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Abstract: Gulf War illness (GWI) encompasses a constellation of persistent debilitating symptoms
associated with significant changes in central nervous system (CNS) and immune functioning.
Currently, there is no validated biomarker for GWI risk susceptibility. Given the impact of im-
mune responses linked to GWI symptomology, genetic variability that causes persistent inflamma-
tory/immune alterations may be key. This Boston University-based Gulf War Illness Consortium
(GWIC) study investigated the impact of single nucleotide polymorphisms (SNPs) in variants of
immune and pain genetic markers IL1B, IL2, IL6, IL6R, IL10, TNF, TGF, TLR2, TLR4, MD2, MYD88,
BDNF, CRP, ICE, COMT and OPRM1 on GWI occurrence in a Caucasian subset of Gulf War (GW) vet-
erans with (cases, n = 170) and without (controls, n = 34) GWI. Logistic regression modeling created a
prediction model of GWI risk that associated genetic variability in TGF (rs1800469, p = 0.009), IL6R
(rs8192284, p = 0.004) and TLR4 (rs4986791, p = 0.013) with GWI occurrence. This prediction model
was specific and sensitive, with a receiver operator characteristic area under the curve of 71.4%. This
is the first report of immune genetic variability being predictive of GWI and warrants validation in
larger independent cohorts. Future reports will present interactions of these genetic risk factors with
other characteristics of GW service.

Keywords: Gulf War illness; immune genetics; toll-like receptor 4; predictive genetic model; objec-
tive biomarker

1. Introduction

Gulf War illness encompasses a constellation of persistent debilitating symptoms
suffered by a third of the nearly 700,000 U.S. soldiers who served in the 1990–1991 Persian
Gulf War (GW) [1]. Symptoms of GWI include persistent fatigue, cognitive difficulties
and musculoskeletal pain and these symptoms are associated with significant changes
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in central nervous system (CNS) and immune functioning [2–5]. There is now mounting
evidence demonstrating the importance of CNS inflammatory markers and immune system
activation in the development of chronic symptoms in GW veterans [6]. In addition, there
are studies showing lower white matter volumes and increased microstructural diffusivity
on brain imaging in GW veterans exposed to neurotoxicants linked to increased health
symptom complaints [3,4,7–9]. This suggests CNS neuro-immune signaling (glial) cells may
have an important role in the development and sustained health symptom and cognitive
decrements associated with GWI [10]. In particular, myelin and neuronal breakdown
products in the extracellular spaces are thought to activate glial cells by acting as toll-like
receptor (TLR) agonists, specifically at TLR4 [11,12]. Glial activation of TLR4 from these
internal factors (including HMGB1 [13]), as well as external stimuli (e.g., cellular debris,
bacteria) results in release of CNS pro-inflammatory cytokines (e.g., interleukin (IL)-1,
IL-6, tumor necrosis factor (TNF)). The CNS inflammatory response [14] induces sickness
response symptoms including fatigue, muscle and joint pain and cognitive difficulties.
These symptoms are similar to those reported by ill GW veterans and are exacerbated with
multiple stimuli such as mild traumatic brain injuries and neurotoxicant exposure [15].
Hence neuroimmune pathway activation is a likely mechanism contributing to GWI.
However, what is less clear is why only some GW veterans have chronic illness while
others with similar exposures do not, and may be suggestive of variability in genetic
susceptibility for chronic inflammation or risk susceptibility of GWI.

Currently, there is no validated biomarker for risk susceptibility to GWI. One study
has suggested that genes in the major histocompatibility class (MHC) II family of human
leukocyte antigens (HLA) may be a potential risk factor [16]. Investigators have also
identified significant associations between GWI and genetic variants of the enzymes bu-
tyrylcholinesterase (BChE) and paraoxonase-1 (PON1), which act to neutralize adverse
effects of cholinergic neurotoxicants on the body [17,18]. Given the impact of immune
responses linked to GWI symptomology and the substantial variability in immune response
between individuals, we hypothesized that likely biomarkers may reside in genes that
control or enhance inflammation such as TGF-beta (TGF-β, TGF). This Boston University-
based Gulf War Illness Consortium (GWIC) study aimed to investigate the associations
between a number of immune and pain genetic loci and GWI in GW veterans with and
without GWI.

2. Materials and Methods
2.1. Study Participants

Two-hundred and sixty-nine GW veterans with (cases, n = 223) and without (con-
trols, n = 46) GWI were recruited to participate in the core GWIC case-control study [19].
The study protocol and informed consent documents were approved by institutional re-
view boards at Boston University, Miami VAMC, and Baylor College of Medicine and
reviewed by the U.S. Army Medical Research and Development Command’s Office of
Human Research Protections. All participants provided written informed consent prior
to participating in accordance with the Declaration of Helsinki. Eligibility criteria and
GWI case/control status determined according to the Kansas GWI case definition criteria
have been described previously [19]. In particular, veterans who had previously been
diagnosed with any from a predetermined list of chronic medical conditions were excluded
from recruitment in the study. Data were collected on each participant’s deployment and
medical history, physical characteristics (e.g., vital signs, body mass index, smoking status)
and demographic characteristics including sex, age, race, and ethnicity.

2.2. Genetic Analysis

Genomic DNA was isolated from saliva samples from each veteran and analyzed for 21
single nucleotide polymorphisms (SNPs) in the following genes using a customized Agena
Mass Array assay at the Australian Genome Research Facility (Brisbane, Australia): IL1B
(rs16944, rs1143627, rs1143634), IL2 (rs2069762), IL6 (rs10499563), IL10 (rs1800871, rs1800896),
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IL6R (rs8192284/rs2228145), TNF (rs1800629), TGF (rs11466314, rs1800469), TLR2 (rs3804100),
TLR4 (rs4986790, rs4986791), MD2 (LY96, rs11466004), MYD88 (rs6853), BDNF (rs6265), CRP
(rs2794521), ICE (CASP1, rs554344, rs580253) and OPRM1 (rs1799971) [20]. In addition, variabil-
ity in the COMT (rs4680) gene was examined using a commercially available TaqMan® SNP
genotyping assay kit (ThermoFisher Scientific, Scoresby, Australia).

2.3. Statistical Analysis

Hardy–Weinberg equilibrium was not significant for any SNP (p > 0.77). In order
to avoid race obscuring associations, data from Caucasian only veterans with complete
genetic information, 170 GWI cases and 34 controls, were included for analyses reported
here. Similar analyses in other ethnic groups were not possible due to small sample number
of cases (n = 2–4). Chi-square, Fisher’s exact and Mann–Whitney U tests were used to
examine differences in participant demographic, deployment and military characteristics
and genotypes between veterans with (cases) versus without (controls) GWI. Logistic
regression modeling with step-wise approach of model building, where each genetic factor
was added to investigate increased strength of the model and then once a genetic factor
was added a step-back was performed to see if the model could be further improved by
removing a previously added genetic factor. Factors were added or removed based on
Akaike information criterion (AIC). This process built the strongest predictive genetic risk
model. The receiver operator characteristic (ROC) curve was obtained by plotting the
sensitivity (true positive) of the model against 1-specificity (false positive) of the model [21].
The percentage area under the curve (AUC) of the ROC curve was then used to assess the
ability of the models to predict GWI with the value indicating the percentage of veterans
who were correctly classified by the model as having GWI. Analysis was conducted using
R [22] in RStudio [23].

3. Results

Participant demographic, military, and deployment characteristics are presented in
Table 1. These characteristics were not different between GWI cases and controls with the
exception of the 1990 rank of the veterans, where there was a significantly higher number
of officers in the control group (Odds ratio (95% confidence interval) = 3.8 (1.6–8.8), p =
0.006, Table 1).

With regard to the individual SNPs, for both the TGF and IL6R SNPs cases had a
lower frequency occurrence of the wild-type genotype (C/C or A/A) and higher frequency
occurrence of the heterozygote (C/T or A/C) and homozygous variant (T/T or C/C)
genotypes compared to controls (Table 2). Whilst for the TLR4 SNP, cases had a higher
frequency occurrence of the wild-type (C/C) genotype and a lower frequency occurrence
of the heterozygote variant (C/T) genotype compared to controls (Table 2).

Table 1. Demographic, military and deployment characteristics of Caucasian GWI cases and controls, data are n (%).
p-values were obtained by Chi-square, Fisher’s exact or Mann–Whitney U tests comparing the two groups.

Cases (n = 170) * Controls (n = 34) p

Sex
Male 143 (84) 31 (91) 0.43

Female 27 (16) 3 (9)

Age (years)
43–49 59 (35) 10 (29) 0.56
50–59 91 (54) 17 (50)
60–69 17 (10) 6 (18)
70+ 3 (2) 1 (3)

Median age (years) 51 53 0.15
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Table 1. Cont.

Cases (n = 170) * Controls (n = 34) p

Highest Education level

0.93
High school or GED 8 (5) 2 (6)

Some college or training after high school 85 (50) 15 (44)
4 year degree 35 (21) 8 (24)

Advanced degree 42 (25) 9 (26)

Rank in 1990 *
0.006Enlisted 150 (89) 23 (68)

Officer 19 (11) 11 (32)

Branch of Service in 1990 *

0.59
Army 114 (67) 24 (70)
Navy 16 (9) 5 (15)

Air Force 11 (7) 2 (6)
Marines 28 (17) 3 (9)

Service Component in 1990 *

0.96
Regular (Active Component) 126 (75) 26 (76)

Reserves 31 (18) 6 (18)
National Guard 12 (7) 2 (6)

Gulf War Deployment: Service period in theater *
Departed prior to Jan 1991 3 (2) 1 (3) 0.25

Present Jan-Feb 1991, departed by May 1991 119 (70) 24 (70)
Present Jan-Feb 1991, departed after May 1991 35 (21) 5 (15)

Arrived in March 1991 or later 12 (7) 4 (12)
Median number of months in theater 5 6 0.94

* n = 169 for Cases group.

Table 2. Percentage TGF (rs1800469), IL6R (rs8192284) and TLR4 (rs4986791) genotype frequencies
in Caucasian GWI cases and controls. p-values were obtained by Chi-square tests comparing the
two groups.

Genotype Cases (%) Controls (%) Chi-Square Value p

TGF

9.5 0.009
C/C 41.8 70.6
C/T 45.9 23.5
T/T 12.3 5.9

IL6R

10.3 0.006
A/A 36.1 64.7
A/C 50.9 23.5
C/C 13.0 11.8

TLR4

7.63 0.006
C/C 88.8 70.6
C/T 11.2 29.4
T/T 0 0

The predictive GWI logistic regression model included genetic variability in TGF
(rs1800469, p = 0.009), IL6R (rs8192284, p = 0.004), and TLR4 (rs4986791, p = 0.013). The
ROC curve AUCs for each individual SNP as well as the combination of all three SNPs
were: rs4986791 58%; rs1800469 60%; rs8192284 65%; and all three SNPs 71% (Figure 1).
Consequently, the model with all three SNPs was the most specific and sensitive for
predicting GWI as indicated by the ROC curve with the highest AUC.
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Figure 1. Receiver operator characteristic (ROC) curves of individual SNPs from TGF (rs1800469,
AUC 60%, light blue line), IL6R (rs8192284, AUC 65%, red line), and TLR4 (rs4986791, AUC 58%,
yellow line), and all three SNPs (AUC 71%, dark blue line) to predict GWI.

4. Discussion

This GWIC study is the first to model the impact of genetic variability in pro-inflammatory
and anti-inflammatory cytokines and receptors, innate immune response pathways and
pain signaling pathways in determining risk of GWI. The risk prediction model that in-
cluded all three SNPs from TGF (rs1800469), IL6R (rs8192284), and TLR4 (rs4986791) was
the most specific and sensitive as evidenced by the highest ROC curve % AUC, with the
model having a 71% chance of correctly classifying a veteran with GWI, an AUC considered
in the statistical literature as being acceptable [21].

Prior to discussing the implications of this model, it is important to note that the
only difference between GWI cases and controls in participant demographic, military and
deployment characteristics within the subset of Caucasian GWIC veterans was the higher
proportion who served in the enlisted ranks versus officers during deployment. This was
reported previously for the entire GWIC cohort [19] and is similar to previous studies
of GWI [24–26]. However, this is unlikely to impact on the overall genetic associations
reported in this study.

Of the genetic variants included in the model, the TGF SNP resides in the promoter re-
gion of the gene and the variant has been linked to higher serum TGF-β concentrations [27].
With regard to the IL6R SNP, this resides in the coding region (exon 9) of the gene and
the variant has been linked to higher levels of soluble IL-6 receptor [28] and therefore has
the potential for increased IL-6 inflammatory signaling. Interestingly, a previous review
has discussed that in the presence of both TGF-β and IL-6 signaling in inflammatory
conditions, differentiation of Th17 cells occurs; this can further drive inflammation [29].
Consequently, as both of these cytokines are increased in the presence of variant SNPs in re-
sponse to immune challenges, such as deployment exposure to neurotoxicants, heightened
and sustained inflammatory responses are likely. This can potentially explain the higher
frequency of TGF and IL6R variant genotype carriers in GWI cases compared to controls.
This hypothesis is also in line with other studies that have demonstrated a link between
increased IL-6 expression and other chronic inflammatory diseases such as rheumatoid
arthritis [30] and inflammatory bowel disease [31].

With regard to the TLR4 SNP, this resides in the coding region (exon 4) of the gene
(1196C > T) and the variant causes an amino acid change (Thr399Ile) in TLR4 in the
extracellular domain, with the variant associated with lessened response to TLR4 agonist
(lipopolysaccharide) binding as indicated by reduced nuclear factor kappa B signaling [32].
That is, having a copy of this variant decreases inflammatory signaling. Consequently, this
could explain why veterans with this variant are less likely to have GWI.
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In conclusion, this is the first GWI genetic risk model to implicate immune genetic
variability of the TGF, IL6R and TLR4 genes being markers of risk that is both specific and
sensitive. These preliminary outcomes have the potential to assist in identifying therapies
to improve the daily life of GW veterans living with GWI through personalizing treatment
based on genetics. However, these findings must be considered within the context of
the limitations of this study, notably the small sample size of the control group and that
information regarding additional deployment and health factors that have the potential to
impact on risk of GWI were not collected or not included in these preliminary assessments.
Validation studies would need to consider these factors and are also needed in larger
independent veteran populations to further evaluate our results. In addition, as the genetic
risk model generated could not predict 100% of GWI cases, improvement of the model
through addition of other participant demographics and lifestyle factors (including body
mass index and smoking status), and deployment characteristics is ongoing in this subset
of GWIC veterans.
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