial changes.Wei et al. [22] estimated daily PM2.5
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across China using the space-time random forest ap-
proach with daily prediction R2 at 0.55. However,
satellite-based AOD has some inherent limitations
that are difficult to overcome. For example, a large
proportion of non-random missing AOD due to
cloud cover significantly affects data availability and
generates biases [18,26]. Previous studies estimated
that themissingAOD fromMODIS (ModerateRes-
olution Imaging Spectroradiometer) accounted for
70%–90% of the total retrieval [26,27]. Apart from
missing data, the sampling frequency of satellite-
based AOD is typically limited to a maximum of
twice a day. This kind of frequency makes it impos-
sible for hourly PM2.5 assessments and leads to the
underrepresentation of the average daily AOD. For
model accuracy, the predictive accuracy for samples
outside the training period is significantly lower than
the validation accuracy, indicating that these mod-
els’ predictive capability is relativelyweak. For exam-
ple, although theR2 of 10-fold cross-validation (CV)
on a daily scale can exceed 0.85, the R2 of the predic-
tion is no more than 0.58 [21,22].

Compared with satellite-based AOD, horizon-
tal visibility and other variables from surface me-
teorological observations have unique advantages
in retrieving historical PM2.5. Surface meteorolog-
ical observations that can be traced back to the
1950s have much more extended observation pe-
riods than satellite-based AOD observations. Sur-
face observations are not disturbed by cloud cover
and can continuously record hourly meteorologi-
cal variables, which overcome the shortcomings of
satellite-based AOD data that have massive missing
values and low sample frequency. Unlike PM2.5 sta-
tions that are mainly located in cities, meteorologi-
cal stations are distributedmore evenly and densely.
There are 2450 national meteorological stations and
over 60 000 regional stations in China. This con-
siderable magnitude has great potential to retrieve
historical PM2.5 datasets at high spatial-temporal
resolutions using visibility-dominated surface mete-
orological variables. For example, using daily me-
teorological observations, Gui et al. [28] have con-
structed a virtual ground-based PM2.5 network with
XGBoost and achieved a better predictive capability
withR2 values of 0.60 and 0.80 on daily andmonthly
scales, respectively. This work shows that visibility
and othermeteorological variables are promising for
filling gaps in AOD-based PM2.5 [28]. Therefore,
surfacemeteorological observations will continue to
be used for retrieving PM2.5 but on an hourly scale in
this study. We will employ a novel feature engineer-
ing approach to incorporate spatial effects and build
a robust model of which the prediction capacity will
improve significantly. The state-of-the-art machine-
learning algorithm, LightGBM, will be used in this

study to train the model based on over 30 million
samples from meteorological observations at 2450
national stations from 2016 to 2018 (Fig. 1). The
model performance will be evaluated using 10-fold
CV. After validation, we will assess the predictive
capability of this model using more than 10 mil-
lion meteorological samples in 2019. Additionally,
wewill attempt to construct a densely gridded PM2.5
network by taking advantage of extracted spatial
features.

RESULTS AND DISCUSSION
Model evaluation from hourly to yearly
scales
In contrast to many machine learning models that
are black boxes [29], LightGBM models can ex-
plain their predictions in a way that humans can
understand. The decision-making process of our
model was visualized using a feature-importance
plot and a digraph representation of a specified tree.
Figure S1 shows the relative importance of all the
features used to train the model. Visibility from the
nearestmeteorological station is themost important
feature that accounts for ∼7% of the overall impor-
tance. Approximately 6% of the overall importance
is composed of distance that also significantly af-
fects themodel from a spatial perspective. Temporal
features and other spatial features are also incorpo-
rated into the model, with relative importance rang-
ing from 2% to 5%. Compared with the models in
previous studies [20,22,26,28], our model does not
heavily rely onone feature, e.g. AODor visibility, but
is able to integrate the influence of different features,
particularly the spatial features that fully represent
dimensional heterogeneity. For example, without
visibility from the nearest station, the R2 value of ob-
served and predicted PM2.5 in 2019 only decreases
from 0.75 to 0.72 (Fig. S2). In contrast, the R2 value
decreasesmore significantly to 0.65when spatial fea-
tures of visibility from surrounding stations are ex-
cluded (Fig. S2). To further gain an understanding
of the decisionprocess, we retrace the process of par-
titioning thenotes on the trainingdataset by visualiz-
ing 1 of 1000 trees randomly in our model (Fig. S3).
The tree nodewas split into child nodes based on the
spatial visibility and then further divided based on
the spatial relative humidity (RH) or visibility of the
nearest station. It is clearly demonstrated how me-
teorological features, temporal features and spatial
features play a role in our model.

Our model’s performance was evaluated with
10-fold CV using 31 863 778 hour-by-hour train-
ing data across China from 2016 to 2018. As shown
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Figure 1. (a) Spatial distribution of 1440 PM2.5 stations and 2450 national meteorological stations across China and (b) a conceptual scheme for the
extraction of spatial features and the development of our LightGBM model. Review drawing number: GS(2020)6868.

in Fig. 2, the overall R2 and root-mean-square error
(RMSE) for hourly PM2.5 estimations are 0.80 and
19.80μgm−3, respectively, which are in close agree-
ment with the fitting results with the R2 value of 0.80
and the RMSE value of 19.60μgm−3 (Fig. S4).This
finding indicates that thismodel caneffectively avoid
overfitting and achieve high and stable accuracy in
estimating hourly PM2.5 concentrations.The perfor-
mance of our model is even better for PM2.5 estima-
tions on larger timescales. For daily estimations with
1 454 688 samples, the overall R2 and RMSE are
0.89 and 12.78 μg m−3, respectively. For monthly

and yearly estimations, the overall R2 values in-
crease to 0.94 and 0.98, respectively, and the RMSE
values decrease to 6.78 μg m−3 and 2.16 μg m−3,
respectively. To better present our model’s perfor-
mance, we compared ourCV scores with those in re-
cent studies that predicted PM2.5 across China. As
shown in Table 1, our model outperformed all of
the other models in the R2 and RMSE for model
validation from daily to yearly scales and allowed
for unprecedented hour-by-hour evaluation with R2

(0.80) even better than most of the other R2 values
on a daily scale (0.41∼0.85) [20–22,25,28,30–38].
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Figure 2. Density scatterplots of 10-fold CV results for (a) hourly (N = 31 863 778), (b) daily (N = 1 454 688), (c) monthly
(N= 49 886) and (d) yearly (N= 1440) PM2.5 from 2016 to 2018 across China (colors show probability distribution densities).

Robust prediction of hourly PM2.5
across China
Our model’s predictive capability, which is crucial
for retrieving historical PM2.5 datasets, was evalu-
ated using 10 522 939 ‘unseen’ samples from 2019.
Figure 3 presents the overall correlations of model-
predicted PM2.5 and observed PM2.5 on different
timescales. For hourly PM2.5 prediction, the over-
all R2 and RMSE are 0.75 and 19.19 μg m−3, re-
spectively, which are closely consistent with the
10-fold CV results (Fig. 2a). This excellent rele-
vance indicates that our model has a robust predic-
tive capability that can construct hourly historical
PM2.5 datasets feasibly and accurately. The predic-
tive power of this model is even better for PM2.5 pre-
diction on larger timescales. For daily estimations
with 477 867 samples, the overall R2 and RMSE are
0.84 and 13.82 μg m−3, respectively. For monthly
and yearly estimations, the overall R2 values in-
crease to 0.88 and 0.87, respectively, and the RMSE
values decrease to 8.39 μg m−3 and 5.55 μg m−3,
respectively. To better evaluate the predictive power
of our model, we compared our predictive scores

with those in recent studies (Table 1). As men-
tioned above, the R2 and RMSE of the predictions
are significantly worse than those of the 10-fold
CV, particularly for the models based on satellite-
retrieved AOD. The best predictive R2 of AOD-
based models is only 0.58 on a daily scale, which in-
dicates that there will be potential biases that cannot
be ignored when we estimate PM2.5 datasets using
those models. Compared with the other models in
Table 1, our model can provide unprecedented
hour-by-hour predictions on PM2.5 and gains con-
siderable advantages in predictive capacity from
daily to yearly scales.These advantagesmainly result
from the incorporation of spatial features from 19
surrounding meteorological stations. If these spatial
features are removed, the predictive capacity of our
model is significantly reduced, with theR2 values de-
creasing to 0.61 and 0.72 on hourly and daily scales,
respectively.This kindof performance is only slightly
better than that of models in previous studies.

To evaluate the predictive capacity of our model
in different regions of China, we obtained the spa-
tial distribution of R2 values between observed
PM2.5 andmodel-predictedPM2.5 on anhourly scale
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Table 1. Statistics for the comparison of the validation performance and predictive capability of different models from hourly to yearly scales.

Basic information Model validation Predictive capability

Hourly Daily Monthly Yearly Hourly Daily Monthly Yearly

Primary predictor Model References R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

AOD GWR [30] -a - 0.64 32.98 - - - - - - - - - - - -
AOD Stage-1 [32] - - 0.78 27.99 - - - - - - - - - - - -
AOD Stage-2 - - 0.79 27.42 - - - - - - 0.41 - 0.73 - 0.79 -
AOD TSAM [31] - - - - - - 0.80 22.75 - - - - - - - -
AOD GWR [33] - - 0.79 18.60 - - - - - - - - - - - -
Visibility ER [38] - - 0.42 - - - - - - - 0.38 - - - - -
AOD Gaussian [36] - - 0.81 21.87 - - - - - - - - - - - -
AOD GRNN [34] - - 0.67 20.93 - - - - - - - - - - - -
Visibility LMEM [35] - - - - 0.71 25.62 - - - - 0.60 - 0.71 - - -
AOD GTWR [37] - - 0.80 18.00 - - - - - - 0.47 12.03 - - - -
Merra-2 PM2.5 RF [20] - - - - 0.88 14.89 - - - - - - 0.74 17.80 0.76 11.35
AOD Ensemble [21] - - - - 0.79 21.00 - - - - 0.58 29.00 0.76 15.70 - -
AOD MLR [22] - - 0.41 20.04 - - - - - - 0.38 21.97 - - - -

GWR - - 0.53 23.28 - - - - - - 0.44 26.47 - - - -
Stage-1 - - 0.65 19.50 - - - - - - 0.31 27.73 - - - -
Stage-2 - - 0.71 8.59 - - - - - - 0.35 27.65 - - - -
RF - - 0.81 17.91 - - - - - - 0.53 28.09 - - - -
STRF - - 0.85 15.57 - - - - - - 0.55 27.38 - - - -

AOD Ensemble [25] - - - - 0.91 9.30 - - - - - - 0.78 14.00 - -
Visibility Xgboost [28] - - 0.79 15.75 0.92 6.75 - - - - 0.60 25.34 0.80 14.75 0.83 10.10
Visibility LightGBM This study 0.80 19.80 0.89 12.78 0.94 6.78 0.98 2.16 0.75 19.19 0.84 13.82 0.88 8.39 0.87 5.55

a‘-’ indicates no data.

(Fig. 4). Five key polluted regions were selected
as focuses based on long-term trends in visibility
[39], including (i) the NCP and the Guanzhong
Plain (GZP) in northern China; (ii) the Yangtze
River Delta (YRD) region and the Two Lakes Basin
(TLB) along the middle and lower reaches of the
Yangtze River; (iii) the Pearl River Delta (PRD) re-
gion in southern China; (iv) the Sichuan Basin (SB)
in southwesternChina; and (v) theNortheastChina
Plain (NeCP) [39,40]. As shown in Fig. 4, the pre-
dictive capacity of our model is remarkable in the
five regions and is much better in more polluted
regions. Among these regions, the model presents
the most impressive predictive performance on the
NCP, with R2 values generally more than 0.80. Fol-
lowing the NCP, the model also shows high accu-
racy in PM2.5 prediction on the GZP, with R2 values
over 0.80.The SB, which is a cloudy basin withmore
than 70% of AOD values missing, still presents reli-
able predictive performance, with R2 of ∼0.75. On
the YRD and TLB, the R2 values fluctuate between
0.65 and 0.90 but still exceed 0.80 in most cases. On
the NeCP and PRD, the predictive performance is
also acceptable with R2 values of approximately or
over 0.70.The regional differences of R2 in these five
regions might be affected by three factors, including

pollution levels, RHand thedistributionofmeteoro-
logical stations. Under low levels of pollution, PM2.5
concentrations are not closely related to visibility
that is the most important feature for our model. As
pollution levels increase, visibility is increasingly af-
fected by PM2.5, and the non-linear relationship be-
tween these two variables might be more easily built
by our model. As a result, the NCP and the GZP,
which experience the most severe aerosol pollution,
exhibit the best performance of predictive power
among all the five regions. In addition to PM2.5, visi-
bility is also affected by RH that can enhance aerosol
hygroscopic growth [41]. RH exhibited significant
differences between northern and southern China.
In northern China, RH remains relatively low, and
haze frequently occurs; while in southernChina, RH
remains relatively high, and mist or fog often occurs
[42]. The non-linear relationship between visibility
and PM2.5 is more complicated in southern China
and might be more difficult to build by our model.
As a result, in southern China, including the PRD,
theTLB, theYRDand the SB, theR2 is slightly lower
than that in northern China, including the NCP and
theGZP. It is worth noting that the R2 is also slightly
lower in parts of northern China, including Inner
Mongolia and the NeCP, which might result from
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Figure 3. Density scatterplots of observed PM2.5 and predicted PM2.5 on (a) hourly (N = 10 522 939), (b) daily (N = 477
867), (c) monthly (N = 49 886) and (d) yearly (N = 1440) timescales in 2019 across China (colors are probability distribution
densities).

the sparsity of meteorological stations that cannot
truly reflect real situations. In contrast to the model
performance in these five regions, at dozens of sta-
tions on the Tibet Plateau and its surrounding areas
the model shows poor performance in hourly PM2.5
prediction, with R2 less than 0.40. The 25 stations
with the lowest R2 values were extracted to explore
the causes of the lowR2 values, while another 25 sta-
tions with the highest R2 values were used as con-
trasts. We found that the poor predictive capability
at these stations mainly results from extremely low
PM2.5 concentrations (<20μgm−3) that cannot ef-
fectively be reflected by visibility and long-distance
surrounding meteorological stations (Fig. S5). The
nearest meteorological station is ∼80 km on aver-
age away from the PM2.5 station, and the 20th near-
est meteorological station is 300 km away (Fig. S5).
Such a distance indicates that surrounding meteo-
rological stations cannot truly reflect real situations
around PM2.5 stations. Nevertheless, this disadvan-
tage will be overcome when we incorporate regional
meteorological stations in the future.

Previous studies also revealed that training
regional models for each region can improve
model performance due to significant spatial

heterogeneity in relationships between PM2.5
and meteorological variables [21]. Therefore, we
selected three representative regions and trained
regional models for each region, respectively.
Figure S6 shows performance differences between
the national and regional models on the NCP,
the YRD and the Tibet Plateau. Compared with
regional models, the national model performed
almost equally well on the NCP, slightly better on
the YRD, and slightly worse on the Tibet Plateau
(Fig. S6). This finding indicates that regional mod-
els for each region cannot provide more accurate
results. The spatial heterogeneity might have been
incorporated into our national model by taking
advantage of spatial features.

Given our model’s hourly predictions, we as-
sessed its predictive capacity for diurnal variations
in PM2.5. Figure S7 shows a clear diurnal varia-
tion in observed PM2.5 across China. PM2.5 concen-
trations significantly increased after 20:00 (Beijing
Time, BJT) and decreased after 12:00. This diurnal
variation is well captured by our PM2.5 predictions,
which are almost the same as the PM2.5 observations
(Fig. S7). Due to the diurnal PM2.5 variations, us-
ing satellite-basedAODas thedaily average,which is
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Figure 4. Spatial distribution of R2 between observed PM2.5 and predicted PM2.5 on an hourly scale in 2019 across China.
Eastern China is divided into similar visibility-changing regions with black lines as defined in Zhang et al. [39], and key polluted
regions marked with shaded circles. Review drawing number: GS(2020)6868.

obtained twice a day (usingMODIS as an example),
will inevitably overestimate the actual daily condi-
tions.

The robust prediction of our model can also be
demonstrated by the hourly time series of observed
and predicted PM2.5 at several representative sta-
tions in Beijing, Shijiazhuang, Xi’an, Chengdu and
Shanghai. As shown in Fig. S8, this model accurately
predicts low values, high values and variation trends
in both low-pollution and high-pollution areas.

Gridded PM2.5 networks at high
spatial-temporal resolutions
The distribution of PM2.5 stations is uneven, with
most stations located in urban areas in eastern
China. In contrast, meteorological stations are dis-
tributed more evenly across China at a higher den-
sity. By taking advantage of spatial features from
surrounding meteorological stations, our model can
construct densely-gridded PM2.5 networks at high
temporal resolutions. For better visualization, we
set the grid point precision to 0.25◦, which can
be further increased if required with consideration
for numbers, distribution density and spacing dis-
tance of meteorological stations in the target area.
Figure 5a and b shows the distribution of observed
PM2.5 stations and griddedPM2.5 networks fromour
prediction. The gridded networks accurately corre-

spond to observed PM2.5 concentrations and pro-
vide more detailed information on spatial distri-
butions. We found that low PM2.5 concentrations
occur in the northwestern mountain areas and that
several pollution centers existed in the west and
south, as well as in the hinterlands of the mountains.
The region in southern Hebei and north-central
Henan experience the widest and highest pollution
among all the polluted centers. Compared with that
region, the region in central Shandong undergoes
less severe pollution. Another two centers that expe-
rience weak pollution at small ranges are located in
eastern Hebei and the hinterlands in Shanxi. Apart
from the assessment on a yearly scale, gridded net-
works from diurnal variations are illustrated in Fig.
S9. Compared with observations in Fig. S10, the
gridded networks present the diurnal variations in a
better and clearer way.

The accuracy of the gridded PM2.5 networks de-
pends on whether the model can well predict PM2.5
concentrations at locations outside the scope of the
training stations. In Beijing, 23 regional PM2.5 sta-
tions were untouched during the training process
(Fig. 5c) and thus can be used to evaluate this
kind of accuracy. Hourly PM2.5 concentrations in
these stationswere predicted by themodel and com-
pared with PM2.5 observations in 2019. As shown
in Fig. 5d, the R2 values exceed 0.75 at 22 of 23
regional stations and do not exhibit significant dif-
ferences between national and regional stations.
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Figure 5. Spatial distribution of (a) observed PM2.5 and (b) predicted gridded networks of PM2.5 on a yearly scale on the North China Plain; (c) the
distributions of 12 national stations (blue) that have been used during the training process and 23 regional stations (orange) that are untouched during
the training process in Beijing; (d) the distribution of R2 for both national and regional stations; (e) density scatterplots of observed PM2.5 and predicted
PM2.5 for 12 national stations on an hourly scale and (f) density scatterplots of observed PM2.5 and predicted PM2.5 for 23 untouched regional stations
on an hourly scale. Review drawing number: GS(2020)6868.

Page 8 of 12



Natl Sci Rev, 2021, Vol. 8, nwaa307

For hourly PM2.5 concentrations at all 23 regional
stations, the R2 and RMSE are 0.81 and 20.30, re-
spectively, which are just slightly weaker than those
(R2 = 0.83, RMSE = 18.90) at 12 national stations
(Fig. 5e and f).These results indicate that ourmodel
is able to well predict PM2.5 concentrations at loca-
tions both inside and outside the scope of the train-
ing stations.

Several polluted stations that almost coincide
with other stations are not incorporated into our
gridded networks. This phenomenon is mainly due
to our grid precision settings and will be effectively
resolved if sufficiently high precision is set. Further-
more, it might be difficult for us to construct gridded
networks in western China where meteorological
stations are scarce, but this will be significantly im-
proved when we introduce regional meteorological
stations in the future. The significant increase in the
number of meteorological stations will enable us to
build densely-gridded networks on an hourly scale.

CONCLUSION
For retrieving historical PM2.5 datasets, satellite-
based AOD has some inherent limitations that are
difficult to overcome, i.e. massivemissing values due
to cloud cover, low sampling frequency and weak
predictive capability for data outside the training pe-
riod. Here, hourly meteorological observations with
over 40 000 000 samples were employed to over-
come the disadvantages of satellite-based retrieval.
Developing a novel feature engineering approach
to extract spatial features of surrounding stations,
we built a LightGBMmodel that outperformed pre-
vious models regardless of validation performance
or predictive capability. The R2 and RMSE of the
10-fold CV of our model are 0.80 and 19.80μgm−3

on an hourly scale and 0.89 and 12.78 μg m−3 on a
daily scale, respectively.Thismodel can even achieve
unprecedented hour-by-hour PM2.5 predictions
with high and stable accuracy. For hourly PM2.5
prediction, the overall R2 and RMSE are 0.75 and
19.19 μg m−3, respectively. For daily, monthly and
yearly PM2.5 predictions, the R2 values are 0.84, 0.88
and 0.87, respectively, and the RMSE values are
13.82 μg m−3, 8.39 μg m−3 and 5.55 μg m−3,
respectively. By taking advantage of spatial fea-
tures, our model can also construct hourly gridded
networks of PM2.5 at high spatial resolutions that
provide more detailed information on spatial distri-
bution. Our results show that this model has great
potential in reconstructing historical PM2.5 datasets
at high spatial-temporal resolutions and retrieving
real-time gridded PM2.5 networks across China.
However, this model still has some weaknesses,
with themain weakness being the poor performance

in predicting hourly PM2.5 in dozens of stations
in western China where meteorological stations
are sparse. This disadvantage will be effectively
overcome when regional meteorological stations
are incorporated. In the future, we will employ
this model to hindcast two sets of historical PM2.5
datasets from the 1950s. One dataset will be for
existing PM2.5 stations and the other for gridded
networks of PM2.5. Then, we will incorporate
regional meteorological stations to improve our
model’s precision and then use themodel to retrieve
gridded networks of PM2.5 at high spatial-temporal
resolutions. This will serve to overcome the disad-
vantages of existing PM2.5 stations that are unevenly
distributed and far fewer than meteorological sta-
tions in number. In addition, the retrieved historical
PM2.5 datasets will be assimilated into models to
produce long-term re-analysis that incorporates
interactions between aerosols and the physical
processes of the climate system.This re-analysis will
facilitate investigating aerosols’ impacts on society,
epidemiology and climate change.

MATERIALS AND METHODS
Observational data
This study used ground-based PM2.5 observations at
∼1600 national stations across China from 2016 to
2019 (Fig. 1a).The hourly PM2.5 data were archived
at the China National Environmental Monitoring
Center (CNEMC, http://www.cnemc.cn, 11 Octo-
ber 2020). We conducted a series of quality con-
trols to produce high-quality data. A total of 1440
stations met the quality criterion of having at least
60% of valid data and were retained for this study.
Severe outliers that were abnormally higher than
surrounding data were effectively removed using
a method that compared the differences between
hourly PM2.5 and a five-point moving average. Af-
ter several tests, the threshold of 150 μg m−3 was
effective in eliminating outliers (Fig. S11). With
this threshold, ∼3% of the hourly PM2.5 was re-
moved. A total of 42 386 717 samples remained for
model development and application. There are also
23 regional PM2.5 stations in Beijing in addition to
12 national stations (https://quotsoft.net, 11 Octo-
ber 2020). Hourly PM2.5 data from these 23 stations
were not used for model training but for evaluating
predictive capability.

National ground-based surface meteorological
observations from 2016 to 2019 were archived at
the National Meteorological Information Center of
theChinaMeteorological Administration. Similarly,
we only use the stations with valid values over 60%.
There were 2450 stations remaining in total (Fig. 1).
Three meteorological variables, including visibility,
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RH and temperature, were selected from the surface
observations as the main predictors to develop the
LightGBMmodel.

Feature engineering approach
The longitude, latitude and time variables (year,
month, day and hour) of PM2.5 stations were se-
lected as features at first (Fig. 1b).Thenwematched
each PM2.5 station with its nearest meteorological
station and added the visibility, RH, and temper-
ature from that meteorological station as features
(Fig. 1b). The distance between these two stations
was also added as a feature. Previous studies have
shown that the pollution levels at one station are
largely affected by the surrounding environment,
i.e. pollution transport is the primary cause of early
pollution formation in Beijing [43,44]. Therefore,
spatial effects need to be considered for better ac-
curacy. Here, we developed a novel feature engi-
neering approach that extracts spatial features to
incorporate the surrounding environment’s effects.
Specifically, the nearest 20 meteorological stations
for each PM2.5 station were matched, and the near-
est station that had already been used was excluded.
We extracted five variables from the remaining
19 meteorological stations, including latitude, lon-
gitude, visibility, temperature and RH. For each
variable, we calculated the mean values, maximum
values, minimum values, standard deviation and
skewness values in order and added themas features.
After all the features were obtained, feature selec-
tion was performed to reduce training time and im-
prove accuracy.We employed a relatively small sam-
ple dataset (1/3 of training data) to train the model
and obtain each feature’s importance in the dataset.
According to the highest to lowest importance, we
selected the top 30 features for the following model
fitting, validation and evaluation. These features in-
cluded visibility, distance and other spatial features.

The LightGBMmodel and its development
LightGBM is a state-of-the-art gradient-boosting
framework that uses tree-based learning algorithms
[45]. It is designed with faster training speed, lower
memory usage, better accuracy and capability of
handling large-scale data [45]. Until now, it could
achieve slightly higher accuracy with much faster
speed compared toXGBoost.Therefore, it wasmore
appropriate to use LightGBM inour study, which in-
cluded more than 40 million samples. Two metrics,
R2 and RMSE, were employed to quantify the qual-
ity of predictions. Then we trained the LightGBM
model with 30 features and PM2.5 labels from 2016

to 2018. To achieve a better performance, we per-
formed hyperparameter tuning with a randomized
search CV (RSCV) optimized by a randomly cross-
validated searchonparameter settings. In contrast to
grid search CV (GRCV) that tries out all parameter
values, RSCV only uses a fixed number of parameter
settings to obtain a local optimal solution.This solu-
tion, which savesmuch computation time, wasmore
realistic for our study. Based on RSCV and our tun-
ing experiences, we finally selected the following hy-
perparameters:max depth=16, num leaves=127,
min data in leaf = 10, learning rat = 0.05, fea-
ture fraction = 0.80, bagging fraction = 0.80, bag-
ging freq = 5, max bin = 255, lambda l1 = 0.5,
lambda l2 = 0.5 and num boost round = 1000.
To evaluate the model performance, we performed
10-fold CV on the training data. Thirty features and
PM2.5 labels from 2016 to 2018 were randomly di-
vided into 10 sets. For each of the 10 folds, a model
was developed using the other nine folds as training
data, and subsequently, the resultingmodel was vali-
dated with the data of this fold. The R2 and RMSE
reported by 10-fold CV reflect the averages of the
values calculated in the loop. After the model was
built, 30 meteorological features in 2019 were input
into thismodel to generatePM2.5 predictions for fur-
ther evaluating our model’s predictive capability on
hourly, daily, monthly and annual scales. The flow
of building the LightGBM model is illustrated as a
conceptual figure (Fig. 1b).

Construction of gridded networks
The gridded meteorological input was generated to
construct griddedPM2.5 networks.Thedetailed pro-
cess was demonstrated using the NCP as an exam-
ple. First, we define an area with latitude from 30◦N
to 45◦N and longitude from 110◦E to 125◦E, which
can cover the whole NCP. This area was then grid-
ded at 0.25◦ intervals, and 3600 grid points were
generated with latitude and longitude as features.
The nearest meteorological station was matched for
each point, and four variables from this station are
added to the point as features, including visibil-
ity, RH, temperature and distance. Spatial variables
from the surrounding 19 stations are also added
to the point as features. After that, we generate
3600 grid points with geological information, me-
teorological variables and spatial features. As these
grid points are input into our model, gridded PM2.5
networks are constructed.

Since 23 regional PM2.5 stations in Beijing are
excluded during the training process, hourly PM2.5
concentrations in 2019 at these stations can be
used to evaluate our model’s performance. For each
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station, four variables of its nearest meteorological
station and spatial variables from surrounding sta-
tions in 2019 are added to the station as input
features. The generated input datasets at 23 re-
gional stations are input into our model to produce
predicted PM2.5 that were further compared with
observed PM2.5.
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