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Abstract: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) serve as the
standard of care for the first-line treatment of patients with lung cancers with EGFR-activating
mutations. However, the acquisition of resistance to EGFR TKIs is almost inevitable, with extremely
rare exceptions, and drug-tolerant cells (DTCs) that demonstrate reversible drug insensitivity and
that survive the early phase of TKI exposure are hypothesized to be an important source of cancer
cells that eventually acquire irreversible resistance. Numerous studies on the molecular mechanisms
of drug tolerance of EGFR-mutated lung cancers employ lung cancer cell lines as models. Here, we
reviewed these studies to generally describe the features, potential origins, and candidate molecular
mechanisms of DTCs. The rapid development of an optimal treatment for EGFR-mutated lung cancer
will require a better understanding of the underlying molecular mechanisms of the drug insensitivity
of DTCs.

Keywords: non-small cell lung cancer; drug-tolerant cells (DTCs); drug-tolerant persisters (DTPs);
bypass pathway; acquired resistance; EGFR tyrosine kinase inhibitors (EGFR TKIs)

1. Introduction

Genotype-directed molecular-targeted therapies are the standard of care for a subset
of lung cancers that harbor an activated oncogene with a driver mutation [1]. Epidermal
growth factor receptor (EGFR) mutations are the most common driver gene mutations
in lung cancers and are found in approximately 50% of lung adenocarcinomas in East
Asians and in approximately 15% in Caucasians [2]. EGFR tyrosine kinase inhibitors (TKIs)
such as first-generation gefitinib and erlotinib, second-generation afatinib and dacomitinib,
and third-generation osimertinib are available in clinical practice for patients with EGFR-
sensitizing mutations, which account for ≈90% of all EGFR-activating mutations. These
EGFR TKIs are administered as monotherapy or, in the case of erlotinib or gefitinib, in
combination with a fully humanized anti-VEGFR monoclonal antibody (ramucirumab).

Despite dramatic initial responses to EGFR TKIs, acquired resistance is almost in-
evitable [3], with extremely rare exceptions, after a median progression-free survival (PFS)
of 9.2–14.7 months for first- or second-generation EGFR TKIs [4–7] and 18.9–19.4 months for
osimertinib or a ramucirumab and erlotinib combination [8,9]. After the first identification
of the mechanism of acquired resistance to EGFR TKI (gefitinib) [10], a secondary T790M
mutation appears that substitutes a threonine residue with a methionine at codon 790
of EGFR exon 20, numerous efforts attempted to identify additional acquired resistance
mechanisms to EGFR TKIs [11].

Second-line treatments that target an acquired resistance mechanism are reasonable
treatment strategies to further improve patient outcomes, as exemplified by osimertinib
being administered to patients with tumors with acquired resistance to first- or second-
generation EGFR TKIs conferred by the T790M secondary mutation [12]. However, in vitro
as well as clinical studies have demonstrated that a number of mechanisms of acquired
resistance can arise after EGFR TKI treatment failure [11]; therefore, it is impractical to
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analyze all of these mechanisms in routine clinical practice in order to select an appropriate
second-line treatment. In addition, our previous experiments using the HCC827 lung
adenocarcinoma cell line (carrying the EGFR exon 19 deletion mutation, del E746_A750)
indicate that cancer cells are flexible enough to always find a way to survive [13,14].
Effective front-line treatment strategies, such as the “primary double-strike therapy” we
proposed in our previous review [3], for patients with EGFR-mutated lung cancers are
therefore urgently required.

2. Incomplete Response to EGFR TKIs and the Concept of Drug-Tolerant Cells
2.1. Cancer Cells Always Survive after Exposure to EGFR TKIs in Clinical Settings

In clinical practice, responses to EGFR TKIs are heterogeneous, including a complete
response to the progressive disease, according to the Response Evaluation Criteria in
Solid Tumors criteria (Figure 1A). Moreover, only a small fraction of patients with lung
cancer with EGFR mutations (<5%) experience a complete response [4–8], although the
EGFR mutation is a truncal mutation and is homogeneously distributed (i.e., virtually all
tumor cells harbor the same EGFR mutation) [15–17]. Furthermore, we observe in our
daily clinical practice that almost all patients eventually progress, including those who
experience a complete remission. These facts indicate that some cancer cells are still viable
after exposure to EGFR TKIs.

Figure 1. Clinical responses to EGFR TKIs and their corresponding in vitro growth-inhibitory curves.
(A) EGFR-mutated lung cancer patients demonstrate different responses to an EGFR TKI as follows:
complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD). Even
in patients who experience a CR or a relatively strong PR, disease recurrence with the acquisition of
resistance is inevitable; therefore, it is hypothesized that a small number of viable cells (drug-tolerant
cells (DTCs)) remain during the period of maximum response. The yellow triangle indicates the
initiation of EGFR TKI therapy. (B) In vitro cell line models are useful to mimic clinical responses to
EGFR TKIs. Green: cell lines with the highest sensitivities; blue: those with moderate sensitivities;
and red: those with inherent resistance. Each line of the growth-inhibitory curve corresponds to the
clinical response drawn in the same color in Figure 1A. A small fraction of surviving cells remains
even in cell lines with the highest sensitivity to EGFR TKIs (green line), and these remaining cells are
often used as an in vitro model of DTCs.

2.2. Cell Line Models That Mimic Clinical Responses to EGFR TKIs

These above clinical observations are modeled using lung cancer cell lines with
EGFR mutations (Figure 1B). For example, in cell growth inhibitory assays using the first-
generation EGFR TKI gefitinib, the cell lines NCI-H3255 (L858R), HCC827, HCC4006 (del
L747_A750 ins P), and PC9 (del E746_A750) exhibit the highest sensitivities (Figure 1B),
followed by PC3 (del L747_A750 ins P) and HCC2279 (del E746_A750) cells with moderate
sensitivities. Additionally, H1975 (L858R/T790M) and H1650 (del E746_A750/PTEN null)
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cells exhibit inherent resistance [18]. Models using such cell lines are considered adequate
for studying resistance to EGFR TKIs [19] because many of their resistance mechanisms
recapitulate those identified in studies of clinical specimens obtained from TKI-refractory
patients.

2.3. Inherent EGFR TKI Insensitivity in Cell Line Models

It is reasonable that cancer cells with de novo resistant mechanisms (such as the T790M
mutation in H1975 cells and the PTEN null in H1650 cells) exhibit inherent resistance to
EGFR TKIs. These cell lines may correspond to tumors that indicate progressive disease
despite the presence of an activating EGFR mutation. Furthermore, decreased apoptosis
upon exposure to EGFR TKIs can be partly explained by BIM deletion polymorphism [20]
(as seen in PC3 and HCC2279 cells [18]), and this would be considered one of reasons for a
clinical incomplete response to EGFR TKIs (Figure 1A).

2.4. The Concept of DTCs

In cell line models with the highest sensitivities to EGFR TKIs, the vast majority of
EGFR-mutated lung cancer cells are killed within a few days upon exposure to a clinically
relevant concentration of an EGFR TKI, whereas a small fraction of viable, largely quiescent
cells (≈0.3%) remains detectable after several days in the presence of an EGFR TKI [21].
Sharma et al. were the first to analyze the details of these surviving cells, which they called
drug-tolerant persisters (DTPs), in EGFR-mutated lung cancers [21]. Here, we refer to the
surviving cells as drug-tolerant cells (DTCs) because this term is frequently encountered
in the relevant literature. As exemplified by the growth-inhibitory curve (Figure 1B), this
fraction of surviving cells usually reaches a plateau and will not be eradicated by increasing
concentrations of EGFR TKI. An important feature of these surviving cells is the reversible
nature of their drug-tolerant state [21], in which cells propagated in drug-free media rapidly
reacquire EGFR TKI sensitivity. Therefore, we understand that DTCs can also be derived
from single-cell cloned parental cells that do not harbor innate aberration(s) that confer
insensitivity to TKIs. However, after long-term exposure, DTCs are hypothesized to be an
important source of cancer cells that eventually acquire irreversible resistance mechanisms
to EGFR TKIs [22,23]. Thus, from a therapeutic perspective, understanding the molecular
mechanism(s) of DTCs is critical to prevent disease recurrence in patients who experience
major or complete radiological responses. In terms of the reversibility of drug insensitivity,
DTCs should be clearly distinguished from minor resistant sub-clones that may exist prior
to treatment [3]. As well demonstrated by Hata, et al., acquired resistance can result from
either the acquisition of an irreversible resistance mechanism by DTCs or the selection of
pre-existing minor resistant sub-clones [22].

3. Features of DTCs
3.1. How Are DTCs Induced upon Exposure to an EGFR TKI?

Numerous studies on DTCs in EGFR-mutated lung cancers that followed the dis-
covery of Sharma et al. [21] used short-term treatment with an EGFR TKI at clinically
achievable concentrations to establish DTCs against EGFR TKIs (Figure 2A). As summa-
rized in Section 4, these studies have identified multiple molecular mechanisms of drug
tolerance [22,24–45], although they do not identify the original cells that can become DTCs
while the majority of cells are killed. These studies also do not answer the question of how
these few cells can acquire specific molecular mechanism(s) of drug tolerance.

Evidence indicates that the inhibition of EGFR activity triggers the switch that induces
DTCs, such as the inactivation of AKT/Ets-1 signaling [31]. Ets-1 inactivation inhibits the
transactivation of its target genes (cyclins D1, D3, and E2), and cells become quiescent.
Furthermore, Ets-1 inactivation inhibits the transcription of dual specificity phosphatase 6
(DUSP6), a negative regulator of ERK1/2, thereby reactivating ERK1/2 and contributing
to the ability of EGFR-mutated lung cancer cells to maintain proliferation and survival
signals (please see Figure 3). In addition, the expression of branched-chain amino acid
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aminotransferase 1 (BCAT1), induced by inhibited EGFR activity, reportedly promotes
insensitivity to TKIs by attenuating the accumulation of reactive oxygen species [40].
However, these findings are insufficient to explain why only a small fraction of cells acquire
the DTC phenotype.

Epigenetic mechanisms may be responsible for the induction of DTCs because of the
reversible nature of drug tolerance. For example, demethylation of H3K4 or methylation
H3K9 and H3K27 are associated with tolerance to EGFR TKIs [21,46]. However, it is
unknown how the inhibition of EGFR activity induces these epigenetic changes only in a
small fraction of EGFR-mutated lung cancer cells.

3.2. Which Cells Will Become DTCs upon Exposure to EGFR TKIs?

Another potential answer to the question of the origin of DTCs is provided by a study
of BRAF V600E-mutated melanoma cell line models treated with vemurafenib [47]. Long-
term time-lapse imaging demonstrates that drug-tolerant colonies arise from normally
proliferating single cells before drug addition, indicating that these cells are not in a
dormant state before TKI exposure. High-throughput single-molecule RNA FISH analysis
reveals that certain populations of rare cells (frequencies, 1:50–1:500) express high levels of
mRNAs such as EGFR, AXL, or WNT5A that can contribute to drug resistance, and these
rare cells are more likely to become tolerant in the presence of the drug [47]. However,
such a resistance state is not heritable. For example, EGFR-high expressing cells, collected
using flow cytometry, returns to the normal level of EGFR expression in a few weeks [47].
In this study, one lung adenocarcinoma cell line (PC9) in addition to four melanoma cell
lines were tested, and rare populations of PC9 cells express high PDGFRB or FOSL1. This
means that the similar profound transcriptional variability of a cell may predict cells among
the population of EGFR-mutated lung cancer cells that will ultimately become tolerant to
EGFR TKIs.

3.3. Establishment of DTCs and Optimizing the Concentrations of EGFR TKIs

DTCs have been established using different EGFR TKIs, drug concentrations (1–2000 nM),
and times of exposures (24 h to 3 weeks). However, few studies evaluated the effects of
drug concentrations [40,45] or times of exposures [31,36,37,44] on the induction of DTCs.

Regarding the drug concentrations, using PC9 cells and gefitinib (clinically achiev-
able concentration: approximately 800 nM), Wang et al. [40] determined the effects of
pretreatment with gefitinib at sub-lethal concentrations for 2 h before administering a lethal
concentration. The drug tolerance effect was highest when cells were exposed to 50 nM
gefitinib [40] and TKI tolerance was maintained for >2 h after drug withdrawal and dimin-
ished gradually for approximately 6 h [40]. Higher doses of gefitinib (100–1000 nM) failed
to induce drug tolerance during this short exposure schedule, suggesting increased cyto-
toxicity of pretreatment at such high concentrations [40]. These findings were confirmed
using the HCC827 and SH450 cell lines and in erlotinib pretreatment experiments [40].

Longer exposure of HCC4006 cells to EGFR TKIs (72 h) causes the opposite effect
in our recent study [45]. Specifically, clinically achievable concentrations of osimertinib
(600 nM), but not afatinib (60 nM), induced the drug-tolerant phenotype in HCC4006 cells.
Phosphorylation of EGFR was completely inhibited in the presence of 600 nM osimertinib
but was partially retained in the presence of 60 nM afatinib [45]. When we examined the
effects of drug concentrations on the inducibility of the DTC phenotype, we found that
higher concentrations of afatinib (>180 nM) induced the DTC phenotype and that lower
concentrations of osimertinib (<200 nM) failed to induce the DTC phenotype, indicating
that sufficient inhibition of EGFR phosphorylation was required to induce the DTCs [45].
PC9 and H1975 cells were similarly affected. These findings are consistent with the results
of a previous study demonstrating ERK1/2 reactivation as a molecular mechanism of DTCs
caused by negative feedback of AKT inhibition upon gefitinib exposure [31]. Specifically,
the magnitudes of AKT inhibition and ERK1/2 reactivation are dependent on the dose of
gefitinib [31].
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Regarding the times of exposure, studies illustrate that 24 h [31,37] or 48–72 h [36,44]
are sufficient to induce activation of molecules that cause drug tolerance after initiation of
exposure to EGFR TKIs.

3.4. “Preference” for Drug Tolerance Mechanisms of Each Cell Line

In 2012, we summarized a review article that reported that each EGFR-mutated lung
cancer cell line may employ a “preferred” mechanism upon acquisition of resistance to
EGFR TKIs [11] (e.g., MET gene amplification in HCC827 cells and the induction of the
epithelial-to-mesenchymal transition (EMT) phenotype in HCC4006 cells). Therefore, it
is not surprising that each EGFR-mutated lung cancer cell line employs their “preferred”
mechanism(s) to achieve drug tolerance. For example, in the aforementioned study of
melanoma cell lines [47], sporadically elevated expressions of markers of resistance to
vemurafenib were detected among different melanoma cell lines as follows: EGFR in
WM986-A6 and 1205Lu cells, AXL in WM986-A6 and WM983B-E9 cells, and FOSL1 in
SK-MEL-28 and 1205Lu cells [47].

Among studies of DTCs in EGFR-mutated lung cancers, a few suggested a possible
“preference” for drug tolerance mechanism(s) in cell lines [37,44]. Specifically, in EGFR-
mutated lung cancer cell lines expressing high levels of AXL (PC9 and HCC4011 cells), a
small population of tumor cells tolerant to osimertinib emerged as persisters by restoring
the survival signal generated by AXL [37]. In contrast, in EGFR-mutated lung cancer
cell lines expressing low levels of AXL (HCC827, HCC4006, and H3255 cells), EGFR TKI
tolerance was mediated by an insulin-like growth factor-1 receptor (IGF-1R) through the
induction of its transcription factor FOXA1 [44].

3.5. Diversity of Molecular Mechanisms That Mediate Drug Tolerance

While cancer cells may have a “preference” for drug tolerance mechanisms, it is
also true that multiple drug tolerance mechanisms have been reported in each lung
cancer cell line. For example, >10 drug tolerance mechanisms (involving IGF-1R, AXL,
FGFR3, AURKA, STAT3, NF-kB, YAP/TEAD, and other mechanisms) are employed by PC9
cells [28,33–39,42–44]. This diversity may be partly explained by the properties of EGFR
TKIs, differences in their concentrations, differences in TKI exposure times, or combinations
of these experimental manipulations. However, the ability of a single cell line to develop
multiple drug tolerance mechanisms strongly suggests that eradicating all cancer cells by
co-targeting a single drug tolerance mechanism will be a formidable task [3].

A few studies suggest that different populations of DTCs may emerge at the same
time during exposure to an EGFR TKI in a single dish. Using PC9 cells as a model of
DTCs, Kunimasa et al. observed two types of DTCs after exposure to 2 µM gefitinib as
follows: (1) a CD133high cell population with cancer stem cell (CSC) properties and (2)
a CD133low cell population with features of therapy-induced senescence [32]. Senescent
cells communicate with neighboring cells through numerous secretory factors such as
inflammatory cytokines, chemokines, and growth factors (senescence-associated secretory
phenotype (SASP)) [48]. Evaluation of the relationship between CD133low and CD133high

DTCs revealed that the CD133low cell population supports the emergence of the CD133high

cell population through the SASP. Furthermore, in another study using PC9 cells as a
model of DTCs, YAP-negative (60%) and YAPhigh (40%) cell populations remained after a
10-day treatment with 100 nM osimertinib [42]. The YAP-negative cells underwent ERK1/2
reactivation that conferred drug tolerance, while YAPhigh cells exhibited senescence-like
dormancy through the YAP/TEAD-mediated transcriptional reprogramming of the apop-
totic pathway [42]. Additionally, in a recent study, PC9-derived DTCs were traced using
a novel “watermelon system” comprising a high-complexity, barcoded lentiviral library
designed to simultaneously trace each cell’s clonal origin, proliferative state, and tran-
scriptional state [49]. This study demonstrates that cycling and non-cycling DTCs arise
from different pre-existing cell lineages with distinct transcriptional and metabolic pro-
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grams [49]. Moreover, these cycling DTCs express upregulated antioxidant gene programs
and undergo a metabolic shift to fatty acid oxidation.

4. Summary of Molecular Mechanisms Conferring Drug Tolerance in EGFR-Mutated
Lung Cancer Cell Lines
4.1. Search Criteria for Published Studies

To identify published articles that analyzed DTCs and their molecular mechanisms,
we systematically searched PubMed for relevant studies as of 2 December 2020. Our search
criteria included the following terms: “drug tolerance” or “drug tolerant”, “lung cancer,”
and “EGFR”. We manually scanned the reference lists of select articles for additional
eligible publications. We finally identified 23 relevant papers that report potential mech-
anisms of drug tolerance [21,22,24–31,33–39,41–44,50,51]. We included our recent paper
describing the generation of DTCs from multiple EGFR-mutated lung cancer cell lines [45].
Each study used EGFR-mutated lung cancer cell lines to identify candidate essential
molecule(s)/pathway(s) for DTC induction by establishing DTCs via short-term expo-
sure to EGFR TKIs (Figure 2A) or by using shRNA-, siRNA-, or CRISPR/Cas9-mediated
screening (Figure 2B).

Figure 2. Strategies to explore the molecular mechanisms of drug-tolerant cells (DTCs). (A) EGFR-
mutated lung cancer cell lines are subjected to short-term treatment with an EGFR TKI at clini-
cally equivalent concentration(s). The remaining cells are collected and comprehensive analyses
are performed to identify activated molecules/signaling pathways in the presence of EGFR TKIs.
(B) shRNA-, siRNA-, or CRISPR/Cas9-mediated screening is performed to search for molecules that
reduce cell survival specifically in the presence of an EGFR TKI when target expression is inhibited.

4.2. Mechanisms of Drug Tolerance—Activation of Bypass Signaling

Activation of other proto-oncogenes is a common mechanism of acquired resistance
to EGFR TKIs [11]. Furthermore, the aforementioned study of melanoma cell lines found
that rare cells express resistance genes (e.g., EGFR, AXL, or WNT5A) at high levels and that
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these cells are far more likely to become tolerant once a drug is applied [47]. These findings
support the hypothesis that the activation of bypass signaling may play important roles
in the acquisition of the drug-tolerant phenotype. However, in contrast to mechanisms of
acquired resistance to EGFR TKIs, these bypass signaling activations are not associated
with genetic changes because drug tolerance is reversible.

Among 24 studies that reported the molecular mechanisms of drug tolerance, 18
focused on the activation of bypass signaling (Figure 3) [21,22,24–31,35–38,44,45,50,51].
Subsequent to the first report of IGF-1R activation in 2010 [21], AXL [37], Notch3 [50], and
fibroblast growth factor receptor 3 (FGFR3) [38] are identified as receptor tyrosine kinases
(RTKs) that cause drug tolerance in lung cancers with EGFR mutations. In the latter study,
upregulation of FGFR3 expression together with increased expression of multiple FGF
ligands was identified through analyses of HCC827, PC9, and H1975 cells [38]. However,
in analyses of HCC4006 cells, two independent studies [44,45] observed that FGFR3 phos-
phorylation increases after exposure to osimertinib, although further analyses revealed
that FGFR3 activation does not contribute to the molecular mechanism of drug tolerance.
Moreover, we recently reported a potential role of receptor-like tyrosine kinase (RYK) in
drug tolerance [45]. RYK binds with WNT to activate the canonical and noncanonical WNT
pathways. Western blotting in some studies illustrates that, even when the alternative
RTK pathway is activated in DTCs, the expression level of EGFR itself does not change
significantly [36,38,42,44].

Figure 3. Molecules and associated signaling pathways that may mediate drug tolerance in EGFR-mutated lung cancer cells
upon treatment with an EGFR TKI. Molecules known to cause drug tolerance are indicated with underlined bold letters.
Molecules such as PI3K, AKT, mTOR, or c-Src may play important roles in drug tolerance [36,52], and other candidates not
illustrated here include inhibited apoptosis, altered chromatin state, stabilized EGFR through a de-ubiquitinase, involvement
of the tricarboxylic acid (TCA) cycle, induced ER stress, and upregulation of cholesterol synthesis.

Numerous intracellular molecules are also candidate inducers of drug tolerance in
EGFR-mutated lung cancers. These include ERK [31], Aurora kinase A (AURKA) [36],
STAT3 [26,28], NF-kB [24,25,29,30,35], and β-catenin [27,51]. These results suggest that
EGFR-mutated lung cancer cells may possess multiple molecules that can mediate survival
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during the early phase of EGFR TKI exposure at a lethal concentration. However, targeting
a “master key” of these pathways (e.g., AURKA or ERK, Figure 3) may significantly
contribute to the eradication of DTCs.

4.3. Mechanisms of Drug Tolerance—Dysregulation of the Apoptotic and Other Pathways

Another candidate mechanism of drug tolerance to EGFR TKIs involves increased
YAP/TEAD activity [42] that engages the EMT transcription factor, SLUG, to directly
repress pro-apoptotic BMF and limit drug-induced apoptosis. Furthermore, increased
synthesis of MCL-1 serves as a molecular mechanism of drug tolerance via suppression of
apoptosis [33].

Other potential mechanisms are diverse. For example, the de-ubiquitinase USP13 was
identified through an siRNA screen (Figure 2B) of libraries comprising genes associated
with the ubiquitin and ubiquitin-like cellular processes [43]. USP13 specifically counteracts
the downregulation of mutated EGFR through the activities of ubiquitin ligases to cause
drug tolerance. UFMylation, a recently identified ubiquitin-like modification, contributes
to drug tolerance to erlotinib plus THZ1 (a CDK7/12 inhibitor) [34], a combination that sup-
presses DTCs [53]. Furthermore, the absence of UFMylation induces ER stress, which then
enhances the induction of STING to promote pro-tumorigenic inflammatory signaling [34].
These findings support the conclusion that ER stress signaling promotes the survival of
DTCs [34].

Another study of DTCs treated with osimertinib observed dysfunction of the TCA
cycle and a pseudohypoxic response, which is mediated by hypoxia-associated proteins,
independent of oxygen status [39]. The repression of Von Hippel–Lindau (VHL) disease
by miR-147b and succinate dehydrogenase contributes to these processes [39]. Further-
more, upregulated expression of cytochrome P450 (CYP51A1) in DTCs is directly involved
in cholesterol synthesis [41], and the CYP51A1 inhibitor, ketoconazole, downregulates
cholesterol synthesis and overcomes the emergence of EGFR TKI tolerance.

5. Summary

In this paper, we summarized current understandings of DTCs that counteract the
cytotoxic effects of EGFR TKIs in lung cancers that harbor an EGFR mutation. It is difficult
to obtain clinical specimens that contain such DTCs because re-biopsy of a smaller tumor
after initial TKI treatment is challenging. Therefore, research on cell lines that reflects the
phenotypes of their cognate primary cancer cells is important to advance the treatment of
lung cancers that express a constitutively activated EGFR. However, the diverse mecha-
nisms of drug tolerance reported here can be employed by single cell lines. Further studies
are therefore required to fully understand molecular mechanisms of drug tolerance to
EGFR TKIs, which will contribute to the efforts to develop clinically relevant treatment
strategies that co-target DTCs.
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