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Campus Bio-Medico di Roma, Rome, Italy, 3Istituto Superiore di Sanità, Dept. of Hematology Oncology and Molecular Medicine,
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Scope of the present work is to infer the migratory ability of leukocytes by stochastic processes in order to
distinguish the spontaneous organization of immune cells against an insult (namely cancer). For this
purpose, spleen cells from immunodeficient mice, selectively lacking the transcription factor IRF-8 (IRF-8
knockout; IRF-8 KO), or from immunocompetent animals (wild-type; WT), were allowed to interact,
alternatively, with murine B16.F10 melanoma cells in an ad hoc microfluidic environment developed on a
LabOnChip technology. In this setting, only WT spleen cells were able to establish physical interactions with
melanoma cells. Conversely, IRF-8 KO immune cells exhibited poor dynamical reactivity towards the
neoplastic cells. In the present study, we collected data on the motility of these two types of spleen cells and
built a complete set of observables that recapitulate the biological complexity of the system in these
experiments. With remarkable accuracy, we concluded that the IRF-8 KO cells performed pure uncorrelated
random walks, while WT splenocytes were able to make singular drifted random walks that collapsed on a
straight ballistic motion for the system as a whole, hence giving rise to a highly coordinate response. These
results may provide a useful system to quantitatively analyse the real time cell-cell interactions and to foresee
the behavior of immune cells with tumor cells at the tissue level.

T
he development of theoretical frames able to describe complex biological systems has been a leitmotif in the
work of many physicists and mathematicians and it is deeply linked with the possibility to obtain measure-
ments of the parameters and variables describing the systems under observation.

The immune system is a striking example of an integrated information system, engaged in coordinated host-
protective activities. Quoting Kim and coworkers, the immune system operates according to a diverse, intercon-
nected network of interactions, and the complexity of the network makes it difficult to understand experimentally.
On one hand, in vitro experiments that examine a few or several cell types at a time often provide useful information
about isolated immune interactions. However, these experiments also separate immune cells from the natural
context of a larger biological network, potentially leading to non-physiological behavior. On the other hand, in vivo
experiments observe phenomena in a physiological context, but are usually incapable of resolving the contributions
of individual regulatory components1.

In this regard, the reconstitution of cellular microenvironments exploiting microfluidic chips and cell co-
cultures has emerged as valid and innovative approach to address limitations of in vitro static end-point mea-
surements and in vivo experiments. Highly controllable and engineered microenvironments have been realized to
mimic in vivo-like situations at different scales while maintaining compatibility with advanced modern imaging
techniques and molecular biology methods2,3. This has provided a new window to finely investigate on the real-
time imaging of processes involving motility and cellular interactions in highly relevant context (normal or
disease).

From the theoretical counterpart, models coming from mathematics or theoretical physics, such as maximum
entropy principle4, disordered statistical mechanics5,6, complex optimization7, graph theory8, stochastic pro-
cesses9 and dynamical systems10 are being adapted to biological systems, allowing a more complete picture of
cellular behavior from advanced imaging studies. In parallel, the development of methods aimed at considering
the system as a whole, hence with all its constituents mutually interacting, have become a major topic, involved as
a necessary step beyond reductionism limitations6,11–13. For example, cancer progression involves multiple events
and is the result of the interactions with cells of the immune system within the tumor micro-environment14–21.

Previous studies on the tumor microenvironment, performed mainly by using animal models22,23, have sug-
gested that immune cells, infiltrating the growing tumor mass, play a crucial role in the control of cancer
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expansion and of the spread of metastasis. Indeed, immune cells
enter the cancer site by means of angiogenesis-induced blood vessels
and by the generation of a large network of chemokines and cyto-
kines24. After their entry, immune cells actively interact with cancer
cells and other components of the extracellular matrix, thus dictating
the fate of the cancer tissue, namely expansion or eradication. In this
complex scenario, the migratory capability of both immune cells and
cancer cells plays an important role for tumor eradication or expan-
sion, both inside the tumor microenvironment and at systemic level
for metastatic spread. In addition, chemokines and their receptors
finely orchestrate the destination of cancer cells and immune cells,
thus meaning that the generation of multiple chemotactic gradients
is pivotal for the initiation and sustainment of the interactions
between cancer and immune cells. Despite the growing knowledge
in this field, the mechanisms driving the mutual crosstalk between

cancer and immune cells are poorly defined due to the difficulty in
visualizing the physical interactions at the tumor site.

In this context, we recently exploited microfluidic devices to
investigate in real time on the mutual interactions between cancer
and immune cells25. We co-cultured mouse melanoma cells with
competent or deficient immune cells and compared several mutual
migratory parameters: this Cell-On-Chip approach has the great
advantage of creating realistic models of in vivo microenvironments
onto substrate perfectly compatible to modern microscopy tools and
molecular biology methods and it may constitute the lacking bridge
between biology and theoretical models.

Results
Making up the experiment for data-drive. The data analyzed in
this paper were gathered from an experiment whose biologic

Figure 1 | Micro-fluidic co-culture immune-cancer system: design and fabrication.

Figure 2 | Experimental design and methodologies: melanoma vs WT/KO immune cell interactions.
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characteristics have been described in detail elsewhere25. The
results of such experiment are summarized hereafter for reader
convenience. The basic idea was to reproduce on chip the
interactions between cells of the immune system with the tumor,
mimicking as much as possible those occurring in vivo. To do so,
we realized a microfluidic chip, shown in Figs. 1, 2, which was
basically divided in two different zones, one for the culture of
immune cells (marked in red) and one for the tumor (green
chamber), which consisted of the murine metastatic melanoma cell
line B16.F10.

The two zones were connected by an array of microchannels (sec-
tion 10 3 10 mm2) which allowed the migration of cells. We used for
the immune system a mouse spleen homogenate, which contains the
whole pool of mature immune cell populations, ranging from T and
B lymphocytes to phagocytes. The experiments were carried out
taking advantage of two different sets of splenocytes, the first was
from a wild type (WT) mouse, namely a healthy immune system, the
second was from a mouse deficient for the transcription factor IRF-8,
essential for the induction of competent immune responses26,27,30–33.

In this experimental setting, both melanoma and immune cells
could mutually migrate through the whole microfluidic system. The
two systems were monitored by means of fluorescence microscopy
up to 144 h and time-lapse recordings of the first 48 h of culture,
chosen as the most representative ones (as we observed the major cell
motility in that temporal gap). For the B16-WT system we observed a
clear migration of the immune cells towards the melanoma and the
formation of immune cell clusters around the B16 cells (see Fig. 3). In
the case of the B16-KO system, on the contrary, nor the KO cells
show any response to the melanoma neither their trajectories were
focused toward the insult (see Fig. 4).

Furthermore, the findings illustrated in Fig. 5 suggest that WT
splenocytes seem to be endowed with a certain ability in limiting
the B16 liveliness in comparison to KO splenocytes cells loaded with
melanoma cells. Indeed, the perturbation factor is significantly
increased for B16 cells when loaded with KO rather than WT
immune cells. The perturbation factor, measuring the B16 cell area
fluctuation at each timepoint, may presumably be correlated to the
vitality and thus aggressiveness of melanoma cells. This hypothesis is
in agreement with previous findings showing how shape factor may
be helpful for investigations in cell viability28,29.

The experimental data resulting from microscopy analisys give
information about the cell dynamics, so the starting data set of
our mathematical analysis consists in the measurements of cell posi-
tions during time. We followed the trajectory of N distinct migrating

splenocytes and for each of them we collected time series of their
position. Data were acquired at a constant rate t 5 4 min (due to the
experimental setting) and measured with precision ,0.1 mm (cor-
responding to 1 pixel). A total of T 5 350 measurements were per-
formed, in such a way that, for each splenocyte, we have a walk
labelled as j, with j g (1, …, N) and characterized by the set of
consecutive positions (xj

i, yj
i), with i g (1, …, T). As a result, being

Dxi 5 xi 1 1 2 xi and Dyi 5 yi 1 1 2 yi, we can also derive the series of
steps lengt hs Dxi(i 5 1,…,T) and Dyi(i 5 1,…,T) taken by cells along the
time intervals of length t.

A vocabulary for a quantitative treatment. In what follows, we
introduce the parameters (observables) that we candidate to
suitably describe splenocyte behavior into a quantitative frame. We
give here a simplified definition of them, in order to allow the full
understanding of the analysis described in the following. Rigorous
mathematical definitions and descriptions can be found in the
appendix (Suppl.Mat.).

The splenocytes under investigation perform paths which can, in
principle, exhibit some degree of bias (e.g. due to chemical gradients)
and some degree of stochasticity (randomness, e.g. due to noise).

Figure 3 | Differential migratory behavior of KO and WT cells toward melanoma cells. B16 melanoma cells (green-labeled) and spleen cells (red-

labeled) from either WT or KO mice at 24 h (A) and 48 h (B) after loading onto the microfluidic device. (C) Detail of splenocytes interacting with B16

cells.

Figure 4 | Upper panel shows examples of real trajectories performed by
WT cells, while lower panel depicts the same for KO cells. WT, but not

KO, splenocytes migrate from top-right through bottom-left following a

chemokine gradient.
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Hence, we propose to model such paths by means of random
walks characterized by (synchronized) discrete time steps and mov-
ing on a continuous two-dimensional space (xy). This kind of ran-
dom walks can be described in terms of a probability distribution,

giving the probability that the walker has covered a distance r in a
time t.

We will call y(r 2 r9, t) the probability that at time t a step from r9

to r is performed (see the appendix for details). This probability

Figure 5 | Prospect of the perturbation of B16 cells in microfluidic devices loaded with WT or IRF8 KO immune cells. (A) Perturbation factor has been

calculated for three representative B16 cells (Mel1, Mel2, Mel3) taken in each device by depicting the area fraction of that cell in each timepoint respect to

the preceding timepoint. This allowed to obtain the percentage area variation for each given timepoint for the 24–42 h time interval. The examined B16

cells were located in the melanoma compartment of the microfluidic devices. (B) Multiple comparison between B16 cells showed in panel A by Mann-

Whitney U test. Each of three B16 cells from device loaded with WT immune cells (WT-Mel1, WT-Mel2, WT-Mel3) was combined with each of three B16

cells from device loaded with IRF8 KO immune cells (KO-Mel1, KO-Mel2, KO-Mel3).

Figure 6 | Logarithm of the probability distribution for the step length along the x direction (upper panel) and along the y direction (lower panel).
Experimental data (symbols) with standard errors are fitted by the exponential distribution (solid line) given by Eq. 8. All fits display R2 < 0.99. The best fit

coefficients are reported in Tab. I, where a comparison between average values from experiments and theoretical description is also provided.

www.nature.com/scientificreports
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qualitatively controls the resulting random walk. Indeed, according
to its mathematical expression, it possibly gives rise to deterministic
walks (corresponding to a ballistic motion), to correlated walks (cor-
responding to a motion with a preferred direction), to completely
stochastic walks (corresponding to an isotropic motion where steps
have fixed length).

In Euclidean structures, like the two-dimensional substrate con-
sidered here, we can decompose r into its normal coordinates, i.e. r 5

(x, y), and, analogously r 2 r9 5 (x 2 x9, y 2 y9) ; (Dx, Dy).
Moreover, assuming that Dx and Dy are independent, y(Dx, Dy)
can be factorized as y(Dx, Dy) 5 yx(Dx)yy(Dy).

The knowledge of the specific distribution y(Dx, Dy) possibly
allows to get important information about the resulting random
walk. For instance, one can show that, when diffusion is isotropic,
i.e. it is equal in the x and y directions, any distribution y(Dx, Dy)
fulfilling the central limit theorem asymptotically leads to the well-
known diffusive limit characterized by the normal distribution34.

Hence, asymptotically, whenever noise is prevailing, we expect to
observe a Brownian motion, i.e. r!

ffiffi
t
p

, while, whenever there is a
real presence of a drift (signal), we expect a ballistic motion, i.e. r / t.

Hereafter, we summarize the observables that we are going to
analyze, stressing on the kind of information which can be conveyed
via their investigation.

Observable one: Step length. Step lengths are measured in micro-
meters to quantify the distance covered by the cells during the
time-interval among two different (adiacent) frames, i.e. t 5

4 min. The distributions of step lengths immediately provide fun-
damental information:

. Direction dependency. By means of specific correlation coefficient
(Pearson’s coefficient) rDxDy we can highlight possible correla-
tions between the time series {Dxi} and {Dyi} for a given walk. This
analysis also allows to check whether propagations along the two
dimensions are independent, namely if y(Dx, Dy) can be (at least
approximately) factorized into yx(Dx)yy(Dy).

. Distribution of step lengths. If the distributions display a finite
mean m and a finite variance s2, one can apply the central limit
theorem (CLT) to get that x nð Þ~

Xn

k~1
Dxk (where n is the

number of considered steps) has average value converging to
nm with standard deviation scaling like s*

ffiffiffi
n
p

, (and analogously
along the y direction). In this case the walk displays a character-
istic length scale given by m.

If a distribution respects CLT, roughly speaking, no Levy flights for
its variable are expected: this means that if, for instance, yx(Dx) is the
probability distribution of the jumps Dx performed by the cells
among two adjacent frames, and it respects CLT, then the probability
to observe a huge jump (whose length is by far larger than the char-
acteristic average amplitude of jumps m) is for practical purposes
negligible.

In turn, when CLT convergence is forbidden (as for Scale Free
distributions) or strongly slowed (as in log-normal ones), a much
more broad ensemble of step lengths is expected: as a result, we can
infer the degree of homogeneity of a process (i.e. the way cells move
toward a direction) directly by checking the CLT convergence of the
probability distribution of its related variable(s). This is important
because we will show that as far as KO spenocytes are concerned,
their step length distributions strongly respect CLT (hence their
movements are highly homogeneous, i.e. share a characteristic step
length), while when WT are analyzed, their step length distributions
are found to converge to log-normal shapes thus suggesting the

Table I | Characteristic step length for KO splenocytes along the x
and y axes. For each axis we compare the mean value of the
exponential fit l21 with the average over all values for Dx and Dy

Branch l{1
x mm½ � ÆDxæ [mm] l{1

y mm½ � ÆDyæ [mm]

Positive 4.5 6 0.1 4.5 6 0.8 4.3 6 0.1 4.3 6 0.9
Negative 4.5 6 0.1 4.5 6 0.9 4.3 6 0.1 4.3 6 0.7

Restricting to discuss the x axes only (as for y it is exactly the same), from this table we can check that
a characteristic scale l{1

x exists, hence CLT holds and no broadened jumps are expected (see
Observable One tools). Further, from the numerical agreement available comparing l{1

x with ÆDxæ,
we have a further confirm that the inferred exponential distribution for the KO step lengths is correct,
that is, is in agreement with experimental results.

Figure 7 | Inset: polar histogram of the turning angle. The distribution has zero mean, hence, no angular correlation is observed. Main plot: angular

correlation function CKO(t) of the turning angle h. This correlation function shows more statistical noise at large t.

www.nature.com/scientificreports
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presence of broaden steps which, in turn, possibly reveals a hidden
heterogeneity at the cellular level.

However this observable alone is not able to distinguish among
purely diffusive motion and ballistic one, thus further observables are
required to properly frame the system’s behavior.

Observable Two: Time Correlations. To this task, another key observ-
able is the distribution of time correlations: the latter indeed has the

capability to detect the presence of a bias (and to discover the pres-
ence of ballistic motion as a consequence of the bias itself): the
underlying idea is that if a drift is present (e.g. driven by a chemical
gradient), then step by step the jumps of the cells will no longer be
uncorrelated as, on average, cells will point to the source of the
gradient. Thus, analyzing the correlation among two (temporally-
adjacent) jumps would reveal the presence of the drift itself. In
absence of any drift, clearly, no angular correlation is expected

Figure 8 | Inset: binned data (N) with standard errors of mean instantaneous speed and related best fit (solid line). KO splenocytes do not slow down

over the observation time of 350 frames. Thus, for practical purposes, we can consider them as being in a time-independent state. Main plot: mean step

length l tð Þ for each KO cell (thin curve) and mean step length averaged over all splenocytes (thick curve) at each time, which is essentially constant.

Figure 9 | Mean displacement Ær(t)æ (upper panel) and mean squared displacement Ær2(t)æ (lower panel) for KO splenocytes. Experimental (binned) data

(N) with standard errors are compared with best fits (solid line) whose coefficients are properly shown.

www.nature.com/scientificreports
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among the direction of motions of cells collected between two closer
frames.

It may be worth stressing that, beyond the scope of the present
analysis, its knowledge may however contribute to the experimental
detection of chemical gradients and of chemotactic phenomena.

We distinguish among

. Angular correlation. Due to the presence of a forcing field (i.e. a
chemical gradient), a diffusive particle may exhibit a preferred
direction, which can be measured in terms of the angle h between
two consequent steps; in particular, to highlight the existence of a
short-term memory we consider the temporal angular correla-
tions C(t) defined as

C tð Þ~ cos h tztð Þ{h tð Þ½ �
D E

, ð1Þ

where the average �: is performed over t and the average Æ?æ is
performed over the set of random walks. Hence, C , 0 implies
isotropy, which, in turn, implies that migrating white cells are not
pointing to any specific target; conversely, C ? 0 is a necessary
requisite in order to keep a coordinate motion toward the target
(melanoma cells in the present case).

. Acceleration phenomena. In order to figure out the possible exist-
ence of slowing down and/or speeding up phenomena one can

consider the step length lk~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

kzDy2
k

q
of a single random walk

at each time step k and calculate

l nð Þ~
Xn

k~1

lk
n

ð2Þ

which is the average of the steps taken up to the n-th time step by

the single cell. A (at least approximately) constant behavior of the

average l nð Þ ensures that, independently of the instant of time and
of the place where the cell is currently located, the length of the
step taken tends to remain the same. On the contrary, in the case
of an acceleration/deceleration, an increasing/decreasing beha-
vior of l nð Þ is expected.

The quantities described so far focus on ‘‘microscopic’’ features of
a walk as they imply a fine zoom on the walk itself. From such a

description one is usually able to derive the ‘‘macroscopic’’ behavior,
typically measured in terms of the mean displacement Ær(t)æ as a
function of time, whose following observables are due to.

Observable Three: Mean displacement. In a nutshell we now deal
with the stochastic version of the equation of motion in classical
dynamics (that is the trajectory). While, at the microscopic level,
temporal determinism coded by the Newton’s law is lost and
each single cell has its own unpredictability regarding its dynamics
(thus focusing on single particle trajectory becomes meaningless),
the ensemble average of the whole cells, however, still obeys a
deterministic evolution such that inferring the parameter ruling
such an averaged dynamics may allow quantitative prediction for
future movements.

To this task one can consider both the displacements x(t) and y(t)
along the x and y axes and the overall (absolute) displacement

r tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x tð Þ½ �2z y tð Þ½ �2

q
: ð3Þ

Notice that x(t) and y(t) are calculated with respect to the initial
point in order to get the effective displacement (the rigorous notation

for r(t) should be r tð Þ{r 0ð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x tð Þ{x 0ð Þ½ �2z y tð Þ{y 0ð Þ½ �2

q
in

order to account for the effective displacement with respect to the

Figure 10 | Left panel: straightness index SKO for each KO splenocyte (thin curves) and straightness index averaged over all splenocytes (thick curve) at

each time. Right panel: binned data for d2 tð Þ
D E

(N) with standard errors for KO splenocytes and best linear fit (solid line).

Table II | Angular coefficients for KO splenocytes regarding
d2 tð Þ
D E

and Ær2(t)æ. From this table we can see that, within the
experimental error, d2 tð Þ

D E
* r2 tð Þ
� �

: coupled with Fig. 9 (lower
panel) and Fig. 10 (right panel) this is a proof that the motion is
ergodic (with all the implications that follow, see Observable Five
tools) because, from those pictures we see that both d2 tð Þ

D E
and

Ær2(t)æ grow linearly with time, while from this table we see that
their angular coefficients (the growth’s slope) do coincide too,
thus the two averages return the same values

Quantities Angular coefficient

d2 tð Þ
D E

138.6 6 1.5

Ær2(t)æ 139.5 6 1.9

www.nature.com/scientificreports
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original position; however, the notation has been lightened throughout
the paper). All these quantities can be computed for every cell at each
time and, then, they are averaged over the ensemble of cells, obtaining
Æx(t)æ, Æy(t)æ and Ær(t)æ. In fact, the latter quantities represent the mean
displacements of the system as a whole.

Now, the scaling of the mean squared displacement Ær2(t)æ with
respect to t is often used to qualitatively define the kind of diffusion.
For instance Ær2(t)æ , t2 (i.e. r tð Þh i*t) is typical of simple diffusion,
Ær2(t)æ , t2 (i.e. Ær(t)æ , t) is typical of drifted motion, while a power
law Ær2(t)æ , ta, with 0 , a , 1 or 1 , a , 2, is referred to as

anomalous diffusion emerging, for instance, in the presence of
crowded environment and/or fractal substrates34.

Observable Four: Tortuosity. When dealing with the movement of a
biological particle one is often interested in the tortuosity of its path,
namely in how twisted the path is in a given space or time36. Clearly,
this is related to the mean displacement: highly tortuous paths will
spread out in space slowly, while straight paths will spread out in space
quickly. Hence, it can be useful to measure and study the tortuosity of
observed paths in order to understand the processes involved, estimate
the area spanned by a cell and predict spatial dispersal.

Figure 11 | yx(Dx) of WT-PRE splenocytes along the positive direction (upper panel, notice the semilogarithmic scale) and along the negative
direction (lower panel, notice the logarithmic scale). Analogous plots are obtained for the y direction (not shown). Experimental data of the distributions

(N) with standard errors are compared with best fits (solid line). Note that the distribution is broadened along the negative x direction (and, analogously,

along the positive y direction).

Figure 12 | yx(Dx) of WT-POST splenocytes along the positive direction (upper panel, notice the semilogarithmic scale) and along the negative
direction (lower panel, notice the logarithmic scale). Analogous plots are obtained for the y direction (not shown). Experimental data of the distributions

(N) with standard errors are compared with best fits (solid line). Note that the distribution is broadened along the negative x direction (and, analogously,

along the positive y direction).

www.nature.com/scientificreports
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It is worth noticing that this observable quantifies the degree
of straightness shared by the motion under analysis and, coupled
with the angular correlations (see Time Correlations), it may
help quantifying the presence (or lacking) of chemical gradients.

Tortuosity can be quantified by comparing the overall net dis-
placement of a path with the total path length. For example, if a
random walk starts at location (0, 0) and, after n steps with lengths
lj (j 5 1, …, n), ends at (x(n), y(n)), then we can measure the so-called
straightness index S as35

S nð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x nð Þ½ �2z y nð Þ½ �2

q
Pn

j~1 lj
, ð4Þ

which ranges in 0 and 1, where 1 corresponds to movement in a
straight line (the shortest distance between two points in the two
dimensional Euclidean space the LabOnChip has built on) and 0
corresponds to a returning (thus tortuous) path.

Observable Five: Ergodicity. In the context of stochastic processes, we
define ergodic a system where time and ensemble averages con-
verge37, namely the time average of a sequence of events is equivalent
to the average over all the possible states of the system at a fixed time.
So in an ergodic system the evolution of a single element is repres-
entative of the whole system as an average on all possible states of it.
Simple Brownian motion owns this property. Hence, the possible
non ergodicity of the system is a measure of how large is the deviation
of the process examined from a normal diffusion. A convenient way
to check ergodicity is the comparison between the mean squared
displacement (MSD) of diffusing particles and the time-averaged
MSD defined as:

d2 tð Þ~ 1
T{t

ðT{t

0
r tztð Þ{r tð Þ½ �2dt: ð5Þ

where T is the total measurement time and t is the lag time which
separates the trajectory points.

In the case of Brownian motion in two dimensions, we have that,
over long measurement times,

d2?4Dt: ð6Þ

This is essentially the same as the MSD averaged over a large
ensemble of particles,

r2
� �

~4Dt: ð7Þ

This equivalence quantitatively confirms that in the Brownian
motion the ergodicity is preserved. In particular, in this process, a

measurement of d2 and, therefore, D in the time interval (0, t) will be
identical to a measurement in the interval (t, 2t) for large t. Therefore,
if a system shows the ergodicity property, it surely respects the time-
translational invariance, which, instead, is not applicable in many
kinds of anomalous diffusion, such as subdiffusion processes38.

From a practical perspective, the introduction of the concept of
ergodic motion in biological dynamics may significantly contribute in
the experiment’s management because, still roughly speaking, ergo-
dicity allows to exchange temporal averages with ensemble averages
(i.e. average over the cells). If we image an experiment whose tem-
poral length should be, for example, 10 days, but we are allowed to
use the laboratory for 5 days only, then, if the motion under study is
ergodic (to be verified separately), it is possible to use a (twice) larger
system (keeping fixed the cell’s density obviously) for 5 days only in
order to collect the same data available in the 10-days experiment
with the original (smaller) system.

Analysis of differential immune cell dynamics. Knock-out splenocytes:
a simple random walk. Once defined the observables of interest,
we analysed the experimental data to verify if it was possible to
identify a clear trend in their distribution that would describe their
dynamic behavior. In the following we will call ‘‘Spl compartment’’
(the central one in Fig. 2) the channel where the splenocytes were
at the beginning of the experiment and ‘‘B16 compartment’’ the
channel in which melanoma cell were cultivated. We started
analysing the KO splenocytes behavior. During the experiment,
they were poorly reactive to melanoma cells, almost no cell was

Table III | Characteristic step length for WT-PRE and WT-POST
splenocytes along the positive x direction. For both groups of sple-
nocytes we compare the mean value of the exponential fit p{1

1x
with the average over all values for positive Dx with overall good
numerical agreement (within the experimental error). Information
extractable from this table mirrors that of Tab. I

Positive branch p{1
1x mm½ � ÆDxæ [mm]

Dx WT-PRE 2.9 6 0.3 3.4 6 0.4
Dx WT-POST 3.6 6 2.0 4.1 6 0.2

Table IV | Characteristic step length for WT-PRE and WT-POST
splenocytes along the negative x direction. For both groups of
splenocytes we compare the mean value �x of negative Dx
obtained by the log-normal fit with the experimental average
and the standard deviation sx with the experimental value

Negative branch �x mm½ � ÆDxæ [mm] sx [mm] sx,exp [mm]

Dx WT-PRE 6.2 6 1.9 8.0 6 0.5 3.2 6 0.4 5.0 6 0.5
Dx WT-POST 6.1 6 1.8 6.5 6 0.2 3.0 6 0.7 4.2 6 0.2

Within the experimental error, compatibility among data and averages returned from the inferred
log-normal distribution for the step lengths of WT dynamics along the y direction is achieved.
Beyond contributing to confirm the correctness of the inferred distribution (as this returns
observable’s averages in agreement with data), further information can be obtained by this
analysis: indeed, despite the log-normal shape still obeys CLT, it is the slower distribution still
converging under CLT constraints. This implies that, despite a characteristic scale for the jump can
still be defined, single step violations from the average behavior are expected to appear much
more frequently, and this, in turn, may suggest full activation of heterogenous sub-populations
within splenocytes (see Observable One tools).

Table V | Characteristic step length for WT-PRE and WT-POST
splenocytes along the positive y direction. For both groups of sple-
nocytes we compare the mean value �y of positive Dy obtained by
the log-normal fit with the experimental average and the standard
deviation sy with the experimental value

Positive branch �y mm½ � ÆDyæ [mm] sy [mm] sy,exp [mm]

Dy WT-PRE 10.1 6 2.2 12.7 6 0.5 3.9 6 0.4 5.9 6 0.5
Dy WT-POST 6.2 6 2.0 4.0 6 0.2 3.4 6 0.3 5.8 6 0.2

Table VI | Characteristic step length for WT-PRE and WT-POST
splenocytes along the negative y direction. For both groups of cells
we compare the mean value of the exponential fit p{1

1y with the
average over all values for negative Dy

Negative branch p{1
1y mm½ � ÆDyæ [mm]

Dy WT-PRE 2.7 6 1.7 2.7 6 1.0
Dy WT-POST 3.7 6 0.7 3.6 6 0.3
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able to get into the micro-channels. Thus, the motion of these cells
was studied only in the Spl compartment.

The available data were filtered with the compromise of obtaining
the positions of splenocytes monitored from the same instant of time
t0 (and not to include splenocytes initially too close to the channel
wall, in order to avoid collisions with it, which could distort results)
and, at the same time, of getting a reasonable statistics with the
minimum number of analyzed cells. From this selection procedure
we outlined N 5 30 splenocytes for our analysis. It is remarkable that
with such a small number of elements the statistics were already very
significant (as shown below). Implication on collective capabilities of
leukocytes will be discussed at the end of the paper.

As anticipated, our analysis begins with the determination of
microscopic quantities.

First, we notice that there is no manifest spatial correlation
between Dx and Dy along a single walk. Also, the histogram of the
Pearson correlation coefficient rDxDy for each walk peaks at zero (not
shown). As for the distribution of step lengths yx(Dx) and yy(Dy), we

find that, at each time step, splenocytes perform a jump whose width
is stochastic and exponentially distributed, as shown in Fig. 6. In
particular, for both directions (displacements along x and along y)
and for both branches (negative and positive displacements) the best
fit is given by

y xð Þ~ae{lx; ð8Þ

best fit coefficients, summarized in Tab. I, are consistent with the
experimental average values and highlight overall, within the error, a
good symmetry. This suggests that KO cells are not pointing to any
target.

Moreover, the exponential distribution clearly satisfies the central
limit theorem and this rules out the existence of Lévy flights among
KO splenocytes. In other words, these splenocytes proceed smoothly
and with rather regular steps.

Let us now consider the turning angle h between two consecutive
steps. The distribution of h over the whole set of walks and the related
time correlation CKO(t), (see Eq. 1) are shown in Fig. 7. The turn
amplitude has zero mean, implying again that every choice of dir-
ection is not correlated with the previous one and the motion is
isotropic.

Moreover, CKO(t) has zero average, confirming that there is no
connection between the direction of a step with that of the following
one so that one can exclude the presence of memory or collective
organization in the process.

Finally, we do not find any significant temporal correlation among
steps since, for each cell, the step�l (see Eq. 2) converges to a constant
value; as shown in Fig. 8, no acceleration is observed in the process
and the instantaneous speed Æv(t)æ is stable. More precisely, it fluc-
tuates around 1.5 6 0.1 mm/min in agreement with the results of
other in vitro experiments, showing that, in the absence of external
gradient guiding the KO splenocytes, these move with an average
speed 1 , 4 mm/min39.

Thus, from this microscopic analysis we can confidently derive
that KO splenocytes move rather uniformly and isotropically, with
no manifest bias, consistently with the expected lack of collective
organization.

As for the macroscopic analysis, we show the time evolution of the
mean displacement Ær(t)æ and of the mean-square displacement
Ær2(t)æ (see Fig. 9), which are proportional to

ffiffi
t
p

and to t, respectively.
This is the typical behavior of pure diffusion (see Eq. 3), in agreement
with the results above.

From the whole set of results described so far we can consistently
derive that KO cells perform a simple random motion (at least as for
their free path) and that any anomalous diffusion can be excluded in
this context. This can be further corroborated by the straightness
index S (see Eq. 4), which, as shown in Fig. 10, decreases rapidly over

Figure 13 | Left panels: angular correlation function CWT(t) of the turning
angle h of WT-PRE splenocytes (upper panel) and of WT-POST
splenocytes (lower panel). Each turn occours every 4 minutes. In both cases

the correlation is mostly positive, meaning that the process has memory. In

the inset we show the polar histogram of the angle measured with respect to

the horizontal axis. Right panels: distribution of the turning angle for WT-

PRE splenocytes (upper panel) and of WT-POST splenocytes (lower

panel). The experimental distribution is fitted by a Gaussian peaked at 0

rad, since splenocytes tend to maintain the same direction. Note that the

resulting Gaussian shape is in full agreement with the mathematical

description of the motion in terms of a (biased and uncorrelated)

stochastic process (further an analysis of its variance will be successfully

exploited in the last section due to numerical simulations).

Figure 14 | Mean step length l tð Þ versus time for WT-PRE and WT-POST splenocytes (left and right panel, respectively). Results for each splenocyte

(thin curves) are compared with the resulting average over all splenocytes (thick curve). In both cases, l tð Þ appears constant in time.
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time, approaching to zero. Indeed, in a normal diffusion process, the
tortuosity of the path is high, because the particles do not move in a
specific direction, but tend to explore the space rather compactly. For
this reason, a simple Brownian motion spreads more slowly than a
random walk with bias (as described in the next sub-section).

Finally we consider the ergodicity problem. We measure for each

trajectory the time average d2 tð Þ (see Eq. 5), which is then averaged

over all trajectories to get d2 tð Þ
D E

.

More precisely, d2 tð Þ
D E

and Ær2(t)æ have the same linear shape

with comparable slope within the error (see Tab. II).

Thus, d2 tð Þ
D E

R 4Dt and there is equivalence of time and

ensemble average, which is the hallmark of ergodicity. In particular,
both procedures agree on the estimate of the diffusion coefficient,
which turns out to be approximately D < 9 mm2/min.

In conclusion, the behavior of KO splenocytes can be character-
ized by a simple random walk, hence with a manifest lack of collective
organization despite the presence of an insult (melanoma cells). In

this respect, this result confirms the important role played by
IRF-8 as a central regulator of immune response and anticancer
immunosurveillance22.

Wild type splenocytes: a biased random walk. Since WT splenocytes
express IRF-8, they are expected to have a competent response to the
tumor. Indeed, as we will see, WT splenocytes migrate towards B16
melanoma cells, in the attempt to contain their expansion22,23,25.

Point-by-point tracking, between 24 and 48 hours from the begin-
ning of the experiment, showed that WT splenocytes are endowed
with the potential ability to cross the microchannels connecting the
Spl compartment with the B16 compartment (see Fig. 2). Thereafter,
the performances of WT splenocytes in the Spl compartment, i.e.,
before passing the microchannels (WT-PRE), and of WT splenocytes
in the B16 compartment, i.e., after passing the microchannels (WT-
POST), are treated separately.

First, we consider the probability distributions of step lengths
yx(Dx) and yy(Dy). Interestingly, a qualitative difference with
respect to the case of KO splenocytes emerges: along the direction
pointing to melanoma cells (i.e. along negative x and positive y

Figure 15 | Mean instantaneous speed of WT-PRE splenocytes (upper panel) and of WT-POST splenocytes (lower panel). Binned data (N) with

standard errors are best fitted by a constant line (solid curve). In both cases, no evident acceleration is observed, but, in the latter case, speed is lower.

Figure 16 | Ær(t)æ versus t for WT-PRE splenocytes (upper panel) and for WT-POST splenocytes (lower panel). As expected, the mean displacement

grows linearly with time. Binned data (N) with standard errors are compared with best fit (solid line), whose coefficients are also reported.
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directions) distributions are broadened and best-fits are now pro-
vided by log-normal distributions (see Fig. 11 and Fig. 12, lower
panels), namely

y xð Þ~ 1ffiffiffiffiffi
2p
p

sx
e
{

log x{mð Þ2

2s2 , ð9Þ

where the parameters m and s are related to the expected value �x as

�x~emzs2
2 .

On the other hand, along the opposite direction (i.e. along positive
x and negative y directions) distributions are still exponential (see
Fig. 11 and Fig. 12, upper panels), namely

y xð Þ~ae{p1x: ð10Þ

This kind of distribution is compatible with the ability of the cells
to perceive a chemotactic gradient along negative x and positive y
directions which, on the cartesian xy plane, corresponds to a drift
towards the second quadrant, where the source of melanoma cells
resides. This kind of behavior is evidenced for both WT-PRE and

WT-POST; related fitting coefficient are reported in Tabs. III-VI:
notice that for WT-PRE the effect is stronger.

This may be due to the fact that WT-POST splenocytes, after the
migration to the B16 compartment, are at least partially surrounded
by tumor cells in such a way that the resulting signaling is less
focussed and, consequently, this drift becomes weaker.

The data described so far suggest that WT splenocytes can be
modeled by biased random walks. This is indeed corroborated by
the analysis of the turning angle h and by the related angular cor-
relation CWT(t) (see Fig. 13). Also in this case, the bias is especially
stronger for WT-PRE. Indeed, as mentioned above, in the B16 com-
partment, splenocytes tend to change direction slightly more fre-
quently because of a broadened presence of melanoma cells.

However, no significant temporal correlation among steps is evi-
denced since, for each splenocyte, the mean step �l (see Eq. 2) turns
out to be (approximately) constant in time for both WT-PRE and
WT-POST splenocytes. Thus, no acceleration is observed in the
process and the instantaneous speed is stable (see Fig. 14 and 15).
Of note, the speed of the splenocytes decreases, once they have
crossed the microchannels: while in the Spl compartment it is 3.7
6 0.1 mm/min, in the B16 compartment it decreases down to 2.4 6

0.1 mm/min. Again, we can notice how the behavior of the spleno-
cytes changes according to their proximity with the tumor.

Focusing on the analysis of the macroscopic process, the most
remarkable point is that the mean displacement grows linearly with
time (see Fig. 16), for both WT-PRE and WT-POST splenocytes, as
expected for a biased random walk, strongly supporting the evidence
of a highly coordinate motion for the system as a whole. Notably, also
in this case, it appears evident that WT-PRE splenocytes are faster
than the WT-POST, since they have a greater mean displacement

Table VII | Angular coefficients of linear fits for Ær(t)æ of WT-PRE and
WT-POST splenocytes

Quantities Angular coefficient

Ær(t)æ WT-PRE 13.3 6 0.1
Ær(t)æ WT-POST 7.0 6 0.1

Figure 17 | d2 tð Þ
D E

(e) and Ær2(t)æ (#) vs t for WT-PRE splenocytes (upper panel) and for WT-POST splenocytes (lower panel). Symbols represent

experimental data with standard errors, while the solid lines represent the best fits. Notice that, for both sets of splenocytes, d2 tð Þ
D E

and Ær2(t)æ are nicely

overlapped, both growing with the square of time.
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over time (see angular coefficients of the linear fit of Ær(t)æ in
Tab. VII).

Moreover, we checked that the linear behavior is also observed
along both x and y directions of motion (of course, Æx(t)æ decreases
and Æy(t)æ increases over time because the drift is directed along the
negative x and the positive y axis).

In contrast to the isotropic unbiased random walk of KO spleno-
cytes, here the mean squared displacement is proportional to t2 for
large t (see Fig. 17), so the signal propagates as a wave, as expected for
a ballistic motion.

This picture of random walk with bias is also confirmed by the
straightness index (see Fig. 18) whose mean value, for WT-PRE
splenocytes, ranges between 0.9 and 1.0, while for WT-POST, ranges
between 0.7 and 0.8; this means that for WT-POST the motion is less
straight, consistently with results discussed above.

Finally, we successfully checked ergodicity also in WT splenocytes:

as shown in Fig. 17, experimental data for d2 tð Þ
D E

and for Ær2(t)æ are

nicely overlapped and best-fitted by a power law with exponent
approximately equal to 2. Fit coefficient, reported in Tab. VIII, pro-
vide us with further important information: the mean displacement
of splenocytes (both in time and on the ensamble) shows a value that
is one order of magnitude higher in case of WT-PRE compared with
WT-POST. This result expresses in a clearly measurable way the role
of melanoma cells on the motion of splenocytes. This observation is
further in line with the concept that spleen cells motion is driven by a
chemotactic gradient: as they approach to the target, namely the
tumor cell, these cells tend to slow down in order to establish a
physical contact. Moreover, the importance of the performed data
analysis consists in providing quantitative values describing the cell
dynamics which is fundamental to compare data acquired in differ-
ent experimental conditions.

Comparison with Numerical Simulations. In this Section we
further check the robustness of our model, via numerical
simulations: in particular we simulated random walks with step
lengths drawn from Eq. 8 and Eqs. 9 and 10, and we measured the
resulting displacement Ær(t)æ. Such values are then compared with

those obtained from real data of splenocyte displacement and
previously shown in Figs. 9 and 16, respectively.

As shown in Fig. 19, the comparison is, in general, very good. In
the simulations meant to recover the behavior of KO splenocytes we
realized N 5 30 random walks made of T 5 350 steps; in the simula-
tions meant to recover the behavior of WT-PRE splenocytes we
realized N 5 31 random walks made of T 5 20 steps, while in the
simulations meant to recover the behavior of WT-POST splenocytes
we realized N 5 14 random walks made of T 5 71 steps, consistently
with raw data available (see Results).

Moreover, the parameters lx and ly for the KO case and of the
parameters p1x, p1y, �x, sx, �y, sy for the WT case are those given in
Tabs. I, III–VI, according to the case considered. In addition, for the
WT case, a bias has been introduced in such a way that the correla-
tion among successive steps is consistent with the experimental data
depicted in Fig. 13.

Conclusion
In this work, we report a data analysis on the motility of immune cells
towards tumor cells by exploiting splenocytes deficient for the tran-
scription factor IRF-8, in comparison to WT cells during co-culture
with melanoma cells in a microfluidic device.

We framed their dynamics within the stochastic process theory
and built a library of suitable observables to tackle their motion
complexity. Through this analysis, we could show that every single
IRF-8 KO cell performs pure uncorrelated random walks without
pointing to the target, represented by the melanoma cell. Conversely,
WT splenocytes, singly, are able to perform drifted random walks,
which, collectively, collapse onto a straight ballistic motion for the
system as a whole, giving rise to an effectively high coordinate motion
towards melanoma cells. At a more detailed level of investigation,
IRF-8 KO cells move rather uniformly since their step lengths are
exponentially distributed with a characteristic step length l in agree-
ment with literature, e.g. l , 4.5 mm. On the contrary, WT cells
display a qualitatively broader motion, due to their step lengths along
the direction of the melanoma log-normally distributed. The result-
ing dynamics are in good agreement with models of in vivo behavior
of immune cells, showing poor ability of IRF-8 KO immune cells to
migrate towards the tumor site, in mice inoculated with B16
melanoma22,23.

In conclusion, our analysis clearly evidences the value of an inte-
grated approach of Cell-on-Chip devices and high-data driving
theoretical scaffolds, such as those derived from the stochastic the-
ory, for quantifying experiment’s outcomes. In fact, Cell-on-chip
devices allow to fully exploit the modern microscopy tools and,
through image data extraction, give access to the exploitation of
the suitable mathematical tools able to quantify information.

Figure 18 | Straightness index S for WT-PRE splenocytes (left panel) and for WT-POST splenocytes (right panel); the thick lines represent the related
averages over all splenocytes at each time ÆSæ. As expected for a random walk with bias, it takes values close to 1.

Table VIII | Fit parameters of d2 tð Þ
D E

and Ær2(t)æ for WT-PRE and
WT-POST splenocytes

Quantities p1 WT-PRE p1 WT-POST

d2 tð Þ
D E

222.8 6 5.6 41.2 6 1.5

Ær2(t)æ 208 6 8.9 40.8 6 2.2
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Future progress in combining nano-engineering, cell biology, live
microscopy and computational sciences will promote a new level of
insight to studies of host immune system-pathogen interplay.
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