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Introduction: It will be challenging to develop high-performance organic chromophores for 
light-triggered thermal ablation of the tumor. Besides, the mechanisms of organic chromo-
phores for tumor therapy remain unclear. Herein, an acceptor-π-donor (A-π-D) structured 
organic chromophore based on 2-dicyanomethylenethiazole named PTM was developed for 
photothermal therapy (PTT) of tumors.
Methods and Results: Biocompatible PTM nanoparticles (PTM NPs) were fabricated by 
enclosing PTM with Pluronic F-127. The results of optical and photothermal properties of 
PTM NPs showed robust near-infrared (NIR) absorption, excellent photostability and high 
photothermal conversion efficiency (56.9%). The results of flow cytometry, fluorescence 
microscopy, apoptosis, CCK-8 assays and animal experiments showed that PTM NPs had 
a good killing effect on tumors under NIR laser irradiation. Furthermore, mechanistic studies, 
RNA-seq and biological analysis revealed that PTM NPs can cause tumor cell death via 
DNA damage-mediated apoptosis.
Conclusion: Light-induced thermal ablation effects of PTM NPs in vitro and vivo were 
surveyed. Collectively, our studies provided a new approach to developing a safe and 
effective photothermal agent for cancer treatment.
Keywords: NIR absorbing chromophore, 2-dicyanomethylenethiazole, photothermal 
therapy, DNA damage induced apoptosis, RNA-seq, biological analysis

Introduction
Thermal ablation of tumors is an application of hyperthermia, which will result in 
irreversible cell injury, the tumor apoptosis and coagulative necrosis ultimately.1,2 

At present, several thermal ablation methods have been developed, including radio-
frequency ablation (RFA),3,4 microwave ablation (MWA)5,6 and high-intensity 
focused ultrasound (HIFU).7,8 However, expensive instruments were used in these 
methods. Compared with methods mentioned above, non-invasive photothermal 
therapy (PTT) be more economical, more effective, more precise targeting at the 
tumor, and minimize the damage to surrounding healthy tissues. PTT can kill cancer 
cells and bacterial biofilm via heat energy generated by photothermal agents under 
NIR laser irradiation.9–15 In recent years, various inorganic nanomaterials have 
been actively employed for photothermal therapy of tumors, including gold 
nanoparticles,16 carbon nanomaterials,17 palladium nanosheets,18 and transitional 
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metal dichalcogenide.19,20 Although superior efficiency in 
ablation tumors has been achieved by using inorganic 
photothermal agents, the potential long-term toxicity and 
poor biodegradation remain the major challenges. On the 
other hand, the NIR-absorbing (750~1700 nm) organic 
photothermal agents have been explored owing to their 
great biocompatibility and can be metabolied rapidly in 
biological tissue, including NIR absorbing conjugated 
polymers,21 cyanines22 and porphyrins.23 However, the 
poor photostability, severe photodegradation, and the low 
efficiency of photothermal conversion hamper their further 
applications. Dibenzamide dyes exhibit excellent molar 
absorption and subtly tunable optical properties, but their 
biological applications are mainly focused on fluorescence 
imaging,24 their maximum absorption and emission in the 
visible range are limited. Terrylenediimide-based nanome-
dicines have high photothermal conversion efficiency, but 
the preparation process with certain inaccuracies is com-
plex and unstable.25,26 Hence, it is crucial to develop 
a new class of NIR absorbing organic chromophores for 
thermal ablation in tumor.

A-π-D structured organic chromophores have been 
demonstrated to be an excellent option for photothermal 
therapy due to their excellent photostability and strong 
molar absorption coefficient.27–30 Besides, chromophores 
with A-π-D structure have rigid planar structures and 
strong π-π interaction, which enhance the non-radiative 
decay and improve photothermal efficiency.31 To date, 
efforts have been made to improve the PTT efficacy of 
A-π-D structured organic chromophores in many 
researchs, the strategies proposed including increasing 
acceptor strength, extending conjugation length to reduce 
band gap, and red-shift the absorption maxima.32 To this 
effect, numbers of electron-deficient groups have been 
exploited, including diketopyrrolopyrrole,33,34 

thiadiazolobenzotriazole,35,36 benzo[1,2-c:4,5c’]bis([1,2,5] 
thiadiazole),37,38 and indan.39,40 Among them, 2-dicyano-
methylenethiazole, an electron-withdrawing core, can be 
combined with the electron-donating group to build an 
A-π-D organic chromophore for broadening the absorption 
spectrum, reducing the optical gap, and decreasing the 
HOMO level.41–45 However, 2-dicyanomethylenethiazole 
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molecules exhibit some limitations, such as weak absor-
bance in the near-infrared (NIR) region and low photo-
thermal conversion efficiency. Therefore, it is highly 
desirable to explore new 2-dicyanomethylenethiazole 
chromophores with high PTT performance.

As reported, the hyperthermia treatment can inhibit 
cancer cells tumorigenesis via the necroptosis pathway or 
DNA damage-mediation tumor apoptosis pathway.46–51 

However, the underlying mechanisms are still elusive. 
The comprehensive understanding of photothermal agents 
might provide new options for efficient cancer therapy. As 
shown in Graphical Abstract, in this contribution, we 
developed an A-π-D structured organic chromophore 
(PTM) based on 2-dicyanomethylenethiazole for light- 
induced tumor thermal ablation. PTM was directly encap-
sulated into an amphiphilic copolymer Pluronic F-127 
through the nanoprecipitation method to obtain nanoparti-
cles, PTM NPs. These agents shown robust photostability, 
good biocompatibility, and high PCE (56.9%). Moreover, 
PTM NPs exhibited cancer cells killing capacity via DNA 
damage mediated apoptosis induced by heat generation in 
cells (Scheme 1). Both in vitro and in vivo experiments 
demonstrated that PTM NPs had effective anti-tumor 
potential. Our comprehensive studies of the mechanisms 
and underlying PTM NPs performance will improve the 
understanding of photothermal therapy and augment the 
future application of photothermal agents.

Materials and Methods
Chemicals and Materials
All reagents and solvents were commercially provided. 
CCK-8 kit was provided from Dojindo Laboratories 
(Kumamoto, Japan). Calcein AM/PI Detection Kit and 
Hematoxylin and Eosin Staining Kit were purchased 
from NanJingKeyGen Biotech Co., Ltd. (China). 5-(10- 
Ethyl-phenothiazin-3-yl)thiophene-2-carbaldehyde was 
prepared according to reference.52

Design and Synthesis of PTM
5-(10-Ethyl-phenothiazin-3-yl)thiophene-2-carbaldehyde 
(3.36 g, 10 mmol) and 2-dicyanomethylenethiazole 1 (3.82 
g, 10 mmol) and was added into 30 mL acetic anhydride, 
and stirred at 160 °C for 12 h under N2 protection. The 
mixture was drop added into saturated Na2CO3 aq. The dark 
blue solid was filtrated and purified by column chromato-
graphy using a mixture of DCM/MeOH (19: 1). Yield: 4.8 
g (67%). 1H NMR (400 MHz, CDCl3), δ(ppm):7.86 (s, 1H), 

7.67~7.69 (d, 2H), 7.57(s, 1H), 7.45~7.47(d, 2H), 7.40~7.42 
(d, 2H), 7.32~7.36(d, 2H), 7.28(s, 1H), 7.18~7.24(t, 2H), 
6.94~7.05(m, 2H), 6.81(s, 1H), 3.81~3.84(d, 2H), 3.16~3.19 
(t, 2H), 1.59(s, 1H), 1.31~1.49(m, 8H), 0.91~0.95(m, 9H). 
13C NMR (100 MHz, CDCl3), δ (ppm): 172.16, 166.78, 
163.41, 148.70, 147.68, 146.71, 143.83, 141.58, 141.16, 
137.38, 136.40, 134.27, 133.11, 132.03, 131.28, 130.60, 
129.31, 128.16, 127.85, 126.54, 124.43, 121.11, 120.18, 
119.30, 115.98, 115.12, 111.26, 95.94, 64.48, 49.56, 44.41, 
31.76, 29.14, 26.55, 26.04, 15.83, 15.04, 14.33. IR (v−1, 
KBr): cm−1 3453, 2986, 2845,2618, 1618, 1523, 1483, 
1366, 1252, 1034, 863.

PTM NPs Preparation
PTM NPs were constructed by the coprecipitation method. 
Pluronic F-127 (100 mg) and PTM (10 mg) were mixed in 
THF (1 mL). THF solution was drop added into DI water 
(10 mL) under ultrasonic condition. The mixture was 
bubbling N2 to remove THF completely. PTM was 
obtained after dialysis to remove the free F-127.

Animals
All the animal experiments were conducted in accordance 
with the institutional guidelines for the care and use of 
laboratory animals at Southern Medical University, 
Guangzhou, China, and Regulations for the 
Administration of Affairs Concerning Experimental 
Animals (1991.7, revised 2017). All the animal experi-
ments have been approved by Southern Medical 
University.

Statistical Analysis
All data were expressed as means ± standard deviation 
(SD) or means ± standard errors. All figures shown in this 
article were obtained from at least three independent 
experiments. Analysis of variance was employed for mul-
tiple group comparisons, and results of p < 0.05 were 
considered statistically significant.

Result and Discussion
Synthesis, Optical and Photothermal 
Property of PTM NPs
NIR absorption for A-π-D structured organic chromophore 
(PTM) was built by using 2-dicyanomethylenethiazole as 
a strong acceptor, allowing for greater electron delocalization 
and thus lowering the band gap, phenothiazine as a donor, 
and planar thiophene ring as a π-conjugation unit, which 
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provided effective conjugation and large extinction coeffi-
cient. The synthetic routine of PTM is shown in Scheme S1 
and S2. The synthesis process, NMR spectrum, and IR spec-
trum are shown in Figure S1–S5 (Supporting information).

To further enhance the biocompatibility, hydrophobic 
PTM and Pluronic F-127 were dissolved in THF and allowed 
to self-assemble into PTM NPs. First of all, the absorption 
property of PTM NPs was evaluated, as shown in Figure 1A, 
PTM NPs (200 μg/mL) have a broad UV-vis absorption 
arrange from 550 nm to 1000 nm with the maximum absorp-
tion located at ~680 nm, which permits deep tissue penetration 
and exhibits the potential to accomplish efficient photothermal 
therapy for deep tumor. Furthermore, the dynamic light scat-
tering (DLS) experiment showed that PTM NPs exhibited 
hydrodynamic diameters around 110 nm (Figure 1B). 
Interestingly, the size of PTM NPs in PBS keeps stable within 

28 days, which confirms the robust stability (Figure S6). In 
addition, TEM and SEM were measured to confirm the mor-
phology and size of PTM NPs (Figure S7-S8).

The light-induced thermal activity of PTM NPs was 
also explored. The relation between laser power and tem-
perature variation of PTM NPs in PBS was surveyed 
(Figure 1C). The temperature of PTM NPs solutions 
increased quickly with improving the laser power, con-
firming that the temperature elevation is proportional to 
the laser power density. As depicted in Figure 1D, when 
the concentration of PTM NPs reached 160 μg/mL, the 
solution temperature rose rapidly to 72.4°C under NIR 
laser irradiation (808 nm, 1.5 W/cm2, 10 min). It is 
worth noting that PTM NPs also reached effective 
hyperthermia (45 °C) with the concentration of 40 μg/ 
mL under the same conditions, demonstrated that PTM 

Figure 1 (A) The absorption spectrum of PTM NPs (200 μg/mL) in Water. (B) DLS of PTM NPs (10 μg/mL) insert SEM and TEM of PTM NPs. (C) Photothermal heating 
curves of PTM NPs (80 μg/mL) irradiated for 10 min using a 808 nm laser at varied power densities (0, 0.5, 1.0, 1.5, and 2.0 W/cm2). (D) The temperature evolution of PTM 
NPs with different concentrations under 808 nm laser irradiation (1.5 W/cm2, 10 min). (E) Temperature elevation of PTM NPs (120 μg/mL) under five on/off cycles (1.0 W/ 
cm2). (F) Corresponding near infrared photographs of PTM NPs (80 μg/mL) under NIR laser irradiation (808nm, 1.5 W/cm2, 5 min). (G) HOMO and LUMO calculated by 
DFT at the B3LYP/6-31G (d,p) basis set.
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NPs displayed excellent photothermal properties even 
under a low concentrations.

The photothermal conversion efficiency of PTM NPs 
was evaluated to be ~56.9% according to the reported 
method (Figure S9),53 which is significantly superior to 
most previously reported photothermal reagents, including 
porphyrin (62.5%),54 phthalocyanine-based nanodots 
(45.7%),55 cyanine dyes (26.6%),56 polypyrrole NPs 
(45%),57 dopamine-melanin NPs (40%),58 Au nanorods 
(21.0%),59 MoS2 nanosheets (24.4%).60 All these results 
confirmed that PTM NPs can act as a promising candidate 
for photothermal therapy.

The photostability of PTM NPs was also investigated. 
The temperature changes of PTM NPS solution (120 μg/ 
mL) were continuously monitored under NIR laser irradia-
tion (808 nm, 1.0 W/cm,2 10 min) and then cooling to r.t. 
naturally for five heating/cooling cycles. As shown in 
Figure 1E, the photothermal capacity changes slightly. 
The photobleaching stability of PTM NPs was further 
determined by continuous irradiation of PTM NPs in 
PBS (120 μg/mL) upon NIR laser decreased slightly, and 
no obvious color change was observed (Figure S10). 
These results confirmed that PTM NPs have excellent 
stability against photobleaching. The temperature of PTM 
NPs in aqueous dispersions was also investigated upon 
NIR laser irradiation (808 nm, 1.5 W/cm2, 5 min). 
Infrared thermal images after irradiation were also present 
in Figure 1F.

After the UV-vis absorption and photothermal explora-
tion of PTM NPs, density functional theory (DFT) calcu-
lation was performed (Figure 1G). The highest occupied 
molecular orbital (HOMO) of the phenothiazine group 
were occupied by electron clouds, whereas the 2-dicyano-
methylenethiazole unit dominated the lowest unoccupied 
molecular orbital (LUMO) with the narrow band gap (Eg 
= 1.51 eV).

Laser-Induced Thermal Ablation of PTM 
NPs in vitro
It is fundamental for phototherapy agents to exhibit low 
dark toxicity but high toxicity under laser radiation. Mouse 
breast cancer 4T1 cell line donated by the Department of 
Cell Biology, School of Basic Medical Sciences, Southern 
Medical University that were purchased from the National 
Infrastructure of Cell Line Resource (China) were 
employed in this study. ACCK-8 analysis for toxicity 
evaluation of PTM NPs in 4T1 cells without irradiation 
demonstrated that these agents had excellent biocompat-
ibility (Figure S11). On the other hand, the cell viability 
decreased to 27% when incubation of PTM NPs (200 μg/ 
mL) upon 808 nm irradiating (1.5 W/cm2, 10 min), sug-
gesting PTM NPs may be amenable to photoactive 
therapy.

Fluorescent images of 4T1 cells dyed with calcein AM 
and propidium iodide after PTM NPs with photothermal 
therapy treatment are illustrated in Figure 2A, strong red 

Figure 2 (A) AM/PI fluorescence imaging of 4T1cells with PTM NPs (200 μg/mL) in the absence or presence of NIR laser irradiation (808nm, 1.5 W/cm2, 10 min). The scale 
is 100μm. (B) Representative FCM profiles of 4T1cells with PTM NPs (80 μg/mL) in the absence or presence of NIR laser irradiation (808 nm, 1.5 W/cm2, 5 min). (C) PTT 
induced the Bcl-2, BAX, H2AX, and γH2AX expression in 4T1 cells after different treatments.
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fluorescence in cells was observed. However, the group of 
PTM NPs treated or laser alone has almost no red fluor-
escence (Figure S12), confirming that the cells were killed 
after co-incubation with PTM NPs and 808 nm laser 
irradiation. Apoptosis assay was then employed to inves-
tigate the apoptosis and necrosis rate induced by activated 
PTT with PTM NPs. As displayed in Figures 2B, 4T1 cells 
treated with PTM NPs upon 808 nm laser irradiation 
displayed an apoptotic ratio to be ~92.76%, which is 
notably superior to that in other groups.

To clarify the cell death pathway in charge of the 
observed effects, we surveyed the effects of PTM NPs 
on Bax, Bcl-2, H2AX, and γH2AX. It is well known that 
Bcl-2 has anti-apoptotic properties, which is usually oppo-
site to Bax. The balance between Bcl-2 and Bax is crucial 
for cell apoptosis or survival.61–63 γH2AX indicates the 
specific phosphorylation at serine 139 of the histone 
H2AX, the generation of double-strand breaks always 

induces γH2AX formation.64,65 Therefore, the expression 
of γH2AX reflects the DNA damage. We analyzed their 
levels by Western blotting (WB) analysis with tubulin as 
the loading control. As exhibited in Figure 2C, the expres-
sion of Bax improved, while the Bcl-2 level diminished 
and the ratio between Bcl-2 and Bax declined when 4T1 
cells were treated with PTM NPs and 808 nm laser radia-
tion, which proved that apoptosis of cells increased. 
Moreover, PTM NPs + NIR laser irradiation significantly 
increased the expression of γH2AX, confirming that this 
PTT treatment results in DNA damage. These datas ver-
ified the hypothesis that DNA damage might be the anti- 
cancer mechanism for PTT.

In vivo Photothermal Properties
Five-week-old female nude mouse (n=20) were purchased 
from the Animal Center of Southern Medical University. 
All animal procedures were performed in accordance with 

Figure 3 (A) and (B) Tumor temperature of PTM + NIR laser irradiation group before and after irradiation (808nm, 1.0 W/cm2, 1 min). (C) Tumor growth curves of mice 
after different treatments. Results are expressed as mean ± S.E. * P < 0.05 compared with the PTM+NIR laser irradiation group. (D) Photographs of the dissected tumors 
after different treatment, (E) Dissected tumors weight after different treatment. Results are expressed as mean ± S.E. * P < 0.05 compared with the PTM+NIR laser 
irradiation group. (F) Body weight curve of mice after PTM+NIR laser irradiation group. (G) TUNEL assay of the tumor tissues after PTT.
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the “Guidelines for the Care and Use of Laboratory 
Animals of Southern Medical University” and were 
approved by the Animal Ethics Committee of Southern 
Medical University.

Finally, in vivo photothermal efficacy was conducted 
by post-intratumoral injection. Firstly, temperature 
changes in tumor was monitored by infrared thermography 
during irradiation (Figure 3A and B). The tumor surface 
temperature of the PTM group rose to 60.9°C upon 808 
nm laser irradiation for 1 min which provided adequate 
hyperthermia to kill cancer cells. What’s more, the tumor 
surface temperature of the PBS injection group was 
roughly unchanged upon 808 nm laser irradiation for 1 
min (Figure S13).

After that, 4T1 tumor-bearing mice were randomly 
batched into four groups: PBS control group (group A), 
808 nm laser irradiation only (group B), PTM NPs 
(2.5 mg/kg) treated only (group C), PTM NPs (2.5 mg/ 
kg) and NIR laser irradiation (808 nm, 2.0 W/cm2, 5 min) 
(group D). Changes in tumor size and body weight were 
monitored in all the groups. Notably, no apparent abnor-
mal body weight changes and other signs of toxic side 
effects were observed in all treated groups. As shown in 

Figure 3C–E, groups A, B, and C all displayed minimal 
tumor inhibition, implying that laser exposure or PTM 
NPs themselves have little influence on the tumor growth. 
However, Group D (PTM NPs upon 808 nm laser irradia-
tion) displayed tumor ablation, confirming the apoptosis- 
induced potential, which is well in consonance with the 
flow cytometry analysis. All the groups demonstrated 
similar body weight variation curves (Figure 3F), indicat-
ing that PTM NPs exhibited slightly side effects. 
Additionally, apparent apoptosis and necrosis were 
observed in PTT treated group (Figure 3G), indicated 
that PTM NPs plus 808 nm laser radiation triggers cell 
apoptosis and necrosis.

Light Induces DNA Damage in Cancer 
Cells by the PTM NPs
Owing to the excellent photothermal performance of 
PTM NPs observed in vitro and vivo experiments, we 
wonder the action anti-tumor mechanisms of PTM NPs. 
To further understand the action mechanisms of PTM 
NPs, RNA-seq analysis was carried out to identify dif-
ferentially regulated genes after PTM NPs treatment 
(Figure 4A and B). Enriched in metabolism pathways, 

Figure 4 (A) Heatmap showed the differential expressed genes after PTM NPs treated. (B) Enriched KEGG pathway analysis of differentially expressed genes after PTM 
NPs treated. (C) and (D) Enriched GO biological process of up-regulated genes (orange) and down-regulated genes (blue) in PTM NPs treated group. The X-axis of the 
histogram is -log10 (P-value) of individual terms calculated by right-sided hypergeometric test and corrected with Bonferroni. GO categories are indicated on Y-axis.
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immune system, DNA repair, cell cycle, and mRNA 
splicing was observed (Figure 4C and D). The expres-
sion of genes involved in the apoptotic process, glyco-
lytic process, and immune system process were up- 
regulated. In contrast, the genes involved in DNA 
repair, cell cycle, metabolic process, protein folding, 
and cellular amino acid biosynthetic process were down- 
regulated. The results confirmed that the enriched 
expressed genes are involved in the cell apoptosis path-
ways, including the focal adhesion, adherend junction, 
and Wnt signaling pathway after PTM NPs + NIR laser 
irradiation treatment.

The Biocompatibility of PTM NPS
The in vivo toxicology of PTM NPs was examined. 
Hematoxylin and eosin (H&E) staining was carried out 
to measure the histological changes of main organs 
(Figure 5A). No obvious pathological variation of 
major organs was observed in all the groups, confirmed 
that the excellent biocompatibility of PTM NPs. 
Moreover, blood biochemical analyses and hematology 

markers were investigated to examine the in vivo toxi-
city of PTM NPs (Figure 5B). No apparent distinction 
was detected in PTM NPs treated groups. All these 
results highlight the good biological compatibility and 
safety of PTM NPs.

Conclusion
In conclusion, a new NIR-absorbing A-π-D type organic 
chromophore (PTM) based on 2-dicyanomethylenethiazole 
was prepared for laser-induced thermal ablation tumors. 
The encapsulation of PTM into an amphiphilic copolymer 
F-127 yields PTM NPs with good biocompatibility, excel-
lent photostability, and high photothermal conversion effi-
ciency (56.9%). Furthermore, the therapeutic mechanism 
and RNA-seq and biological analysis revealed that 
hyperthermia induces cell apoptosis via DNA-damage. In 
vivo investigation, PTM NPs demonstrated excellent 
tumor ablation under irradiation. All these results con-
firmed that the A-π-D structured small molecule had 
great potential for NIR-triggered phototherapy of the 
tumor.

Figure 5 (A) H&E staining images of major organs in the mice after the intravenous injection. (B) The influence of PTM NPs on the hematopoietic system of mice.
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