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Identification of a m6A RNA methylation 
regulators‑based signature for predicting 
the prognosis of clear cell renal carcinoma
Jing Chen1, Kun Yu2, Guansheng Zhong3 and Wei Shen4* 

Abstract 

Background:  The mortality rate of clear cell renal cell carcinoma (ccRCC) remains high. The aim of this study was to 
identify novel prognostic biomarkers by using m6A RNA methylation regulators capable of improving the risk-stratifi-
cation criteria of survival for ccRCC patients.

Methods:  The gene expression data of 16 m6A methylation regulators and its relevant clinical information were 
extracted from The Cancer Genome Atlas (TCGA) database. The expression pattern of these m6A methylation regula-
tors were evaluated. Consensus clustering analysis was conducted to identify clusters of ccRCC patients with differ-
ent prognosis. Univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression 
analysis were performed to construct multiple-gene risk signature. A survival analysis was carried out to determine 
the independent prognostic significance of the signature.

Results:  Five m6A-related genes (ZC3H13, METTL14, YTHDF2, YTHDF3 and HNRNPA2B1) showed significantly down-
regulated in tumor tissue, while seven regulators (YTHDC2, FTO, WTAP, METTL3, ALKBH5, RBM15 and KIAA1429) was 
remarkably upregulated in ccRCC. Consensus clustering analysis identified two clusters of ccRCC with significant dif-
ferences in overall survival (OS) and tumor stage between them. We also constructed a two-gene signature, METTL3 
and METTL14, serving as an independent prognostic indicator for distinguishing ccRCC patients with different 
prognosis both in training, validation and our own clinical datasets. The receiver operator characteristic (ROC) curve 
indicated the area under the curve (AUC) in these three datasets were 0.721, 0.684 and 0.828, respectively, demon-
strated that the prognostic signature had a good prediction efficiency.

Conclusions:  m6A methylation regulators exert as potential biomarkers for prognostic stratification of ccRCC patients 
and may assist clinicians achieving individualized treatment for this patient population.
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Background
Kidney cancer is the sixth most commonly diagnosed 
cancer in men and the tenth in women, with 65,340 new 
cases and 16,970 deaths estimated by the latest cancer 

statistic report in the USA [1]. Clear cell renal cell carci-
noma (ccRCC) is the most frequently primary renal cell 
carcinoma (RCC), accounting for approximately 70–80% 
of all kidney cancer [2]. Although considerable progress 
has been made in surgical and systemic strategies for the 
management of this disease, the overall survival (OS) 
and recurrence-free survival (RFS) is still dismal [3]. It 
was reported that a third of postoperative patients expe-
rienced recurrence after a median of 1.9  years [4], and 
regional or distant metastases further lead to a high rate 
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of mortality [5]. Therefore, predicting prognosis of post-
operative patients with high accuracy is of great signifi-
cance for guiding optimal individual treatment of ccRCC. 
Due to the highly heterogeneity and complicated disease 
processes of ccRCC, there is still a lack of effective prog-
nostic markers in this disease. Identifying novel biomark-
ers for predicting ccRCC patients’ long term survival is 
urgently needed to be addressed.

RNA modifications have been widely known to play 
critical roles in the post-transcriptional regulation of 
gene expression since its discovery in the early 1970s [6]. 
By the end of 2017, there were 163 different RNA modi-
fications that have been identified in all living organ-
isms according to MODOMICS [7]. Among these, the 
N6-methyladenosine (m6A) modification was identi-
fied firstly and exerted as the most abundant form of 
mRNA methylation, which has been found pervasively 
in mRNAs [8], microRNAs (miRNAs) [9], and long 
non-coding RNAs (lncRNAs) [10, 11]. RNA m6A modi-
fication, similar to traditional types of DNA and protein 
modification, can regulate RNA splicing, translocation, 
stability, and translation into protein [12, 13]. Its regu-
latory effects is a dynamic and reversible process [14], 
which is modulated by the methyltransferases called 
“writers” (METTL3, METTL14, WTAP, KIAA1429, 
RBM15, ZC3H13, and METTL16), demethylases 
called “erasers” (FTO and ALKBH5), and binding pro-
teins called “readers” (YTHDF1, YTHDF2, YTHDF3, 
YTHDC1, YTHDC2, HNRNPA2B1, and HNRNPC) [15, 
16]. Currently, accumulative evidence have demonstrated 
that aberrant expression of those m6A RNA methyla-
tion regulators is associated with multiple diseases such 
as infertility, obesity, and even cancer [17]. For instance, 
elevated METTL3 expression promotes gastric cancer 
progression by mediating m6A modification of HDGF 
mRNA [18]. On the contrary, YTHDF1-mediated m6A 
modification of HINT2 mRNA suppresses ocular mela-
noma [19]. It is clear that m6A methylation regulators 
play different or even contradictory roles in different 
types of cancers. Given limited knowledge of the role of 
m6A methylation in ccRCC, studying the precise correla-
tion between m6A-related regulator gene and its clinical 
prognosis is in high demand.

In our work, we systematically analyzed the expres-
sion pattern of sixteen widely studied m6A related regu-
lators in 539 tumor and 72 normal samples of ccRCC in 
The Cancer Genome Atlas (TCGA) datasets. Then, two 
clusters of ccRCC patients with different prognosis were 
identified through performing consensus clustering anal-
ysis. The correlation among the m6A RNA methylation 
regulators and its relationship with corresponding clinical 
characteristics were subsequently analyzed. Finally, based 
on the result of univariate, LASSO, and multivariate Cox 

regression analysis, we constructed and validated a two-
gene risk signature by using m6A RNA methylation regu-
lators, which showed a good performance to stratify the 
prognosis of ccRCC patients.

Materials and methods
Dataset acquisition
The available RNA-seq transcriptome data and clinico-
pathological information from 539 ccRCC samples and 
72 normal samples were download from the TCGA data-
base (https​://porta​l.gdc.cance​r.gov/). A Expectation–
Maximization (RSEM) approach was used to normalize 
the RNA-seq data.

Selection and differential expression analysis of m6A RNA 
methylation regulators
According to latest published review focusing on m6A 
RNA Methylation in human cancer [15, 16], we collected 
sixteen m6A RNA methylation regulators (METTL3, 
METTL14, WTAP, KIAA1429, RBM15, ZC3H13, 
METTL16, FTO, ALKBH5, YTHDF1, YTHDF2, 
YTHDF3, YTHDC1, YTHDC2, HNRNPA2B1, and 
HNRNPC) with available expression data in the TCGA 
datasets. The expression level of those m6A related 
genes between tumor and normal samples was com-
pared separately by means of t-tests with a threshold of 
p < 0.05. Subsequently, the expression level of those genes 
in ccRCC with different clinical characteristics (WHO 
grade and AJCC stage) were also compared. Heatmaps 
and violin plot were utilized to visualize the different 
expression patterns of m6A related genes through “pheat-
map” and “vioplot” R package.

Consensus clustering analysis
In order to investigate the expression characteristics of 
m6A methylation regulators in ccRCC, we removed the 
normal tissues and clustered the tumor samples into 
different groups using the “ConsensusClusterPlus” R 
package. A principal component analysis (PCA) was sub-
sequently conducted to verify the different gene expres-
sion patterns in different ccRCC groups. After that, the 
overall survival (OS) of patients in different groups was 
analyzed by “survival” R package. The different expres-
sion pattern of m6A related genes and clinicopathologic 
features in different groups were visualized by “pheat-
map” R package. Chi square test was performed to com-
pare the distribution of age, gender, AJCC stage, and 
WHO grade between the two groups. Finally, GO and 
KEGG pathway enrichment analysis were performed to 
annotate differentially expressed genes (DEGs) between 
different groups using the Database of Annotation, Visu-
alization and Integrated Discovery (DAVID) v6.8 (https​
://david​.ncifc​rf.gov/), and KOBAS 3.0 (http://kobas​.cbi.
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pku.edu.cn/). The top significantly enriched GO terms 
and KEGG pathways were visualized through “ggplot2” R 
package.

Construction of PPI network and correlation analysis
The protein–protein interaction (PPI) network was 
built for these 16 m6A methylation regulators using the 
STRING online database (http://strin​g-db.org/). Then, by 
means of calculating the degree of connectivity among 
m6A methylation regulators, the hub genes in PPI net-
work were identified by using CytoHubba, a plugin in 
Cytoscape software (Version 3.6.1). The co-expression 
correlation analysis was performed to further investigate 
the association among those m6A methylation regulators, 
which was visualized using “corrplot” R package.

Construction of prognostic signatures and validation
The “caret” package was used to randomly divide the 
samples with complete survival information into two 
subgroups (training group and validation group). Then, 
we performed univariate Cox regression analysis of the 
expression of m6A RNA methylation regulators for the 
training group. Genes with p < 0.05 were considered sig-
nificantly associated with ccRCC patients’ survival and 
further selected for performing LASSO Cox regression 
analysis [20, 21]. Subsequently, a multivariate Cox regres-
sion analysis was conducted, and a two gene risk signa-
ture and their corresponding coefficient were finally 
determined. By means of multiplying the gene’s expres-
sion value and its corresponding coefficient, the risk 
score for each patient was calculated as the sum of each 
gene’s score. After that, patients were divided into high-
risk and low-risk groups based on the median value of 
the risk score. The Kaplan–Meier method was utilized to 
analyze the overall survival (OS) difference between the 
high-risk and low-risk groups. The Receiver operating 
characteristic (ROC) analysis was conducted to evaluate 
the prediction efficiency of the two-gene risk signature. 
Heatmaps was utilized to visualize the different expres-
sion pattern of those two genes between high-risk and 
low-risk groups with “pheatmap” R package. Further-
more, this two-gene risk signature was validated in the 
validation group by plotting Kaplan–Meier curve and 
ROC curve.

Independent prognostic ability of the multi‑gene signature
Univariate and multivariate Cox regression analyses 
were conducted both in training and validation group to 
determine whether risk score and corresponding clinico-
pathologic features were independent prognostic factors 
for ccRCC patients. The Kaplan–Meier method was also 
applied to compare the overall survival (OS) difference 

between the high-risk and low-risk groups stratified by 
age, gender, AJCC stage, and WHO grade.

Cell culture
The human ccRCC and immortalized proximal tubule 
epithelial cell line, 786-O and HK2, were purchased from 
the Cell Bank of the Chinese Scientific Academy. These 
two cell lines were maintained in Roswell Park Memorial 
Institute (RMPI)-1640 medium (Gibco; Life Technolo-
gies; Thermo Fisher Scientific, Inc.) and Dulbecco’s mod-
ified Eagle’s medium (DMEM) (Gibco; Life Technologies; 
Thermo Fisher Scientific, Inc.), respectively, with 10% 
fetal bovine serum (FBS; Biological Industries) at 37  °C 
and 5% CO2.

Validation of the selected gene signatures using 
quantitative real‑time PCR
The clinical samples were collected from ccRCC patients 
by experienced surgeons at the First Affiliated Hospital of 
Zhejiang University. The study was approved by the Insti-
tute Ethics Committee of the hospital, and the written 
informed consents were provided from all patients. After 
being surgically resected, the samples were stored in liq-
uid nitrogen.

The total RNA of the cell lines and clinical samples was 
extracted using Trizol reagent (Invitrogen, USA). The 
cDNA for each cell line and tissue samples were reverse 
transcribed using the PrimeScript 1st Strand cDNA Syn-
thesis Kit (TaKaRa, Dalian, China). qRT-PCR analysis 
was conducted using the SYBR-Green method according 
to standard protocols. The sequences of the primers used 
were as follows: METTL3, 5′-TTG​TCT​CCA​ACC​TTC​
CGT​AGT-3′ (forward), 5′-CCA​GAT​CAG​AGA​GGT​GGT​
GTAG-3′ (reverse); METTL14, 5′-AGT​GCC​GAC​AGC​
ATT​GGT​G -3′ (forward), 5′-GGA​GCA​GAG​GTA​TCA​
TAG​GAAGC-3′ (reverse).

Statistical analysis
All data in the present study were analyzed using the R 
statistical package (R version 3.6.1) unless otherwise 
stated. A two-tailed p < 0.05 was considered statistically 
significant.

Results
The expression pattern of m6A RNA methylation regulators 
in ccRCC​
In order to explore the expression pattern of m6A RNA 
methylation regulators in ccRCC, the sequencing data of 
a total of 16 m6A related genes were extracted from the 
TCGA ccRCC cohort. Compared with 72 normal kid-
ney tissue in TCGA dataset, 5 out of 16 genes (ZC3H13, 
METTL14, YTHDF2, YTHDF3 and HNRNPA2B1) 
showed significantly lower expression level (p < 0.05) 

http://kobas.cbi.pku.edu.cn/
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in 539 ccRCC tissues, while 7 genes (YTHDC2, FTO, 
WTAP, METTL3, ALKBH5, RBM15 and KIAA1429) rep-
resented relatively high expression (p < 0.05) (Fig. 1a and 
b). No significant difference was found for METTL16, 
YTHDC1, YTHDF1 and HNRNPC (p > 0.05).

The interaction and correlation among the m6A RNA 
methylation regulators in ccRCC​
In order to understand the mutual interaction of the 
m6A RNA methylation regulators, the PPI network of 
the chosen 16 genes was constructed based on the String 

database. As shown in Fig. 2a, the 16 m6A RNA methyla-
tion regulators exhibited complicated interactions among 
each other. According to the node degree calculated by 
the cytoscape software, 3 genes (METTL3, METTL14 
and KIAA1429) were identified as the hub genes (Addi-
tional file  1: Fig. S1). Moreover, the correlation analysis 
was conducted to analyze the interaction among these 
regulators in ccRCC, suggesting that part of the differ-
ent m6A RNA methylation regulators showed weakly 
to moderately positive correlation (Fig.  2b). Among all 
the 16 regulators, YTHDC1 was correlated with all of 

Fig. 1  The expression pattern of 16 selected m6A RNA methylation regulators in TCGA ccRCC cohort. a Heatmap visualizing the expression levels 
of m6A RNA methylation regulators in tumor samples and normal samples. bVioplot visualizing the differentially expressed m6A RNA methylation 
regulators in ccRCC. *p < 0.05, **p < 0.01, ***p < 0.001
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the other m6A RNA methylation regulators. Except for 
ALKBH5, METTL14 was associated with all the other 
15 regulators and had the strongest correlation with 
YTHDC1 (r = 0.66).

Consensus clustering of m6A RNA methylation regulators 
identified two clusters of ccRCC with distinct clinical 
outcomes
Based on the expression similarity of m6A RNA methyla-
tion regulators, we clustered the tumor samples into dif-
ferent groups using the ConsensusClusterPlus package. 
As shown in Fig. 3a and b, k = 2 seemed to be the most 
appropriate selection, which could divide the ccRCC 
cohort into two groups with acceptable stability, namely 
cluster 1 and cluster 2 (Additional file  2: Fig. S2). The 
principal component analysis (PCA) showed a clear dis-
tinction of the transcriptional profile between cluster 1 
and cluster 2 subgroups (Fig.  3c). To better understand 
the difference between them, we identified the dysregu-
lated genes in cluster 2 compared with cluster 1 with a 
threshold of adjust p < 0.05 and |log2FC| > 1, and then 
annotated its biological functions using GO and KEGG 
pathway analysis. The biological processes analysis in 
GO annotation indicated that dysregulated genes were 
significantly enriched in terms related with cell prolif-
eration, such as positive regulation of cell proliferation 
and cell division (Additional file  3: Fig. S3a). Moreover, 
various cancer-related pathways were observed in KEGG 
pathway analysis, such as wnt signaling pathway, PPAR 

signaling pathway, and AMPK signaling pathway (Addi-
tional file 3: Fig. S3b).

In order to investigate the association between the clus-
tering result and clinical outcome, we compared the over-
all survival (OS) of ccRCC patients between cluster 1 and 
cluster 2. The result indicated that the ccRCC patients 
in cluster 2 had a significantly shorter OS than cluster 1 
(p < 0.05) (Fig.  3d). Subsequently, the relationship analy-
sis of clinicopathological characteristics between the 
two clusters demonstrated significant difference for the 
stage and gender (p < 0.05) (Fig. 3e). These results, taken 
together, suggested that the clustering result was closely 
related to the clinical outcome and malignancy of clear 
cell renal cell carcinoma.

Construction of a two‑gene risk signature with distinct 
prognostic value
The entire group (n = 519) with complete survival 
information was randomly divided into training group 
(n = 260) (Additional file  4: Table  S1) and validation 
group (n = 259) (Additional file  5: Table  S2) by utilizing 
“caret” R package. In order to investigate the prognostic 
role of m6A RNA methylation regulators in ccRCC, uni-
variate Cox regression analysis was firstly conducted in 
training set to identify regulators associated with OS in 
TCGA ccRCC cohort. The results exhibited that 5 out 
of 16 regulators were significantly associated with OS 
(p < 0.05), among which two regulators (HNRNPA2B1 
and METTL3) were risky genes with HR > 1 whereas 
three regulators (METTL14, YTHDC1, YTHDF2) acted 

Fig. 2  The interaction and correlation among 16 selected m6A RNA methylation regulators. a The protein–protein (PPI) network of the 16 selected 
m6A RNA methylation regulators; b The Pearson correlation analysis of the 16 selected m6A RNA methylation regulators in TCGA ccRCC cohort
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as protective genes with HR < 1 (Fig.  4a). In order to 
better predict the clinical outcomes of ccRCC through 
m6A RNA methylation regulators, these five genes were 
included in the LASSO Cox regression analysis. Based 
on the minimum criteria, two genes (METTL3 and 
METTL14) were screened out (Fig.  4b and c). Impor-
tantly, a consistent expression pattern of the two genes 
were validated both in our own clinical samples (tumor 
vs normal samples, p < 0.05) and in cell lines (human 
ccRCC cell line vs normal kidney cell line, p < 0.05) (Addi-
tional file  6: Fig. S4a–d). Subsequently, those two genes 
were subjected to a stepwise multivariate Cox regres-
sion to construct the optimal risk signature (Additional 
file  7: Table  S3). Coefficients generated from multivari-
ate Cox analysis were applied to calculate each ccRCC 
patient’s risk score using the following formula: risk 
score =​ (− 0.385) ​× METTL14​ + (0.121​)​ × ​MET​TL3​.

In order to evaluate the prognostic role of the two-gene 
risk signature, the ccRCC patients in training group were 
divided into high-risk group and low-risk group based 

on the median risk score calculated above, and the OS 
between these two groups was compared. The results 
demonstrated that patients in high-risk group had a sig-
nificantly worse survival than those in the low risk group 
(p < 0.001) (Fig.  4d). The ROC curve indicated that the 
prognostic signature had an acceptable prediction effi-
ciency with the AUC value equal to 0.721 (Fig. 4e). The 
distributions of two-gene signature-based risk scores and 
its corresponding expression profiles were displayed in 
Fig. 4f and g. Taken together, these results indicated that 
this two-gene risk signature could effectively screen out 
high-risk ccRCC patients with relatively worse clinical 
outcome.

The signature‑based risk score was an independent 
prognostic factor in ccRCC​
In order to determine whether the two-gene risk sig-
nature acts as an independent prognostic indicator, 
we performed univariate and multivariate Cox regres-
sion analyses of signature-based risk score in training 

Fig. 3  Differential expression pattern and clinical outcome of TCGA ccRCC patients in the two different clusters. a Consensus clustering cumulative 
distribution function (CDF) for k = 2–9; b relative change in area under CDF curve for k = 2–9; c Principal component analysis of the total RNA 
expression profile in the TCGA ccRCC cohort; d The survival analysis for the two clusters by Kaplan–Meier method; e Heatmap and clinicopathologic 
features of the two clusters defined by the m6A RNA methylation regulators consensus expression. *p < 0.05, **p < 0.01, ***p < 0.001
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group. The univariate Cox analysis indicated that signa-
ture-based risk score was significantly associated with 
worse OS with HR = 2.577 (p < 0.001, 95% CI [1.917–
3.465]) (Fig.  5a). Meanwhile, age (HR = 1.680, 95% CI 
[1.097–2.571], p = 0.017), grade (HR = 2.234, 95% CI 
[1.673–2.984], p < 0.001) and stage (HR = 1.898, 95% CI 
[1.577–2.284], p < 0.001) were also proved to be signifi-
cantly associated with the OS (Fig. 5a). After that, all the 
variables were enlisted into the multivariate Cox analy-
sis. Notably, the signature-based risk score still exerted 
as risky factor for lower overall survival (HR = 1.817, 95% 
CI [1.318–2.506], p < 0.001) of ccRCC patients (Fig.  5b). 
Hence, these data demonstrated that the signature-
based risk score was an independent prognostic factor in 
ccRCC.

Subsequently, subgroup analysis was further performed 
to evaluate the prognostic value of the two-gene risk sig-
nature in patients with different clinicopathological fea-
tures, including age, gender, grade and stage. As shown 
in Fig. 6a–h, except for patients with grade I–II (p > 0.05), 
high-risk patients in all subgroup had dramatically lower 
OS than patients with low-risk (p < 0.05), suggesting that 

the two-gene risk gene possessed stable discrimination 
ability for patients with poor prognosis.

Validation of the prognostic signature
The prognostic value of the two-gene risk signature was 
validated in TCGA validation cohort (n = 260) and in our 
own clinical dataset (n = 20). Based on median value of 
risk score, the Kaplan–Meier curve demonstrated that 
patients in high risk group had an obviously poorer OS 
compared to patients with low risk in both of these two 
validation datasets (p < 0.05) (Fig.  7a and Additional 
file 8: Fig. S5a). The ROC curves also demonstrated that 
risk score had a good predictive ability with AUC equal 
to 0.684 and 0.828, respectively (Fig.  7b and Additional 
file 8: Fig. S5b). The distributions of the risk scores and 
expression profiles were shown in Fig. 7c and d. Patients 
with high risk score had higher mortality rates than low 
risk patients both in training and validation group (Addi-
tional file 9: Fig. S6a and b).

Consistent with the training set, univariate anal-
ysis demonstrated that age (HR = 1.830, 95% CI 
[1.144–2.926], p = 0.012), grade (HR = 2.377, 95% CI 

Fig. ​4 ​​ Constr​uct​ion​ of pro​gno​sti​c risk signature with​ tw​o ​m6​A ​RNA​ methyl​ati​on ​regulators. a Univariate Cox analysis of the selected 16 selected 
m6A RNA methylation regulators in TCGA ccRCC cohort; b, c LASSO Cox regression analysis of the selected 5 m6A RNA methylation regulators; 
d The survival analysis of the two subgroups stratified based on the median of risk scores calculated by multivariate Cox result; e The ROC 
curve for evaluating the prediction efficiency of the prognostic signature; f, g The distributions of prognostic signature-based risk scores and its 
corresponding expression profiles. The red dots represent high-risk patients, green dots represent low-risk patients
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[1.746–3.235], p < 0.001), stage (HR = 1.889, 95% CI 
[1.553–2.298], p < 0.001) and signature-based risk score 
(HR = 1.952, 95% CI [1.431–2.665], p < 0.001) were 

significantly associated with the OS in validation set 
(Fig.  8a). The multivariate analysis further showed that 
signature-based risk score served as independent prog-
nostic indicators (HR = 1.552, 95% CI [1.112–2.167], 
p = 0.010) (Fig.  8b). Moreover, subgroup analysis in the 
validation group revealed similar results that high-risk 
patients had an obviously poorer OS compared to low-
risk patients except for patients with early stage (stage I–
II, p < 0.05) or low grade (grade I–II, p < 0.05) (Fig. 9a–h). 
These results, taken together, convincingly verified the 
prognostic value of this two-gene risk signature in ccRCC 
patients.

Discussion
Recently, m6A RNA modifications acted by methyltrans-
ferases, demethylases and binding proteins are dem-
onstrated to be critical regulators of mRNA stability, 
splicing, processing and translation [22–24]. By means of 
the opposing m6A methylation and demethylation mech-
anisms, emerging evidences have indicated that m6A 
RNA modifications can mediate various malignancy-
related process, such as onco-transcript expression, tum-
origenesis [25], tumor proliferation [26], invasion [25], 
and metastasis [27]. On the contrary, anti-oncogenic role 
of m6A methylation have also been reported by various 
studies. For instance, Liu et  al. reported that reduced 
m6A methylation regulates AKT activity to promote the 
proliferation and tumorigenicity of endometrial cancer, 

Fig. 5  Identification of the independent prognostic factors in the 
training group. a Univariate Cox analyses of the signature based 
risk score and clinicopathological parameters in training group; 
b Multivariate Cox analyses of the signature based risk score and 
clinicopathological parameters in training group

Fig. 6  The survival analyses for the low- and high-risk subgroups stratified by clinicopathological parameters in the training group. a, b The survival 
analyses for the low- and high-risk subgroups stratified by age; c, d The survival analyses for the low- and high-risk subgroups stratified by gender; 
e, f The survival analyses for the low- and high-risk subgroups stratified by Grade; g, h The survival analyses for the low- and high-risk subgroups 
stratified by stage
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Fig. 7  Validation of the prognostic risk signature in the validation group. a The survival analysis of the two subgroups stratified based on the 
median of risk scores calculated by the prognostic risk signature; b The ROC curve for evaluating the prediction efficiency of the prognostic 
signature; c, d The distributions of prognostic signature-based risk scores and its corresponding expression profiles. The red dots represent high-risk 
patients, green dots represent low-risk patients
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implying its tumor suppressive role especially in endo-
metrial cancer [28]. Moreover, m6A modifications were 
found to be decreased in hepatocellular carcinoma and 
involved in suppressing the tumor metastasis [29]. Given 
that m6A modifications is a double-edged sword which 
plays a dual role of either as a tumor suppressor or an 
oncogene in multiple tumors, its exact role in other can-
cers, such as ccRCC, needs to be further elucidated.

In this present study, we proved that 12 out of 16 m6A 
RNA methylation regulators were abnormally expressed 
in ccRCC. Interestingly, multiple genes were relatively 
downregulated in ccRCC and negatively correlated with 
the malignancy of the tumor. This is not consistent with 
previous studies focusing on gliomas and gastric carci-
noma wherein the majority of m6A RNA methylation 
regulators were highly expressed in tumor tissue [30, 31], 
implying its distinct role in ccRCC. In addition, two clus-
ters of ccRCC subgroups were identified based on the 
expression pattern of m6A RNA methylation regulators 
by means of consensus clustering. The results showed a 
significant difference in OS and tumor stage between the 
two subgroups, which further implied that the expression 
pattern of m6A related genes were closely related to the 
malignancy and prognosis of ccRCC. Previous studies 
reported that RNA m6A methylation could affect vari-
ous biological processes and signaling pathways, such as 

Fig. 8  Identification of the independent prognostic factors in the 
validation group. a Univariate Cox analyses of the signature based 
risk score and clinicopathological parameters in validation group; 
b Multivariate Cox analyses of the signature based risk score and 
clinicopathological parameters in validation group

Fig. 9  The survival analyses for the low- and high-risk subgroups stratified by clinicopathological parameters in the validation group. a, b The 
survival analyses for the low- and high-risk subgroups stratified by age; c, d The survival analyses for the low- and high-risk subgroups stratified 
by gender; e, f The survival analyses for the low- and high-risk subgroups stratified by grade; g, h The survival analyses for the low- and high-risk 
subgroups stratified by stage
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self-renewal and tumorigenesis of cancer stem cells [32], 
RNA metabolism [33], the FTO/m6A/MYC/CEBPA 
signaling [34], and the IL-7/STAT5/SOCS pathways [35]. 
In our study, similarly, the functional analysis of the dif-
ferentially regulated genes between the two clusters of 
ccRCC showed significantly associated with malignancy-
related biological processes as well as signaling path-
ways. These results, taken together, uncovered that RNA 
m6A methylation could play a vital role in regulating the 
malignant process of ccRCC.

Previous study indicated that ccRCC patients with any 
copy number variations (CNVs) of the m6A RNA meth-
ylation regulators had worse OS and DFS than those 
with diploid genes [36]. In our study, more interestingly, 
we performed univariate, LASSO, and multivariate Cox 
regression analyses to develop a prognostic related risk 
signature with two m6A RNA methylation regulators, 
METTL3 and METTL14, which divided the ccRCC 
patients into low- and high-risk groups. As a result, the 
two-gene signature significantly distinguished patients 
with different OS (p < 0.05), and showed a good perfor-
mance for predicting patients’ prognosis. Moreover, the 
following multivariate Cox analysis further demonstrated 
this two-gene risk signature as an independent prognos-
tic marker with a higher HR value than other clinico-
pathological factor including age, grade and stage. More 
importantly, a dramatical difference of OS between low- 
and high risk groups was also observed in ccRCC patients 
stratified by some clinicopathological features. Although 
no significant OS difference was found in subgroup of 
grade I-II patients, we observed that survival rate of 
patients with high-risk were relatively lower than those 
with low-risk after 4  years of follow-up. We speculated 
that this might be due to the limited number of patients 
in TCGA cohort. Finally, we validated this two-gene risk 
signature in validation group, which further suggested its 
convincing prognostic value in ccRCC patients.

Our prognostic two-gene signature showed that 
METTL3 was a risky gene for the prognosis of ccRCC 
while METTL14 acted as a protective gene. It is well 
demonstrated that METTL14 can form stable complexes 
with METTL13 [37], and function as a pseudo- methyl-
transferase that stabilizes METTL3 and recognizes tar-
get RNA [38]. Interestingly, these two “writer” genes, 
METTL3 and METTL14, showed an opposite effect on 
survival of ccRCC patients, which hinted that the “writ-
ers” exerted as a complicated regulators in ccRCC. 
Currently, the roles of “writer” genes METTL3 and 
METTL14 have been explored by various studies. For 
example, METTL3 was reported to act as an oncogene 
associated with the tumor progression and metastasis in 
various cancers, such as gastric cancer [18], colorectal 
cancer [27], and pancreatic cancer [39]. On the contrary, 

other studies also demonstrated that METTL3 played an 
suppressive role in endometrial cancer and glioblastoma 
[28, 32]. Similarly, emerging evidences have also indi-
cated that METTL14 could exert as either a oncogene 
or tumor suppressor [29, 40]. Considering the opposite 
effect of the two “writer” genes in various cancers or 
even in the same cancer type, more experimental proofs 
regarding to the exact role of METTL3 and METTL14 in 
ccRCC are in high demand in future.

Conclusions
In summary, our study systematically demonstrated a 
dysregulated expression of m6A RNA methylation regula-
tors between ccRCC and normal controls. The m6A RNA 
methylation regulators were also significantly associ-
ated with the clinicopathological features, which implied 
its crucial role in the tumorigenesis and progression of 
ccRCC. In addition, a two-gene risky signature was suc-
cessfully constructed to distinguish ccRCC patients with 
different prognosis, indicating its prognostic value as a 
promising molecular biomarker.
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