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Background. Although the prognosis of low-grade glioma is better than that of glioblastoma, there are still some groups with poor
prognosis. The integrated stress response contributes to the malignant progress of tumors. As there had limited research focused on
the integrated stress status in LGG, it is urgent to profile and reclassify LGG based on the integrated stress response. Methods.
Information of glioma patients was obtained from the Chinese Glioma Genome Atlas, The Cancer Genome Atlas, and the
GSE16011 cohorts. Statistical analyses were conducted using GraphPad Prism 8 and R language. Results. We summarized and
quantified four types of integrated stress responses. Relationships between these four types of stress states and the clinical
characteristics were analyzed in low-grade glioma. We then reclassified the patients based on these four scores and found that
cluster 2 had the worst prognosis, while cluster 1 had the best prognosis. We also established an accurate integrated stress
response risk signature for predicting cluster 2. We found that immune response and suppressive immune cell components were
more enriched in the high-risk group. We also profiled the genomic differences between the low- and high-risk groups,
including the nonmissense mutation of driver genes and the copy number variations. Conclusion. Low-grade glioma patients
were divided into three clusters based on the integrated stress status, with cluster 2 exhibiting malignant transformation trends.
The signature adequately reflected the traits of cluster 2, while a high risk score indicated a worse prognosis and an enriched
inhibitory immune microenvironment.

1. Introduction

Glioma is the most common and deadly primary malignant
tumor in the central nervous system [1]. Gliomas can be
divided into high-grade glioma and low-grade glioma
(LGG). We defined grade 4 glioma as glioblastoma(GBM)[2]
and grade 2 and 3 glioma as LGG. GBM is highly aggressive,
and even with standardized treatment, the median survival
time of patients is only 14.6 months [3]. Compared with
GBM, LGG is less aggressive and their progression is slightly
slower [4, 5]. However, increasing studies have reported that
many LGG patients have a tendency toward malignant trans-
formation, which can transform into higher grades, leading
to adverse outcomes [6]. The outcomes of glioma patients
are highly variable and heterogeneous [7], even in patients
with the same tumor grade. Although isocitrate dehydroge-
nase 1 (IDH1) mutations and chromosome 1p/19q codele-

tions have been identified as good prognostic markers for
LGG, there is still an urgent need to develop a new classifica-
tion system for LGG, which can identify LGG patients with a
tendency toward malignant transformations.

Studies have shown that the integrated stress response
(ISR) is related to the mechanisms and progressions of many
complex diseases [8], including cancer, diabetes, and meta-
bolic diseases. The ISR state refers to an evolutionarily
conserved intracellular signal network, which helps cells, tis-
sues, and organisms adapt to various stimuli from the micro-
environment. The ISR includes protein homeostasis defects,
nutritional deficiencies, viral infections, and oxidative stress.
The ISR restores cell homeostasis by reediting gene expres-
sions. Different types of stress responses are represented by
four special kinases (PERK, GCN2, PKR, and HRI) [9]. The
organs most affected in the ISR are the brain and pancreas
[10]. Exosomes induced by endoplasmic reticulum stress
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promote the immune escape of breast cancer by regulating
the expression of PD-L1 in macrophages [11]. The redox
state affects T cell activation and subsequent supervision of
redox-sensitive immune regulatory transcription factors
such as NF-κB, NFAT, and AP-1, which are involved in the
pathogenesis of inflammation-related diseases [12]. Multiple
studies have indicated that the ISR is tightly embedded in the
innate immune response of cells, and all four ISR kinases play
a role in immunity and inflammation [13].

Most of the carcinogenic pathways found in human can-
cers cause various forms of protein synthesis disorders, while
the ISR controls protein synthesis and protein stability. Three
ISR kinases (PKR, PERK, and GCN2) have been correlated
with cancer [14], but there has been minimal research
describing the status of the ISR in LGG. There is therefore
an urgent need to analyze its distribution status and clinical
value in LGG, to reclassify LGG from the perspective of inte-
grated stress and to identify subgroups of LGG patients with
malignant tendencies.

2. Materials and Methods

2.1. Data Collection. This study included 1211 LGG patients.
Patient information was summarized from four cohorts: The
Cancer Genome Atlas (TCGA) RNA-seq cohort (http://www
.tcga.org/), the Chinese Glioma Genome Atlas (CGGA)
microarray cohort (http://www.cgga.org.cn/), the CGGA
RNA sequencing (RNA-seq) cohort (http://www.cgga.org
.cn/), and the GSE16011 (http://www.cgga.org.cn/) and the
GSE16011 microarray cohort (https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GSE16011). The LGG mutation
data (MAF file) were downloaded from (https://portal.gdc
.cancer.gov/), and copy number variation (CNV) informa-
tion was acquired from Firehose (http://gdac.broadinstitute
.org/).

2.2. Summary of Gene Sets. Four gene sets were summarized
to represent corresponding biological processes of the ISR.
They were endoplasmic reticulum stress (unfolded protein
response), viral infection, nutritional deficiency, and oxida-
tive stress. The specific genes of each gene set are shown in
Supplementary Table 1.

2.3. Classification of LGG Based on the Four Types of ISRs.
The four types of integrated stress states were quantified by
the ssGSEA algorithm [15], and unsupervised clustering
was performed to obtain the most reasonable classification
according to these four factors. Survival curves of four clus-
ters of samples were plotted using Prism 8 software (Graph-
Pad, San Diego, CA, USA). Differential genes were screened
out using the limma package between the best and the worst
clusters in survival quality.

2.4. Development and Validation of a ISR-Related Signature
Using LASSO Regression Model. The “glmnet” R package
was performed to filter the prognosis-related ISR genes by
LASSO Cox regression analysis with a ten-fold cross-
validation. After identifying the significant genes and their
regression coefficients (β), we calculated the risk score of

each LGG patient by the formula as follows: risk score =
∑N

i=1Expi ∗ βi.

2.5. Function Enrichment Analyses. GSEA (http://www
.broadinstitute.org/gsea/index.jsp) was conducted to deter-
mine whether the selected gene sets showed statistical differ-
ences between different groups. Gene ontology (GO) [16]
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
[17] pathway enrichment analyses were used to analyze the
enriched biological processes. Enriched ontological terms
and pathways with P < 0:05 were selected and presented in
a bubble map using the R package.

2.6. Immune Response and Tumor Microenvironment-
Related Analyses. The immune cell genes were downloaded
from http://cibersort.stanford.edu/ [18], and the immune cell
score of each sample was quantified by ssGSEA. Student’s t
-test was used to identify immune cells with significant differ-
ences between different groups. Stromal score, immune
score, and glioma purity were calculated to evaluate nontu-
mor cells within the microenvironment [19]. The correla-
tions between ISR score and tumor purity and stromal
score and immune score were calculated and exhibited.
Principal component analysis (PCA) was used to profile the
distribution patterns of different groups on the basis of the
immune-related transcriptome expression matrix.

2.7. Statistical Analysis. SPSS (SPSS, Chicago, IL, USA),
Prism 8 (GraphPad), and R 3.6 (https://www. http://r-
project.org/) software were used for statistical analyses. Stu-
dent’s t -test was used to identify differences in expressions,
and Pearson’s correlation was used to calculate correlations.
A value of P < 0:05 was considered to indicate statistical sig-
nificance (∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P <
0:0001, as indicated in the figures and legends). Low and
high-expression groups were classified according to the
median expression. Survival analyses were conducted using
Kaplan-Meier plotting, and the log-rank test was used to
evaluate the differences between stratified groups.

3. Results

3.1. General Description of the ISR State in LGG patients. The
ISR includes the ability to adapt to various stress states in the
cell, including the endoplasmic reticulum stress state, nutri-
ent deprivation, viral infection, and redox imbalance.
Because few investigators have studied the relationship
between ISR and the malignant progression of LGG, we sys-
tematically analyzed the clinical value of the ISR in LGGs.We
first selected four types of representative gene sets related to
the ISR from the official website of GSEA and used the
ssGSEA algorithm to quantify the four responses of LGG
patients in TCGA, to show the corresponding relationships
between the four response scores and LGG clinical character-
istics using heat map (Figure 1(a)). We found that endoplas-
mic reticulum stress, nutritional deprivation, and redox
imbalance in the ISR correlated with age, IDH1, 1p19q, and
other significant LGG survival prognostic markers. These
three stress scores were significantly increased in LGG
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Figure 1: Continued.
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patients with relatively poor prognoses, but the difference in
viral infection scores was not significant. Subsequently, we
used the median score as a critical value to analyze the prog-
nostic evaluation value of the four stress states using log-rank
survival curves. The results showed that redox state imbal-
ance and the nutritional deprivation state had the most
significant impact on the survivals and prognoses of LGG
patients, and the survival time of patients in the high scoring
group was significantly shortened (Figures 1(f)–1(i)).
Patients with the high risk score of the endoplasmic reticu-
lum stress, nutritional deprivation, and redox imbalance
were more enriched in the IDH wild (Figures 1(b)–1(d)).
Patients with IDH mutations possessed significantly higher
viral infection risk score than wild ones (Figure 1(e)).

3.2. Reclassification of LGG Patients Based on the Four Types
of Stress Response Scores. According to previous results, we
performed unsupervised clustering of LGG patients based
on the four stress response scores, and the k-means clustering
results showed that the best distinguishing categories
involved three categories (Figures 2(a) and 2(b)). The sur-
vival curves of the three types of LGG patients showed that

the survival prognosis of cluster 2 was the worst, while the
survival prognosis of cluster 1 was the best (Figure 2(g)).
We further described different types of ISRs in the three clus-
ter patients using an overlay diagram. Among the cluster 2
subgroups of patients with relatively poor survival prognoses,
the endoplasmic reticulum stress state and redox imbalance
state scores were relatively high (Figures 2(c) and 2(e)), while
the virus infection status score was relatively low. The virus
infection stress score was relatively high in the cluster 1 sub-
group of patients with relatively good survival prognoses
(Figure 2(f)). To further characterize the underlying mecha-
nism of the large differences in survival prognoses between
the cluster 1 and cluster 2 subgroups, we screened the differ-
ential genes between the two groups of patients (Figure 2(h))
and performed functional enrichment analysis. The enrich-
ment results suggested that cluster 2 was enriched with sev-
eral immune-related biological processes such as the
inflammatory immune response and immune cell chemo-
taxis (Figures 2(i) and 2(j)). Analysis of the immune micro-
environment indicated that inhibitory immune components
such as macrophages and neutrophils were more enriched
in cluster 2 (Supplementary Fig. 1A).
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Figure 1: Estimating the clinical value of four integrated stress response- (ISR-) related scores in low-grade glioma (LGG) patients. (a) The
expression pattern of the four stress response-related scores with other clinical characteristics of LGG patients. (b–e) High-risk score patients
of ERS, ND, and RI were specifically enriched in the IDH1 wild-type gene while low-risk score patients of VI were specifically enriched in the
IDH1 wild-type gene in LGGs. (f–h) The high-risk score group of ERS, ND, and RI exhibited an unfavorable prognosis in LGG patients of The
Cancer Genome Atlas (TCGA) RNA sequencing cohorts. (i) No prognostic significance of the VI risk score in LGG patients of TCGA RNA
sequencing cohorts. ∗∗∗∗P < 0:0001. ERS: endoplasmic reticulum stress; ND: nutrient deprivation; RI: redox imbalance; VI: viral infection.
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3.3. Establishment of a Reliable ISR Signature That Could
Accurately Predict cluster 2 Subtype.We selected the 127 dif-
ferentially expressed genes between cluster 1 and cluster 2
with P values less than 0.05 and ∣log FC ∣ >2 (Supplementary
Table 2). To obtain the best prognostic markers, the LASSO
Cox regression analysis was conducted (Figure 3(a)). A
total of 11 gene signatures were generated, and the risk
scores of the signature based on the regression coefficients
were finally calculated (Supplementary Table 4). The ISR
risk score of cluster 2 was significantly higher than that of

cluster 1 (Figure 3(h)). To estimate the effectiveness of the
ISR risk score in predicting prognoses, we constructed a
receiver operating characteristic curve (Figures 3(b) – 3(d))
based on 1-year, 2-year, and 3-year survival times and then
calculated the area under the curve. The results showed a
good predicting efficiency in survival in the discovery
cohort. Next, we used the median score as a critical value to
analyze the prognostic evaluation value of the three cohorts
using the log-rank survival curve. The results showed that
among the three cohorts, TCGA-RNA sequencing cohort,
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Figure 2: Reclustering and profiling low-grade glioma (LGG) patients based on four integrated stress response- (ISR-) related scores. (a, b)
Unsupervised clustering of LGG patients based on four ISR-related scores by using the k-means method. (c–f) The distribution patterns of
these four ISR-related scores among four clusters. (g) The overall survival analyses among the four cluster samples. (h) Volcano map of
the differentially expressed genes between cluster 1 and cluster 2 subtypes. (i) Gene Ontology enrichment of the differentially expressed
genes between cluster 1 and cluster 2 subtypes. (j) KEGG enrichment of the differentially expressed genes between the cluster 1 and
cluster 2 subtypes.
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CGGA microarray cohort, LGG
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Figure 3: Cluster 2-related integrated stress response (ISR) risk signature is an independent prognostic factor in the low-grade glioma (LGG)
cohort. (a) Cross-validation for tuning parameter selection in the proportional hazard model. (b–d) Receiver operating curves of the risk
scores to predict 1 year, 2 years, and 3 years of survival in The Cancer Genome Atlas (TCGA) cohort. (e) The high-risk group exhibited
strikingly shorter survival times in LGG patients of TCGA RNA sequencing cohorts. (f, g) In the other two validation cohorts, there was
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CGGA-RNA sequencing cohort, and CGGA-microarray
cohort, there were significant differences in survival
(P < 0:0001). Univariate and multivariate Cox regression
analyses were conducted to identify the independent
prognostic factors. The results suggested that the ISR risk
score could be used as an independent survival-related
factor (Figures 3(i) and 3(j)). We obtained the same
conclusion in the validation group of the CGGA cohort
(Supplementary Table 3). We also established a nomogram
to predict the 1-year, 2-year, and 3-year prognoses of LGG
patients (Figure 3(k)) and used the calibration chart to
evaluate the model (Figure 3(l)). It showed that the ISR risk

score was effective in predicting the prognosis of LGG
patients.

3.4. The High-Risk Group with an Enhanced Local Immune
Phenotype. Because cluster 2 was enriched with immune-
related biological processes and infiltrated with inhibitory
immune cell components, we further characterized the
immunophenotypic differences between the high- and low-
ISR-risk groups. We first performed PCA based on
immune-related genes, which was summarized from the
terms of “Immune Response” and “Immune Process” [20,
21]. The results showed that the low- and high-risk group
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Figure 4: The different immune status of the high- and low-risk groups. (a, b) Principal component analysis showed that the low-grade
glioma (LGG) patients in the high- and low-risk groups were distributed in different immune classes. (c–h) GSEA suggested that
leukocyte-related processes were enriched in the high-risk group of The Cancer Genome Atlas and Chinese Glioma Genome Atlas RNA
sequencing cohorts.
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patients were robustly distributed with different locations
and patterns, suggesting that low- and high-ISR-risk groups
exhibited a totally different immune status (Figures 4(a)
and 4(b)). Moreover, we performed GSEA based on a series
of immune relevant terms, such as “leukocyte activation,”
“leukocyte-mediated immunity,” and “leukocyte chemo-
taxis.” All these terms were significantly enhanced within
the high-risk group (Figures 4(c) – 4(h)). Together, the
results showed that the high-risk group was characterized
by an enhanced local immune phenotype.

3.5. The High-Risk Group Was Infiltrated with an Inhibitory
Immune Microenvironment. To further characterize the
differences of immune microenvironments between the

low- and high-risk groups, we downloaded the gene sets data
of immune cells from the CIBERSORT website and quanti-
fied the immune cell score of each sample using the ssGESA
algorithm. The violin diagram shown in Figure 5(a) shows
that M0 and M2 type macrophages were more abundant in
the high-risk group. In addition, we found that the risk score
was positively correlated with the immune score and stromal
score, while negatively correlated with the tumor purity
(Figures 5(c) and 5(g)). Moreover, the risk score was positively
correlated with the expression of several classical inhibitory
immune checkpoint-related genes (Figures 5(b) and 5(f)).
These results suggested that the high risk score robustly
indicated an enhanced local immune response as well as a
suppressed immune microenvironment.
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Figure 5: Corresponding relationship between integrated stress response (ISR) risk score and immune microenvironment. (a) The quantified
score of the immune gene set showed that patients with a high risk score of integrated stress was highly infiltrated with macrophages of The
Cancer Genome Atlas (TCGA) cohort; (b, f) ISR risk score correlated with immunosuppressive checkpoints in the TGGA and Chinese
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Figure 6: Specific somatic mutations and copy number changes between the high and low integrated stress response (ISR) risk score groups.
(a) Low- and high-ISR-risk score group mutation information illustrated in the somatic mutation spectrum. (b) Various mutated genes
between the high- and low-IRS-risk score groups. (c, d) Copy number variations based on low- and high-IRS-risk score levels. (e, f)
Correlation analyses of mutated genes in the high- and low-risk groups in The Cancer Genome Atlas RNA sequencing cohorts.
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3.6. Multiomics Differences between Low- and High-ISR-Risk
Score Patients by Profiling of Specific Somatic Mutations and
Copy Number Variations. To investigate the differences
between the high- and low-ISR-risk score groups at the geno-
mic level, we analyzed somatic mutations and copy number
variations (CNVs) from the TCGA RNA sequencing cohort.
The overall pattern of classical somatic mutations in LGG
stratified by the ISR risk score is shown in Figures 6(a) and
6(b)). We found 7 significant somatic mutation genes
between the high- and low-risk groups (P < 0:05). In the
high-risk score group, the somatic mutation profile showed
that TTN and CIC had higher mutation frequencies in the
high-risk score group.

To identify the specific CNV events of the high- and low-
ISR-risk groups, we profiled the copy number variant events
between these two groups. The results suggested that the
high-risk group had amplification of partial fragments in
chromosomes 4, 7, and 12 and partial deletion of fragments
in chromosome 9 (Figures 6(c) and 6(d)). Although there
was no significant difference in the copy number of impor-
tant chromosomal fragments such as 1p and 19q between
the two groups, amplified genes such as TTN in the high-
ISR-risk group may be involved in promoting the malignant
progression of LGG.

4. Discussion

LGG comprise a group of primary brain tumors caused by
glial cells. The LGG patients have a better prognosis than
GBM patients ,but they are still incurable, and most of them
will relapse or even transform into high-grade gliomas. Previ-
ous studies have confirmed that the ISR is related to the
mechanisms of a variety of cancers [22, 23]. In addition, there
are few studies on the relationship between the ISR and LGG,
so there is an urgent need to quantitate and characterize the
ISR state in LGG.

By quantitating the four types of stress responses of LGG
patients, we found that endoplasmic reticulum stress, nutri-
tional deprivation, and redox imbalance in the ISR were
related to age, IDH1, 1p19q, and other LGG significant sur-
vival prognostic markers. The above three stress scores were
significantly increased in the relatively poor prognoses clus-
ter 2 LGG patients, although the viral infection stress score
reflected a different situation. In the majority of human can-
cers, including breast cancer, pancreatic cancer, lung cancer,
skin cancer, prostate cancer, brain cancer, and even liquid
malignant tumors, enhanced endoplasmic reticulum stress
responses have been found [24]. Studies have shown that
continuous activation of the endoplasmic reticulum stress
sensor could make malignant cells more tumorigenic,
metastatic, and drug-resistant [25, 26]. In addition, the endo-
plasmic reticulum stress response further hinders the devel-
opment of protective anti-cancer immunity by regulating
the function of myeloid cells in the tumor microenvironment
[27]. The endoplasmic reticulum stress state can activate the
unfolded protein response, which is necessary for the devel-
opment of T cells, but the continuous increase of endoplas-
mic reticulum stress can lead to damages of T cell function,
as well as decreased survival [28, 29]. Oxidative stress is the

main intracellular signal transducer that maintains autoph-
agy [30]. Once tumors are formed, autophagy allows tumor
cells to survive under stress conditions, thereby promoting
tumor progression [31, 32]. Regarding nutritional depriva-
tion, there is evidence suggesting that cancer cells can adjust
signal pathways to adapt to the new environment and con-
tinue to survive [33, 34]. This characteristic of cancer cells
is considered to be one of the prerequisites for tumor pro-
gression and chemotherapy resistance [35].

Based on these considerations, we know that the occur-
rence and development of LGG are affected by multiple fac-
tors, so a single aspect of stress factors cannot represent its
occurrence or development. More angles and more dimen-
sions should be considered in making an overall analysis.
We therefore considered grouping the LGG patients in TCGA
according to the four kinds of stress factors, with LGG patients
divided into three clusters with the best characteristics. Using
integrated bioinformatics analyses, we found that in cluster 2,
which also exhibited the worst survival condition in these
three clusters, the scores of oxidative stress and endoplasmic
reticulum stress were significantly higher than those of the
other two groups, while the viral infection stress score was sig-
nificantly lower than those of the other two groups. In cluster 1
with the best prognosis, we found that the viral infection stress
score was significantly higher than those of the other two
groups, while the oxidative stress risk score was significantly
lower than those of the other two groups. Importantly, the
nutritional deprivation stress score in the cluster 3 group was
significantly lower than that of cluster 1 groups, and the viral
stress score was also very high (but with no significant differ-
ence compared with cluster 2). However, the prognosis of
cluster 3 was significantly worse than that of cluster 1. This
showed that redox imbalance stress may play an absolute role
in cluster 3, suggesting that the occurrence and development
of LGG might be regulated by multiple factors.

The classification that we established based on four kinds
of ISR is relatively difficult to implement in specific clinical
cases. To make our research results easier for clinical use,
we established an integrated stress response-related risk score
to represent the traits of cluster 2. Based on this score, the
LGG patients in the other two databases were divided into
the high- and low-risk groups, resulting in a significant dif-
ference (P < 0:0001), which was also a good independent fac-
tor for survival predictions. Using PCA of TCGA database,
we found significant differences in immune functions
between the high-risk and low-risk groups. Immunosuppres-
sive cells such as M2, M0, regulatory T cells, and neutrophils
were more enriched in the high-ISR-risk score group, which
indicated that the reorganization of the immune microenvi-
ronment may have contributed to the poor survival of the
high-risk group. Similarly, in the validation group of CGGA
cohort, we found that immune infiltration and cell chemo-
taxis were also more enriched in high-risk patients (Supple-
mentary Fig. 3A-B). We also found that the ISR risk score
was positively correlated with the expressions of immune
checkpoint genes, which further validated our hypothesis
that high ISR risk was involved in immune suppression.

We analyzed the gene mutations and copy number vari-
ations between the high-risk and low-risk groups and found
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that the high-risk group had a higher frequency of CIC and
TTN mutations. Some report that TTN was at the top rank-
ing of mutated genes in multiple solid tumors, including the
gastric adenocarcinoma, small cell lung cancer, and colorec-
tal adenocarcinoma. TTN mutation could also be used to
represent increased tumor mutation burden (TMB) and cor-
related with objective response to immune checkpoint block-
ade (ICB). [36, 37]. Bettegowda et al.’s study indicated that
there was a unique relationship between recurrent chromo-
somal aberrations and mutations in CIC and suggested that
mutations in CIC were key events in the development of
oligodendrogliomas [38].

While we profiled copy number variations, we found that
the high-risk score group had an amplification of chromo-
somes 4, 7, and 12. We performed functional analyses of
the corresponding gene set and found that it was enriched
in angiogenesis and response to external stimuli (Supple-
mentary Fig. 2H).

5. Conclusions

Our study provided new insights into the relationships
between the integrated stress responses and clinical traits of
LGG patients. Furthermore, we identified cluster 1 with the
most potential for malignant transformation, which exhib-
ited the worst prognosis and inhibitory immune microenvi-
ronment. More importantly, we designed an ISR signature
to predict cluster 2, which may facilitate the classification
and prediction of individual LGG patients, although the
model needs to be further validated in prospective studies
and multicenter clinical trials.
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