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The automatic analysis of retinal blood vessels plays an important role in the computer-aided diagnosis. In this paper, we introduce
a probabilistic tracking-based method for automatic vessel segmentation in retinal images. We take into account vessel edge
detection on the whole retinal image and handle different vessel structures. During the tracking process, a Bayesian method with
maximum a posteriori (MAP) as criterion is used to detect vessel edge points. Experimental evaluations of the tracking algorithm
are performed on real retinal images from three publicly available databases: STARE (Hoover et al., 2000), DRIVE (Staal et al.,
2004), and REVIEW (Al-Diri et al., 2008 and 2009). We got high accuracy in vessel segmentation, width measurements, and vessel
structure identification. The sensitivity and specificity on STARE are 0.7248 and 0.9666, respectively. On DRIVE, the sensitivity is
0.6522 and the specificity is up to 0.9710.

1. Introduction

Automatic vessel segmentation in medical images is a very
important task in many clinical investigations. In ophthal-
mology, the early diagnosis of several pathologies such as
arterial hypertension, arteriosclerosis, diabetic retinopathy,
cardiovascular disease, and stroke [1, 2] could be achieved by
analyzing changes in blood vessel patterns such as tortuosity,
bifurcation, and variation of vessel width on retinal images.

Early detection and characterization of retinal blood
vessels are needed for a better and effective treatment of
diseases. Hence, computer-aided detection and analysis of
retinal images could help doctors, allowing them to use
a quantitative tool for a better diagnosis, especially when
analyzing a huge amount of retinal images in screening
programs.

Many methods for blood vessel detection on retinal
images have been reported in the literature [3–5]. These
techniques can be roughly classified into pixel-basedmethods
[6–14], model-based methods [15–21], and tracking-based
approaches [22–29], respectively.

Pixel-based approaches consist in convolving the image
with a spatial filter and then assigning each pixel to back-
ground or vessel region, according to the result of a second

processing step such as thresholding or morphological oper-
ation. Chaudhuri et al. [8] used 2D Gaussian kernels with
12 orientations, retaining the maximum response. Hoover et
al. [6] improved this technique by computing local features
to assign regions to vessel or background. A multithreshold
scheme was used by Jiang and Mojon [9], whereas Sofka and
Stewart [10] presented a multiscale matched filter. Zana and
Klein [11] usedmorphological filter combined with curvature
evaluation for retinal segmentation. Neimeijer et al. [12] used
a classification scheme based on a simple feature computa-
tion. Gabor wavelet transform with a Bayesian classification
is performed by Soares et al. [13]. Staal et al. [7] applied a
supervised classification based on features computed near the
centerline. The same scheme was used by Ricci and Perfetti
[14] but with a modified line operator to train a supervised
pixel classifier.

Model-based approaches use parametric models to
extract vessels. Al-Diri et al. [30] extracted blood vessel
segment profiles and measured vessel width using a para-
metric active contour, based on two contours coupled by
spring models. Active contour model was applied by Kozerke
et al. [15] to automatically segment vessels. A level set
geometric-based regularization approach is given by Gooya
et al. [16]. Vasilevskiy and Siddiqi [17] developed FLUX for
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narrow elongated vessel segmentation and Law and Chung
[18] improved this technique for spherical flux computation.
Coronary arterial trees are reconstructed using elliptical
parametric cross-section model by Kayikcioglu and Mitra
[19]. Hessian-based method is proposed by Sato et al. [20] to
characterize stenosis in coronary angiograms, whereas Wang
et al. [21] used Hermite multiresolution model for retinal
vessel analysis. A multiresolution approach based on a scale-
space analysis is presented by Mart́ınez-Pérez et al. [31], in
which the width, the size, and orientation of retinal vessels
are obtained.

Tracking-based approaches are based on local techniques,
where either the centerline or vessel edges or both are
extracted. Starting from seed points, these methods progress
along vessels by iterative prediction and parameter estima-
tion. Many methods including several 2D and 3D medical
imaging modalities have been published [4]. An advantage
of tracking methods is the guaranteed connectedness of
vessel segment, whereas in pixels-processing-basedmethods,
connectedness is not guaranteed. A whole vessel tree can
be tracked by these methods without examining the vast
majority of the image. Starting from the optic disc, Tolias
and Panas [22] developed a fuzzy tracking model of 1D
vessel profile. Their method, however, did not manage to
handle branch points. Starting from seed points, Can et al.
[23] used an iterative tracking algorithm, updating at each
step the position and the orientation of vessel points. Zou
et al. [24] developed a recursive tracking technique guided
by accurate vessel direction and robust a priori knowledge
and termination criteria. Compared to others, this approach
could extract automatically most of the vessels with accurate
vessel characteristics.

Among tracking methods, few probabilistic approaches
have been reported in the literature [32–34]. The main ideas
of a probabilistic trackingmethod have been presented in our
previous work [35, 36], which needed some improvements
like modeling blood vessels more accurately, handling differ-
ent vessel configurations, and evaluating it on large database
images.

In this paper, a novel fully automatic tracking based
method using probabilistic formulation is introduced. First,
seed points, located inside vessels, are obtained from the
image. From these points, an iterative tracking algorithm
detects simultaneously edges, diameter width, centerline, and
orientation of the whole vascular tree. A branch prediction
scheme to handle bifurcation and crossing is also developed.
The major novelty lies in defining the likelihood of the
hypothesis of edge points and the a prioriprobability based on
Gibbs formulation. This new approach uses Gaussian model
to approximate vessel sectional intensity profiles, identifies
bifurcation and crossing structures using gradient analy-
sis, tracks centerline and local vessel edges geometry, and
improves the detection results as shown in the experiments
and discussion section. A probabilistic segmentation scheme
is associated with the maximum a posteriori (MAP) as a
criterion to estimate local vessel edges.

In the following, Section 2 gives a general description
of the proposed method. Section 3 is devoted to the expla-
nations of the tracking algorithm. Bayesian segmentation

is described in Section 4. Finally, experiments on STARE,
DRIVE, and REVIEW databases are presented and discussed
in Section 5.

2. General Description of the Method

In this paper, we propose a tracking-based method to detect
retinal vascular trees. First, a number of seed points are
selected automatically on the retinal image, which provide
initial parameters for the tracking algorithm. The tracking
process starts then from each of the seed points and detects
vessel edge points iteratively until end conditions are satisfied.
Finally, when all the seed points are processed, the whole
vascular tree is detected and the proposed algorithm stops.

A tracking process from one seed point is described in
detail as follows.

2.1. Initialization. Initial parameters, which are obtained
froma seed point, include initial vessel center point and vessel
direction. The blood vessel is then detected by the tracking
algorithm from the initial center point along the initial vessel
direction.

2.2. Iteration. At a given step, a dynamic search window
is defined based on local vessel parameters including vessel
center point, direction, and diameter. We adopt a statistical
sampling method to select new candidate edge points on
the search window. A Bayesian method with the MAP as a
criterion is used to pick out new vessel edge points from these
candidate points. New vessel parameters are then updated for
the next iteration. In addition, during the tracking process, a
branch prediction scheme is applied at each iteration to detect
vessel branches which exist in the local search area.

2.3. End. There are three end conditions for the proposed
tracking process. Under each of these conditions, the tracking
of current vessel stops. The three end conditions are as
follows.

(i) Current vessel’s end is considered to be found when
the vessel’s diameter is less than one pixel or the
contrast between the vessel and background is low.

(ii) Current vessel encounters a blood vessel which is
already detected by a tracking process starting from
another seed point.

(iii) Vessel branches are found. All initial information of
the branches is obtained by the algorithm and the
tracking of these vessel branches starts. The branch
with the biggest diameter is handled first.

3. Tracking Algorithm

3.1. Selection of Seed Points. In retinal image, blood vessels
are not all connected because of the imaging conditions and
different eye diseases.Therefore, the tracking algorithm starts
from several initial points selected on the whole image and
the tracking results are combined to get the final detected
vascular tree. In this study, we use an automatic two-step
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method based on grid line analysis to pick out initial seed
points. The first step, searching over grid lines, is similar to
the procedure used byCan et al. [23].The second step consists
in filtering the image obtained in the previous step by the 2D
Gaussian filter and getting the validated seed points.

First, a set of grid lines is drawn over the retinal image
as shown in Figure 1(b). Local intensity minima on each grid
line (horizontal or vertical) are detected (Figure 1(c)) and
considered as candidate seed points. Among the detected
local minima, some are related to noise or other eye tissues
such as fovea. So, rejection of the false candidate seed points
is needed in order to avoid unnecessary tracking. To test
the validity of the candidates, we use a set of 2D Gaussian
directional matched filters, which were first proposed by
Chaudhuri et al. [8].There are 12 different orientations for the
Gaussian kernels which are spaced in 15∘ from each other.We
convolve the 12 oriented filters with the given retinal image
for the selected candidate points. If the highest response of
12 directional filters for a candidate seed point is above a
local adaptive threshold, it is validated as a seed point and
the corresponding filter direction is regarded parallel to local
vessel direction. In our study, the local adaptive threshold is
defined based on local intensity distribution. For a candidate
seed point, the local adaptive threshold is computed as

𝑇seed = 𝜇seed + 𝛼𝜎seed, (1)

where 𝜇seed and 𝜎seed are the mean grey level and standard
deviation of the neighborhood of the candidate seed point,
respectively. After many experiments, the value of parameter
𝛼 is fixed to 1.2 and the size of the neighborhood is fixed to
61 × 61 pixels around each candidate seed point.

This method is fast and effective because it considers only
the pixels on the grid lines and validates seed points based
on the 2D Gaussian filter. All the verified seed points are
used for the initialization of the tracking algorithm. Each
seed point is considered as local vessel center point and
initiates the tracking algorithm twice, once in its related filter
direction and the other along the opposite direction. If a
seed point is out of vessels, the tracking algorithm stops
after one or two iterations according to the end conditions.
As shown in Figure 1(c), there is at least one seed point on
each of the blood vessels. Some examples of seed points are
shown in Figure 2, including locations and corresponding
filter directions. Figure 2 is a subimage of Figure 1(c) marked
by blue box.

3.2. Statistical Sampling. The proposed tracking algorithm
starts from each of the seed points and detects vessel edge
points iteratively. During the tracking process, new vessel
edge points are detected based on a statistical sampling
scheme. As shown in Figure 3, at a given step, a line segment
is obtained perpendicular to the tracking direction. This line
segment is regarded as a linear searchwindow, which restricts
the possible locations of new vessel edge points. The width of
the linear window is adaptive to local vessel diameter in order
to cover the potential positions of new edge points.

At iteration 𝑘 (when 𝑘 = 0), the initial vessel center
point 𝑂

0
is an initial seed point. 𝑂

0
may be not exactly

in the middle of local vessel. However, this deviation will
be corrected after two or three iterations. The initial vessel
direction �⃗�

0
is along or opposite to the related filter direction

of the initial seed point. A line segment is drawn centered
on 𝑂
0
and perpendicular to �⃗�

0
, which is regarded as the

initial linear window 𝐿
0
. The width of 𝐿

0
is set bigger than

the widest blood vessel in the retinal image. Two initial vessel
edge points �̂�

0
and �̂�

0
are detected on 𝐿

0
around the seed

point by the proposed method. Initial vessel diameter is 𝑑
0
=

|�̂�
0
�̂�
0
|.

When 𝑘 ≥ 1, vessel parameters at the previous iteration
𝑘−1 are known, including vessel edge points �̂�

𝑘−1
, �̂�
𝑘−1

, center
point 𝑂

𝑘−1
, direction �⃗�

𝑘−1
(‖�⃗�
𝑘−1
‖ = 1), and diameter 𝑑

𝑘−1
.

In order to get the linear window 𝐿
𝑘
, we first extrapolate the

vessel center point𝑂
𝑘−1

to a point𝑂
𝑘,𝑠
, which is 𝑠 pixels away

along �⃗�
𝑘−1

. The extrapolated point 𝑂
𝑘,𝑠

is described as

→
𝑂
𝑘−1
𝑂
𝑘,𝑠
= 𝑠�⃗�
𝑘−1
. (2)

Thevessel direction at𝑂
𝑘,𝑠
is obtained by performing gradient

analysis of this point (see Section 3.3) and is denoted by
�⃗�
𝑘,𝑠
. A line segment is then drawn centered on 𝑂

𝑘,𝑠
and

perpendicular to �⃗�
𝑘,𝑠

as shown in Figure 3.This line segment
is regarded as the linear search window 𝐿

𝑘
at iteration 𝑘. The

width of the linear window is set twice the diameter of local
blood vessel 𝑑

𝑘−1
.

We select𝑁
𝐿𝑘

points which are numbered from 1 to𝑁
𝐿𝑘

on 𝐿
𝑘
(𝑘 ≥ 0). The interval between two adjacent points

is fixed to 1 pixel. 𝑁
𝐿𝑘

selected points are considered as
candidate edge points. New edge points �̂�

𝑘
and �̂�

𝑘
are chosen

from these candidates by a Bayesian method (see Section 4).
Then, new vessel parameters at iteration 𝑘 are updated
accordingly. The new center point 𝑂

𝑘
is the middle point

of [�̂�
𝑘
, �̂�
𝑘
]; vessel direction �⃗�

𝑘
is defined as the direction at

point𝑂
𝑘
by gradient analysis (see Section 3.3); and new vessel

diameter is 𝑑
𝑘
= |�̂�
𝑘
�̂�
𝑘
|.

3.3. Gradient Analysis. In this study, the vessel direction at
a point is assumed to be parallel to the nearest blood vessel.
This direction can be estimated based on the local gradient
information. Let the gradient vector at point (𝑖, 𝑗) in the image
has the polar representation. The modulus 𝐺

𝑖𝑗
and the angle

𝜃
𝑖𝑗
are obtained based on the classic Sobel mask. Since the

projection of a vector is maximized in the direction parallel
to it, the dominant gradient direction at (𝑖

𝑜
, 𝑗
𝑜
) is assumed

as the optimum direction in which the projections of the
gradient vectors in the neighborhood𝑀 × 𝑁 around (𝑖

𝑜
, 𝑗
𝑜
)

aremaximized. In practice, the size of neighborhood used for
calculating the gradient direction is fixed to 5 × 5. If the angle
of the dominant gradient direction at (𝑖

𝑜
, 𝑗
𝑜
) is denoted by

𝜃
𝑔
, the projection function of the gradients is expressed as

follows [41]:

𝐹 (𝜃
𝑔
) = ∑

(𝑖,𝑗)∈𝑀∗𝑁

𝐺
2

𝑖𝑗

cos2 (𝜃
𝑖𝑗
− 𝜃
𝑔
) . (3)
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(a) (b) (c)

Figure 1: Selection of seed points on a retinal image: (a) retinal image; (b) grid lines and candidate seed points; (c) validated initial seed
points.

Figure 2: Examples of seed points.

Figure 3: Linear search window: �̂� and �̂� are the vessel edge points,
𝑂 is the center point, �⃗� is the vessel direction, and 𝑘 is the index
of the iteration. 𝐿

𝑘

is the linear search window at iteration 𝑘. Black
points on 𝐿

𝑘

show the possible locations of new edge points.

𝐹(𝜃
𝑔
) is maximized by calculating the value of 𝜃

𝑔
when

making its derivative equal to zero.The angle of the dominant
direction at (𝑖

𝑜
, 𝑗
𝑜
) is

𝜃
𝑔
=
1

2
arctan(

∑
(𝑖,𝑗)∈𝑀∗𝑁

𝐺
2

𝑖𝑗

sin (2𝜃
𝑖𝑗
)

∑
(𝑖,𝑗)∈𝑀∗𝑁

𝐺
2

𝑖𝑗

cos (2𝜃
𝑖𝑗
)

) . (4)

On a grayscale image, the gradient vector points to the direc-
tion of the greatest change of the grey level. Therefore, the
dominant gradient direction at point (𝑖

𝑜
, 𝑗
𝑜
) is perpendicular

to the nearest blood vessel on the retinal image. The angle of
the vessel direction at (𝑖

𝑜
, 𝑗
𝑜
) can be estimated as

𝜃
𝑖𝑜𝑗𝑜
= 𝜃
𝑔
±
𝜋

2
. (5)

The sign before 𝜋/2 is determined by local vessel parameters
as discussed later. Finally, the vessel direction at (𝑖

𝑜
, 𝑗
𝑜
) is

described as a unit vector by 𝜃
𝑖𝑜𝑗𝑜

:

�⃗�
𝑖𝑜𝑗𝑜
= (cos (𝜃

𝑖𝑜𝑗𝑜
) , sin (𝜃

𝑖𝑜𝑗𝑜
)) . (6)

As mentioned in the previous section, the deployment of
linear search window and update of new vessel direction are
both accomplished based on the gradient analysis of specific
points. At iteration 𝑘, in order to get the linear searchwindow,
we need to calculate the vessel direction at the extrapolated
point 𝑂

𝑘,𝑠
. We compare the dominant gradient direction �⃗�

𝑔

at 𝑂
𝑘,𝑠

and the local vessel direction �⃗�
𝑘−1

(see Figure 4). The
angle difference between these two directions is

Δ𝜃 = 𝜃
𝑔,𝑂𝑘,𝑠

− 𝜃
⃗
𝐷𝑘−1

, (7)

where 𝜃
𝑔,𝑂𝑘,𝑠

is the angle of the dominant gradient direction
at 𝑂
𝑘,𝑠
, which can be calculated by (4). According to (5), the

angle of the vessel direction at 𝑂
𝑘,𝑠

is

𝜃
𝑂𝑘,𝑠
=

{{

{{

{

𝜃
𝑔,𝑂𝑘,𝑠

−
𝜋

2
if 0 < Δ𝜃 ≤ 𝜋,

𝜃
𝑔,𝑂𝑘,𝑠

+
𝜋

2
if − 𝜋 < Δ𝜃 ≤ 0.

(8)

Finally, the vessel direction at 𝑂
𝑘,𝑠

is described as a unit
vector: �⃗�

𝑘,𝑠
= (cos(𝜃

𝑂𝑘,𝑠
), sin(𝜃

𝑂𝑘,𝑠
)). The new vessel direction

�⃗�
𝑘
is defined as the vessel direction at the new center point

𝑂
𝑘
, which is calculated similarly to the direction at point𝑂

𝑘,𝑠
.

3.4. Detection of Branches. The vascular tree in retinal image
has complex structures.The linear search windowmentioned
in Section 3.2workswell when tracking along a vessel without
branches. However, it is not suitable when encountering
vessel branches. Therefore, we consider using a semicircle
search window (see Figure 7(a)) instead of the linear one
when branches are predicted.
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Figure 4: Calculation of the vessel direction at the extrapolated
point 𝑂

𝑘,𝑠

.

Figure 5: Different search windows during the tracking process.
Black points are the candidate edge points and the white ones are
the detected vessel edge points and center points. The blue arrows
point to the vessel direction at the edge point or center point.

The choice of different search windows depends on a
branch prediction scheme.We have found that a single vessel
without branches has two parallel edge lines. Thus, at a given
step of the tracking process, we compare the directions at
two local vessel edge points (see Figure 4). If the difference
between two direction angles exceeds a fixed threshold 𝑇angle,
we predict that current blood vessel will bifurcate into new
vessel branches. If not, current vessel will be linear.

At iteration 𝑘, vessel directions at two previous edge
points �̂�

𝑘−1
and �̂�

𝑘−1
are obtained according to (6). Direction

angles of the edge points are denoted by 𝜃
̂
𝑈𝑘−1

and 𝜃
̂
𝑉𝑘−1

,
respectively. The angle difference is calculated as

Δ𝜃
𝑢V =


𝜃
̂
𝑈𝑘−1

− 𝜃
̂
𝑉𝑘−1


. (9)

In this study, the threshold 𝑇angle is chosen as 5∘. When
Δ𝜃
𝑢V < 𝑇angle, a linear search window is used. Otherwise,

when Δ𝜃
𝑢V ≥ 𝑇angle, a semicircle search window is used

instead of the linear one. Figure 5 shows the different search
windows during the tracking process. However, two vessel
edge lines can be sometimes unparalleled due to the noise or
eye diseases rather than vessel branches. In these situations,
semicircle search window is still used. The proposed method
can handle this situation and identify if branches really exist
or not.

Background

Background

Vessel

Lk

Ûk−1

V̂k−1

Mi

Ûk−4 Ûk−3 Ûk−2

V̂k−2
V̂k−3

V̂k−4

Mm1

Mm2

Figure 6: Normal configuration on a linear search window: 𝑀
𝑚1

and𝑀
𝑚2

are selected candidate points on linear search window 𝐿
𝑘

.
The two selected points give an assumption of local blood vessel and
define a normal configuration.

4. Bayesian Method for Vessel Segmentation

4.1. Configuration Model. Vessel edge points are detected
iteratively by a Bayesian method based on the proposed
statistical sampling scheme. In order to choose new edge
points among the candidate points on the dynamic search
window, we define configurationmodels by a set of candidate
points to describe the possible local vessel’s structures. In
this study, vessel structures are categorized into three types:
normal, bifurcation, and crossing. Normal case is regarded
as the situation in which only a single vessel exists in the
current search area. The case of bifurcation means that
one single vessel bifurcates into two branches. A crossing
case is described when one vessel overlaps another. In the
proposed method, there are three types of configuration
models according to the different vessel structures.

At a given step, if a linear search window is used when
local blood vessel is predicted to be linear without branches,
we define normal configurations only. As shown in Figure 6,
𝐿
𝑘
is the linear search window at iteration 𝑘. We select

two candidate points𝑀
𝑚1

and𝑀
𝑚2
, which are the 𝑚th

1

and
𝑚

th
2

points on 𝐿
𝑘
(1 < 𝑚

1
< 𝑚
2
< 𝑁
𝐿𝑘
), and assume

them as new vessel edge points. The two selected points
divide all the candidate points into three parts, two parts
belonging to the background and one part belonging to the
vessel. Candidate points between the two selected points
are assumed to belong to the vessel and others belong to
the background. So, the 𝑖th candidate 𝑀

𝑖
(𝑖 ∈ [1,𝑁

𝐿𝑘
]) is

assumed to belong to the blood vessel if 𝑖 ∈ [𝑚
1
, 𝑚
2
] or

to the background if 𝑖 ∈ [1,𝑚
1
[⋃]𝑚

2
, 𝑁
𝐿𝑘
]. Two candidate

points selected on the linear search window can be defined
as a normal configuration. There are𝑁

𝐿𝑘
(𝑁
𝐿𝑘
− 1)/2 normal

configurations at iteration 𝑘, which is the number of 2
combinations from the set of𝑁

𝐿𝑘
candidates on 𝐿

𝑘
.

Otherwise, when vessel branches are predicted, a semi-
circle search window is used. Three types of configurations
(normal, bifurcation, and crossing) are defined. In this
situation, the normal configuration is defined to describe
the possible local linear blood vessel which is mispredicted
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as vessel branches by the branch prediction scheme. The
bifurcation and crossing configurations are used to describe
the possible new vessel branches. At iteration 𝑘, if a semicircle
search window 𝐶

𝑘
is used, three types of configurations are

illustrated in Figure 7. A normal configuration is defined
by two selected candidate points on 𝐶

𝑘
, similarly to the

definition on the linear search window. For a bifurcation
configuration, four candidate points are selected to describe
the edge points of two possible branches. Six points are
needed for a crossing configuration. Two of the six ones are
assumed to be the new edge points of the same vessel, while
the other four points are considered as the edge points of
another vessel which is over or under the current one.

4.2. Probability of Configurations. The configuration models
are defined by a set of candidate edge points on the dynamic
search window. At a given step, the proposed method
attempts to find a configuration, which best matches current
vessel structure among all the possible configurations. The
best configuration at a given step is obtained by a maximum
a posteriori estimation. Local vessel structure and new vessel
edge points are then detected based on this configuration.

At a given step, by computing the position of each of the
𝑁 candidate edge points on the search window (line segment
or semicircle) and assigning the grey level value of the nearest
pixel to that point, we obtain the observed discrete intensity
profile 𝑌 = {𝑦

𝑖
, 𝑖 = 1, . . . , 𝑁}. The posteriori distribution of a

configuration 𝜒 is described as 𝑃(𝜒 | 𝑌). According to Bayes’
rule,

𝑃 (𝜒 | 𝑌) =
𝑃 (𝑌 | 𝜒) 𝑃 (𝜒)

𝑃 (𝑌)
, (10)

where 𝑃(𝑌 | 𝜒) is the conditional probability of 𝑌 for a
given configuration 𝜒 and 𝑃(𝜒) is the a priori probability
of 𝜒. When 𝑁 candidate points are selected, the observed
intensity profile 𝑌 is fixed and has no relationship with the
configuration. So,𝑃(𝑌) does not depend on the configuration
and will be disregarded. Based on the Maximum a posteriori
(MAP) criterion, the best configuration is obtained as

𝜒 = argmax
𝜒

{𝑃 (𝜒 | 𝑌)} = argmax
𝜒

{𝑃 (𝑌 | 𝜒) 𝑃 (𝜒)} . (11)

4.2.1. Configuration on Linear Search Window. In order to
explain (11) in detail, we first discuss the normal configura-
tions on the linear search window. As shown in Figure 6, 𝐿

𝑘
is

the linear search window at iteration 𝑘.The observed discrete
intensity profile on 𝐿

𝑘
is 𝑌
𝐿𝑘
= {𝑦
𝑖
, 𝑖 = 1, . . . , 𝑁

𝐿𝑘
}. A normal

configuration, which is defined by two selected candidate
points𝑀

𝑚1
and𝑀

𝑚2
, is also shown in this figure. Assuming

that the discrete grey levels on 𝐿
𝑘
are independent, the

likelihood function of this normal configuration is computed
as

𝑃 (𝑌
𝐿𝑘
| 𝜒) =

𝑁𝐿𝑘

∏

𝑖=1

𝑃 (𝑦
𝑖
| 𝜒) , (12)

where 𝑃 (𝑦
𝑖
| 𝜒) is a conditional probability model which is

defined to describe the variability of the 𝑖th candidate point

on the search window belonging either to the background
or to the blood vessel. As shown in Figure 6, all candidate
points on 𝐿

𝑘
are divided by𝑀

𝑚1
and𝑀

𝑚2
into three parts,

which belong to the background, vessel, and background,
respectively, so

𝑃 (𝑌
𝐿𝑘
| 𝜒) =

𝑚1−1

∏

𝑖=1

𝑃 (𝑦
𝑖
| 𝑏)

𝑚2

∏

𝑚1

𝑃 (𝑦
𝑖
| V)

𝑁𝐿𝑘

∏

𝑚2+1

𝑃 (𝑦
𝑖
| 𝑏) ,

(13)

where 𝑏 and V denote background and vessel, respectively.
In Bayesian framework, we assume that 𝑋

𝐿𝑘
= {𝑥
𝑖
, 𝑖 =

1, 2, . . . , 𝑁
𝐿𝑘
} is the true intensity profile associated with the

𝑁
𝐿𝑘

candidate points on 𝐿
𝑘
. In this study, we assume that the

retinal image is only affected by additive noise 𝜉, so

𝑌
𝐿𝑘
= 𝑋
𝐿𝑘
+ 𝜉. (14)

During the tracking process, the local background is assumed
to have a constant intensity. Vessel’s sectional intensity profile
can be approximated by a Gaussian curve [8, 40]. The grey
level of a point 𝑀 in local vessel cross-section as shown in
Figure 8 is computed as

𝐺 (𝑀) =

{{

{{

{

(𝐼
𝑐
− 𝐼
𝑏
) exp(− 𝑙

2

2𝜎
2

) + 𝐼
𝑏

if 𝑀 ∈ vessel

𝐼
𝑏

if 𝑀∈ background,
(15)

where 𝐼
𝑐
is the grey level of local vessel’s center 𝐼

𝑏
is the grey

level of local background, 𝑙 is the distance between point
𝑀 and the straight line which passes through vessel’s center
along local vessel direction, and 𝜎 defines the spread of the
intensity profile and is set to the value of half of local vessel’s
radius. A selected vessel cross-section and its observed and
estimated intensity profiles are show in Figure 9. For the
normal configuration shown in Figure 6, the true grey level
of the 𝑖th candidate point𝑀

𝑖
on 𝐿
𝑘
, is estimated as

𝑥
𝑖
=

{{{{

{{{{

{

𝑥
𝑖
(V) = (𝐼

𝑐,𝑘
− 𝐼
𝑏,𝑘
) exp(−

𝑙
𝑖

2

2𝜎
𝜒

2

) + 𝐼
𝑏,𝑘

if 𝑖 ∈ [𝑚
1
, 𝑚
2
]

𝑥
𝑖
(𝑏) = 𝐼

𝑏
if 𝑖 ∈ [1,𝑚

1
)⋃(𝑚

2
, 𝑁
𝐿𝑘
] ,

(16)

where 𝐼
𝑐,𝑘

is the grey level of local vessel center and 𝐼
𝑏,𝑘

is the mean grey level of local background areas. 𝑙
𝑖
is the

distance between 𝑀
𝑖
and the straight line which passes

through themiddle point of [𝑀
𝑚1
,𝑀
𝑚2
] and is perpendicular

to →𝑀
𝑚1
𝑀
𝑚2
. The spread parameter 𝜎

𝜒
= (1/2)|𝑀

𝑚1
𝑀
𝑚2
|.

At iteration 𝑘, the local intensity parameters 𝐼
𝑐,𝑘

and 𝐼
𝑏,𝑘

are calculated on three moving regions: one inside and two
others outside the local blood vessel as shown in Figure 10.
These three regions are selected by the algorithm in local
research area based on local vessel edge points �̂�

𝑘−1
and �̂�

𝑘−1
.

The size of these three regions is adaptive to local vessel
diameter. 𝐼

𝑐,𝑘
is the grey level of local vessel center point𝑂

𝑘−1
.

𝐼
𝑏,𝑘

is the mean grey level of two regions outside local blood
vessel.
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Figure 7: Semicircle search window and three types of configurations: 𝐶
𝑘

is the semicircle search window at iteration 𝑘, and points marked
by small circles are selected to define different types of configurations.
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2𝜎

M

l

Figure 8: Illustration of (15). The dotted line is the vessel’s center
line. The pink point is local vessel center point, while the blue one is
point𝑀.

The observed grey level profile on 𝐿
𝑘
can be expressed as

𝑦
𝑖
= 𝑥
𝑖
+ 𝜉

= {
𝑥
𝑖
(V) + 𝜉V if 𝑖 ∈ [𝑚

1
, 𝑚
2
]

𝑥
𝑖
(𝑏) + 𝜉

𝑏
if 𝑖 ∈ [1,𝑚

1
)⋃(𝑚

2
, 𝑁
𝐿𝑘
] ,

(17)

where 𝜉V and 𝜉𝑏 are the Gaussian noise in local blood vessel
and background, respectively:

𝜉V ∼ 𝑁(0, 𝜎
2

V) ,

𝜉
𝑏
∼ 𝑁(0, 𝜎

2

𝑏

) .

(18)

The statistical parameters 𝜎V and 𝜎
𝑏
are also computed by

threemoving regions as shown in Figure 10. 𝜎V is estimated as
the standard deviation of grey levels in the vessel region and
𝜎
𝑏
is the standard deviation of grey levels in two background

regions.Then, conditional probability model of the proposed
normal configuration is

𝑃 (𝑦
𝑖
| V) =

1

√2𝜋𝜎V

exp(−
(𝑦
𝑖
− 𝑥
𝑖
(V))
2

2𝜎
2

V

) ,

𝑃 (𝑦
𝑖
| 𝑏) =

1

√2𝜋𝜎
𝑏

exp(−
(𝑦
𝑖
− 𝑥
𝑖
(𝑏))
2

2𝜎
2

𝑏

) ,

(19)

and the likelihood function can be calculated by (13).
In our method, the a priori probability is based on the

Gibbs formulation [42]:

𝑃 (𝜒) =
1

𝑍
exp (−𝜆𝑈 (𝜒)) , (20)
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Figure 9: Vessel’s sectional intensity profile. (a) Gaussian intensity model. (b)The observed and estimated profiles of the vessel cross-section
marked by a black line on the retinal image.
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Figure 10: Estimation of vessel edge lines and local statistic
parameters.

where 𝑍 is a normalization parameter and 𝜆 is a regulariza-
tion term. In our study, 𝑍 was fixed to 1. As 𝑍 was set to
be a constant, it has no influence on the computation of the
maximum of (11). After many experiments, 𝜆 was set to 0.01.
𝑈(𝜒) is the energy function of a given configuration. Gibbs
formulation aims at linking a configuration with an energy
function to penalize high energetic configurations.

At a given step, when a linear search window is used,
the local blood vessel is assumed to be linear. The local
vessel edges can be estimated as two straight lines and new
edge points are supposed to be aligned on the local vessel
edge lines. At iteration 𝑘 (𝑘 < 5), the vessel edge lines 𝐸

1

and 𝐸
2
are estimated as two straight lines along the local

direction �⃗�
𝑘−1

and passing through two edge points �̂�
𝑘−1

and �̂�
𝑘−1

, respectively. When 𝑘 ≥ 5, 𝐸
1
and 𝐸

2
are defined as

the least square straight lines obtained by four pairs of edge
points detected in the previous iterations (see Figure 10).
Considering the proposed normal configuration of Figure 6,
we compute the distance between 𝑀

𝑚1
and 𝐸

1
and

the distance between 𝑀
𝑚2

and 𝐸
2
, which are denoted

by 𝑡
𝑚1

and 𝑡
𝑚2
, respectively (see Figure 10). The energy

function can be defined as𝑈(𝜒) = 𝑡2
𝑚1

+ 𝑡
2

𝑚2

[42]. The a priori
probability has the expression:

𝑃 (𝜒) =
1

𝑍
exp (−𝜆 (𝑡2

𝑚1

+ 𝑡
2

𝑚2

)) . (21)

At iteration 𝑘, the likelihood functions and the a priori
probabilities of all the 𝐶2

𝑁𝐿𝑘

normal configurations on 𝐿
𝑘
are

computed similarly to the proposed normal configuration
of Figure 6. The best configuration at iteration 𝑘 is obtained
by (11). The two candidate points used to define the best
configuration are regarded as new vessel edge points.

4.2.2. Configurations on Semicircle Search Window. In the
other situation, when a semicircle search window is used at
a given step, three types of configurations are defined. As
shown in Figure 7, 𝐶

𝑘
is the semicircle search window at

iteration 𝑘. The observed discrete intensity profile on 𝐶
𝑘
is

denoted by 𝑌
𝐶𝑘
= {𝑦
𝑖
, 𝑖 = 1, . . . , 𝑁

𝐶𝑘
}. The probabilities of all

the configurations on 𝐶
𝑘
are computed.

For normal configurations on 𝐶
𝑘
, the likelihood function

is computed similarly using (13). An example of bifurcation
configuration is shown in Figure 7(b). It has four selected
points which are the 𝑝th

1

, 𝑝th
2

, 𝑝th
3

, and 𝑝th
4

candidate points
on 𝐶
𝑘
. Its likelihood function can be computed as

𝑃 (𝑌
𝐶𝑘
| 𝜒) =

𝑝1−1

∏

𝑖=1

𝑃 (𝑦
𝑖
| 𝑏)

𝑝2

∏

𝑝1

𝑃 (𝑦
𝑖
| V)
𝑝3−1

∏

𝑝2+1

𝑃 (𝑦
𝑖
| 𝑏)

𝑝4

∏

𝑝3

𝑃 (𝑦
𝑖
| V)

𝑁𝐶𝑘

∏

𝑝4+1

𝑃 (𝑦
𝑖
| 𝑏) .

(22)

The sectional intensity distribution of the two assumed vessel
branches is also approximated by the Gaussian shaped curve.
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The true discrete intensity profile on 𝐶
𝑘
is obtained similarly

to (16) according to the given bifurcation configuration. The
conditional probability models 𝑃 (𝑦

𝑖
| 𝑏) and 𝑃 (𝑦

𝑖
| V) in

(22) are calculated similarly to (19). In addition, the likelihood
function of a crossing configuration is obtained based on its
six selected points.

The a priori model, which is defined by the previous
detected vessel edge points (see (21)), has no influence
on bifurcation or crossing configurations. Therefore, the
a priori probability of a configuration on the semicircle
search window, no matter normal, bifurcation, or crossing, is
disregarded. According to (11), the best configuration on 𝐶

𝑘

is obtained as

𝜒 = argmax
𝜒

{𝑃 (𝑌
𝐶𝑘
| 𝜒)} . (23)

If 𝜒 is a normal configuration, the local blood vessel is
considered to be linear and two candidate points used to
define 𝜒 are regarded as new vessel edge points at iteration
𝑘. So, the proposed method solves the problem that local
linear blood vessel is mispredicted to bifurcate into vessel
branches. If 𝜒 is a bifurcation configuration, two vessel
branches are detected, and the four selected candidate points
are considered as the initial edge points of two branches. If 𝜒
is a crossing configuration, current vessel encounters another
one. The new detected blood vessel is regarded as two vessel
branches starting from the crossing.The third and the fourth
selected points of the six ones are regarded as new edge points
of current blood vessel. The other four points are considered
as the initial edge points of two branches starting from the
crossing.

5. Experiments and Discussion

The performance of our method was evaluated on three
publicly available databases: STARE [6], DRIVE [7], and
REVIEW [30, 43]. There are three initial parameters in our
algorithm: the distance between grid lines in the selection
of seed points, the look-ahead distance 𝑠 (see (2)), and the
length of the initial linear window 𝐿

0
. In our experiments,

the distance between grid lines is fixed to 30 pixels, 𝑠 is
set to 3 pixels, and 𝐿

0
is set to 10 pixels after many trials.

These parameter values can give the best results, including
computational time, when testing on the three databases.

The STARE database contains 20 retinal images, which
are captured by the TopCon TRV-50 fundus camera at a 35∘
field of view (FOV). 10 of the images are from healthy ocular
fundus and the other 10 are from unhealthy ones. All the
images are segmented manually by two independent special-
ists. The proposed method is tested with the segmentation of
the first observer as ground truth.

TheDRIVE database contains 40 retinal images which are
captured by theCanonCR5 camera at 45∘ FOV.The 40 images
were divided into a training set and a test set, each of which
contains 20 images. They had been manually segmented by
three observers trained by an ophthalmologist. The images
in the training set were segmented once, while images in the
test set were segmented twice, resulting in sets A and B. Our

method is tested on the test set using the segmentations of set
A as ground truth.

The REVIEW database consists of four image sets which
include 16 images with 193 vessel segments demonstrating a
variety of pathologies and vessel types. The high resolution
image set (HRIS) represents different sever grades of diabetic
retinopathy. The vascular disease image set (VDIS) contains
a range of normal and diseased retina, including diabetic and
arteriosclerotic retinopathies. The central light reflex image
set (CLRIS) represents early atherosclerotic changes with an
exaggerated vascular light reflex.The images of the kick point
image set (KPIS) are taken from clean, large vessel segments.
These four image sets contain 5066manually marked profiles
assessed by three independent experts.Theperformance of an
algorithm can be compared with manual measurement with
accuracy up to 0.25 of a pixel.

5.1. Segmentation Performance. We used STARE and DRIVE
databases to evaluate the segmentation performance of the
proposed method. In practice, our algorithm is developed
in Matlab (version 7.6.0.324) environment. Some functions
are programmed using C language in order to save com-
putation time. The average running time of our tracking
method on one image is 9.6min on STARE and 6.3min on
DRIVE. Our runtimes are higher than the ones obtained
using nontracking vessel segmentation. For example, the
processing time of Mendonça’s method [1] is 3min for a
STARE image, and 2.5min for a DRIVE image. Mendonça
andCampilho [1] used a pixel-based global approach and also
implemented their algorithm usingMatlab. In order to assess
the proposed method and compare it with the other state-
of-art methods, we use three widely known performance
measures: the detection accuracy, sensitivity, and specificity.
The accuracy is defined as the ratio of the total number of
correctly classified pixels to the number of pixels in the FOV
(field of view). The sensitivity is defined as the ratio of the
number of correctly classified vessel pixels to the number
of total vessel pixels in the ground truth. The specificity is
defined as the ratio of the number of correctly classified
nonvessel pixels to the number of total nonvessel pixels inside
FOV in the ground truth.

First, we discuss the segmentation performance of the
proposed method on 20 retinal images from the STARE
database. For example, we discuss the test result of our
method on a retinal image (im0077) from the STARE
database as shown in Figure 11(a). The segmentation result
of the proposed method and the ground truth are shown in
Figures 11(b) and 11(c), respectively. In order to obtain the
final detected blood vessels, we first obtain vessel edge lines
by linking the detected vessel edge points. Then, the pixels
between two vessel edge lines are considered to belong to
the blood vessel. By comparing with the ground truth, we
can see that the proposed method is able to detect most of
the blood vessels. The detection sensitivity, specificity, and
accuracy of the proposed method on im0077 are 0.8020,
0.9600, and 0.9426, respectively. Besides, we selected four
regions on im0077 as shown in Figure 11(a), which present
four types of vessel structures: line, curve, bifurcation, and
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Figure 11: Tests on different vessel structures. (a) Retinal image (im0077) from the STARE database. Four selected regions show different
vessel structures such as line, curve, bifurcation, and crossing. (b) Segmentation result by the proposed method. (c) Ground truth. (d)–(g)
Subimages obtained from (a) and the related dynamic search window and detected vessel edge points.

crossing. The enlarged regions are shown in Figures 11(d)–
11(g), respectively. In the second rowof Figures 11(d)–11(g), we
can see that the linear search window is used when tracking
for linear blood vessels, while the semicircle search window
is used to detect vessel branches in the bifurcation or crossing
structures. The candidate points on each search window are
marked by block dots, while detected vessel edge points are
marked by small circles.

Threemethods, Hoover’s [6], Soares’ [13] andMendonça’s
[1]methods, are used for comparison purposes on the STARE
database. Hoover et al. [6] proposed a filter-based method
and made their segmentation results on the STARE database
public on their website. Soares’ [13] method is based on
the 2D Gabor wavelet transform, and its test results on
the STARE database are presented on the public website
(http://retinal.sourceforge.net/). Mendonça and Campilho
[1] used morphological operators for vessel segmentation.
Table 1 lists the segmentation performance of different meth-
ods on the STARE database. As mentioned in the beginning
of this section, segmentation results of the first observer are
used for the ground truth. In Table 1, the manual detection
results of the second observer are considered as a refer-
ence used for comparison. The performance measures of
Hoover’s [6] and Soares’ [13]methods are calculated using the
segmented images from their public websites, respectively.
The performance of Mendonça’s method is obtained from

Table 1: Evaluation results of different segmentation methods on
STARE database.

Method Sensitivity Specificity Accuracy
The 2nd observer 0.8949 0.9390 0.9354
Hoover et al. [6] 0.6751 0.9567 0.9267
Soares et al. [13] 0.7165 0.9748 0.9480
Mendonça and Campilho [1] 0.6996 0.9730 0.9440
Proposed 0.7248 0.9666 0.9412

the original paper [1]. The experimental results show that
our method has a higher sensitivity (0.7248) than the other
three methods. The specificity and accuracy of the proposed
method are 0.9666 and 0.9412, respectively, which are both
higher than those of the second observer and Hoover’s
method [6].

As mentioned above, the STARE database includes 10
normal and 10 abnormal retinal images. In Table 2, we show
the performance measures of different methods in the two
cases on STARE database. In normal cases, the proposed
method outperforms Hoover’s method [6] and has a similar
performance to Mendonça’s method [1]. In abnormal cases,
the proposed method is better than the other three methods.
The sensitivity of the proposedmethod is up to 0.7034, which

http://retinal.sourceforge.net/
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Figure 12: Results on a normal retinal image from the STARE database: (a) retinal image (im0255); (b) Hoover et al. [6]; (c) Soares et al. [13];
(d) the proposed method; (e) ground truth.

(a) (b) (c)

(d) (e)

Figure 13: Results on an abnormal retinal image from the STARE database: (a) retinal image (im0044); (b) Hoover et al. [6]; (c) Soares et al.
[13]; (d) the proposed method; (e) ground truth.
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Figure 14: Results on a retinal image from DRIVE database: (a) retinal image (01 test); (b) ground truth; (c) Mart́ınez-Pérez et al. [31]; (d)
Chaudhuri et al. [8]; (e) Jiang and Mojon [9]; (f) the proposed method.

is much higher than that of the others. To make the com-
parison fairer, we show the segmentation results of different
methods on two retinal images from the STAREdatabase, one
normal im0255 and one abnormal im0044 (see Figures 12 and
13). The ground truth image is the segmentation result of the
first observer. Result images of Hoover’s [6] and Soares’ [13]
methods are downloaded directly from their public website
(http://retinal.sourceforge.net/). In the normal case, as shown
in Figure 12, the proposed method detected more details
than the others, especially in the area near the fovea. In the

abnormal case, as shown in Figure 13, our method detected
most of the vascular tree, while Hoover’s method lost some
thin blood vessels and themain blood vessels in Soares’ result
are discontinued.

Secondly, we discuss the segmentation performance
on DRIVE database. Several popular vessel segmentation
methods are considered when testing on the DRIVE
database for comparison purposes as shown in Table 3.
The performance measures of the compared methods
are obtained from the website of DRIVE database

http://retinal.sourceforge.net/
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Figure 15: Test results of the proposed method on the REVIEW database. Images (a)–(d) show the vessel segments obtained from HRIS,
VDIS, CLRIS, and KPIS, respectively.
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Figure 16: Distribution of vessel diameters on the REVIEW
database.

(http://www.isi.uu.nl/Research/Databases/DRIVE/). We can
see that the proposed method has higher specificity and
accuracy than those of the others. The sensitivity is a bit

Table 2: Evaluation results on normal and abnormal retinal images
from STARE database.

Method Sensitivity Specificity Accuracy
Normal cases

The 2nd observer 0.9646 0.9236 0.9283
Hoover et al. [6] 0.6766 0.9662 0.9324
Soares et al. [13] 0.7554 0.9812 0.9542
Mendonça and Campilho [1] 0.7258 0.9791 0.9492
Proposed 0.7463 0.9664 0.9405

Abnormal cases
The 2nd observer 0.8252 0.9544 0.9425
Hoover et al. [6] 0.6736 0.9472 0.9211
Soares et al. [13] 0.6869 0.9682 0.9416
Mendonça and Campilho [1] 0.6733 0.9669 0.9388
Proposed 0.7034 0.9668 0.9420

inferior to some state-of-the-art methods. Because our
method seems to be effective in abnormal cases as shown in
Table 2, most of the images are normal in DRIVE database.

Figure 14 shows the segmentation results of four different
methods on the retinal image 01 test from the DRIVE

http://www.isi.uu.nl/Research/Databases/DRIVE/
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Table 3: Evaluation results of different segmentation methods on
DRIVE database.

Method Sensitivity Specificity Accuracy
The 2nd observer 0.7761 0.9725 0.9473
Al-Diri et al. [30] 0.7282 0.9551 0.9258
Jiang and Mojon [9] 0.6478 0.9625 0.9212
Mart́ınez-Pérez et al. [31] 0.7086 0.9496 0.9181
Chaudhuri et al. [8] 0.2716 0.9794 0.8773
Proposed 0.6522 0.9710 0.9267

database. As shown in Figure 14(a), 01 test is a normal retinal
image without retinopathy. The ground truth as shown in
Figure 14(b) is manual segmentation result. Figures 14(c) and
14(d) show the original classification results of the Martnez-
Pérez’s [31] and Chaudhuri’s [8] algorithms, respectively.
For these two methods, the final segmentation results are
obtained from the original results by thresholding at a certain
value. Jiang andMojon [9] use the adaptive local thresholding
and the segmentation result is shown in Figure 14(e). There
are disconnected main blood vessels and missed thin blood
vessels in Jiang’s results. The segmentation result of the
proposed method is shown in Figure 14(f).

5.2. Width Measurement Performance. To assess the diame-
termeasurement performance, we have used the four datasets
(HRIS, VDIS, CLRIS, and KPIS) of the REVIEW database.
In REVIEW database, the profiles marked by the observers
provide the locations of vessel edge points for the vessel
segments inHRIS, VDIS, andCLRIS. Local vessel parameters
are calculated based on these marked vessel edge points. If
a pair of local marked vessel edge points are denoted by
(𝑥
1
, 𝑦
1
) and (𝑥

2
, 𝑦
2
), the local vessel center point is ((𝑥

1
+
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2
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)). For the

dataset KPIS, the manually marked profiles supply the vessel
center point, diameter, and direction directly, without giving
the vessel edge points. When testing our method on the
images of REVIEW database, the first profile of each selected
vessel segment is used for the initialization. The tracking
process is stopped when the search area exceeds the selected
vessel segment. Figure 15 shows examples of vessel segments
obtained from the four datasets, respectively.The edge points
detected by the proposed method are marked by black stars,
while the ground truth points given by the database are
marked by white dots. Because the database does not give
the observed edge points in KPIS, there are no ground truth
points in Figure 15(d).

It is known that the actual vessel diameters in the
REVIEW database are obtained by observers. In order to
compare the actual diameters with the diameters detected
by the proposed method, we analyze the distribution of the
vessel diameters. For this purpose, the distribution of the
diameters is obtained by two steps: rounding the values
of vessel diameters to integers and, then, computing the

frequency of the diameters. The distribution curves of the
actual and the detected vessel diameters on the REVIEW
database are shown in Figure 16.The actual distribution curve
is marked by stars, while the detected distribution is marked
by circles. From the distribution curves, we can see that most
of the blood vessels have diameters between 3 and 10 pixels.
The largest blood vessel does not exceed 23 pixels in width.
The proposed method has a high accuracy in vessel width
measurement.

We have also compared the performance of the proposed
method with the half height full width (HHFW) [38],
Gregson’s [37], 1D Gaussian [39], 2D Gaussian [40], and
Al-Diri’s [30] methods by presenting the success rate and
mean width. When an algorithm fails to detect the vessel
width at a given point (e.g., does not converge), the current
width measurement is considered meaningless. The success
rate of an algorithm is defined as the ratio between the
number of meaningful measurements and the number of
total measurements. Table 4 shows the performance of the
differentmethods by presenting the success rate and themean
width. For each dataset, the success rate is shown in the first
column and the mean width is shown in the second column.
The results of three observers are obtained from the database.
For each dataset, the mean result of the three observers is
used as ground truth. The results of the compared methods
are obtained from the original paper of Al-Diri. We can see
from the success rates that the HHFW, 1D Gaussian, 2D
Gaussian, and Al-Diri’s methods failed to detect some vessel
segments on datasets HRIS, VDIS, and CLRIS. In particular,
the success rate of the HHFW is down to 0 on the CLRIS. For
Gregson’s and the proposedmethods, the success rate is 100%
on all of the four datasets. However, the proposedmethod has
higher accuracy in the mean width than Gregson’s method.
In general, the proposed method outperforms all the other
algorithms, especially on the CLRIS dataset. On the HRIS
andVDIS datasets, ourmethod is slightly inferior to Al-Diri’s
method, which, however, did not use all its measurement
results.

6. Conclusions

In this paper, we have introduced an automatic tracking
method for vessel detection in retinal images. The tracking
algorithm is able to segment themain vascular tree and obtain
local vessel parameters such as vessel edge points, direction,
and the vessel width along the retinal vessels. The proposed
method starts from a number of seed points selected all over
the image. During the tracking process, a dynamic search
window is used to get the information of local grey levels’
statistics. Different types of configurations are defined to
combine the intensity distribution and the geometrical struc-
ture of local blood vessel. Vessel’s edge points are detected
by a Bayesian method with the MAP criterion. Experiments
on three publicly available databases show that the proposed
method detects blood vessels effectively and outperforms
some classical vessel detection methods. We compared our
raw results with the other techniques. Some postprocessing
will be done later in order to improve the detection accuracy.
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Table 4: Performance of different methods on REVIEW database.

HRIS VDIS CLRIS KPIS
Method % Mean % Mean % Mean % Mean
Observer 100 4.35 100 8.85 100 13.8 100 7.52
Gregson et al. [37] 100 7.64 100 10.07 100 12.8 100 7.29
HHFW [38] 88.3 4.97 78.4 7.94 0 — 96.3 6.47
1D-G [39] 99.6 3.81 99.9 5.78 98.6 6.3 100 4.95
2D-G [40] 98.9 4.18 77.2 6.59 26.7 7.0 100 5.87
Al-Diri et al. [30] 99.7 4.63 99.6 8.8 93.0 15.7 100 6.56
Proposed 100 4.81 100 7.85 100 13.39 100 6.71

Besides, the improvements of vessel sectional intensitymodel
and the reconstruction method of the detected vascular tree
are both necessary work in the future.
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