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In regenerative medicine and tissue engineering, many materials are developed to mimic
the extracellular matrix (ECM). However, these ECM-mimicking materials do not yet
completely recapitulate the diversity and complexity of biological tissue-specific ECM.
In this review, an alternative strategy is proposed to generate ECM, namely synthesizing a
material that functions as a drug delivery system, releasing molecules that target cellular
metabolic pathways and thereby stimulate the local cells to create their own ECM. This is
based on the fact that ECM synthesis, modification, composition, signaling, stiffness, and
degradation are modulated by cellular metabolism. Metabolism can be targeted at different
levels, ranging from modulating the availability of substrates or co-factors to regulating the
activity of essential transcription factors. Depending on the drug of interest, its
characteristics, mechanism of action, cellular target, and application, a different drug
delivery system should be designed. Metabolic drugs modulating the ECM require cellular
uptake for their function, therefore reversible linkers are recommended. Preferably the
metabolic modulators are only released when needed, which will be upon a specific
metabolic state, a change in ECM stiffness, or ECM remodeling. Therefore, reversible
linkers that respond to an environmental stimulus could be incorporated. All in all, a novel
strategy is suggested to develop a tissue-specific ECM by generating a synthetic material
that releases metabolic molecules modulating the ECM. Various ways to modulate the
ECM properties via the metabolism are reviewed and guidelines for the development of
these materials are provided.
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INTRODUCTION

In regenerative medicine and tissue engineering, a variety of approaches have been taken to engineer
the extracellular matrix (ECM) using synthetic or natural building blocks. The aim of these efforts is
to generate a matrix that closely mimics the tissue-specific matrix properties including its stiffness,
strength, dynamicity, and cell–matrix interactions to enhance cell behavior specific to the tissue of
interest (Geckil et al., 2010; Hong et al., 2011; Burdick and Murphy, 2012; Lam et al., 2014).

Despite significant advances in engineering the ECM, synthetic materials have yet to fully capture
its diversity and complexity (Kyburz and Anseth, 2015). Some scientists have turned to using
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biological tissue as a source of ECM proteins. For example,
following decellularization, these proteins can be used as a
scaffold or as a bioink for 3D printing (Uriel et al., 2009;
Dzobo et al., 2019; Fernández-Pérez and Ahearne, 2019).
Other approaches have embraced a combined synthetic and
natural approach, for example by coating synthetic materials
with biological motifs to enhance cell–matrix interactions. The
best known example of this approach is the addition of an RGD
peptide to a scaffold, which cells can use for integrin-mediated
adhesion and subsequent signaling (Ingavle et al., 2014; Xing
et al., 2020). However, while these approaches may capture some
of the important features of the ECM, it remains challenging to
produce tissue-specific ECM with the correct biological (e.g.,
expression of specific ECM proteins and post-translational
modifications) and physical (e.g., stiffness, viscoelasticity)
properties. Many approaches are also hindered by additional
disadvantages such as the lack of reproducibility and tunability.

Here, an alternative strategy for generating tissue-specific
ECM is reviewed. In this strategy, instead of directly
engineering an ECM, synthetic materials can be used to
modulate cellular metabolism and thus stimulate cells to
synthesize and remodel their own ECM (Ma et al., 2019). A
synthetic material is chosen for this strategy because it offers a
blank-slate, whereas a naturally-derived ECM can possess tissue-
specific cues, which is seen in examples where it induces tissue-
specific differentiation (da Mata Martins et al., 2020; Parmaksiz
et al., 2020). From a synthetic material, the ECM stiffness can be
tuned and bioactive molecules can easily be incorporated (Kyburz
and Anseth, 2015). The synthetic material therefore functions as a
drug delivery system to target metabolic pathways in the cells
(Tiwari et al., 2012; Tibbitt et al., 2016; Li et al., 2019), which also
offers the benefit of local drug delivery to enhance the therapeutic
effect (Hwang et al., 2020). These metabolic pathways leading to
changes in ECM production and remodeling are consistently
expressed in all different cell types and can be modulated on
demand. In this mini-review, the mechanisms by which cellular
metabolism affects the ECM, the various ways to modulate the
ECM by targeting the metabolism, and guidelines for the
development of materials that employ this approach are reviewed.

CELLULAR METABOLISM AFFECTS THE
ECM SYNTHESIS, COMPOSITION, AND
PHYSICAL PROPERTIES
Every cell needs energy to perform its function. They are
therefore equipped with various metabolic pathways to
generate energy from substrates ranging from glucose to lipids.
These metabolic pathways are regulated based on the available
substrates and oxygen levels. Some pathways generate more
energy (e.g., oxidative phosphorylation, the aerobic oxygen-
dependent pathway) than others (glycolysis, the anaerobic
oxygen-independent pathway).

Every tissue has a specific ECM in terms of its structure and
composition (Frantz et al., 2010). Because ECM synthesis
requires a lot of energy, its synthesis and the composition of
the resulting matrix can be affected by the metabolism.

Furthermore, modulating the cellular metabolism can change
the physical properties of the ECM, such as its stiffness and
degradation. All of these naturally occurring metabolic pathways
that affect ECM properties can be targets of a synthetic materials-
based approach to generate tissue-specific ECM (Romani et al.,
2021).

Different ECM Components are Expressed
due to Changes in Metabolism
Different metabolic targets exist to modulate ECM expression. In
general, when there is an excess of nutrients, AMP-activated
protein kinase (AMPK) is decreased and mammalian target of
rapamycin complex 1 (mTORC1) is increased, which
subsequently increases fibronectin assembly and integrin
activation (Table 1). AMPK has also been shown to regulate
hyaluronan synthesis by phosphorylating and inhibiting
hyaluronan synthase 2 (Xing et al., 2020). In addition, another
in fibroblasts and epithelial cells from the lung, kidney, liver, and
skin, it has been shown that the Sterol regulatory element-binding
proteins (SREBP)/mevalonate metabolism regulates the Yes-
associated protein 1 (YAP1)/transcriptional coactivator with
PDZ-binding motif (TAZ) signaling (Sorrentino et al., 2014;
Noguchi et al., 2018). This activation of YAP/TAZ signaling
induces the synthesis of (profibrotic) ECM proteins like
collagen I (Table 1). Conversely, when nutrients are in short
supply, fibronectin assembly is decreased and integrin
internalization and ECM degradation are subsequently
increased (Dornier and Norman, 2017).

This relationship between nutrients and ECM also exists in
differentiating stem cells. For example, during adipocyte
differentiation, cellular metabolism changes due to the uptake
and storage of fatty acids (Mariman and Wang, 2010). This
change affects the ECM composition through peroxisome
proliferator-activated receptor gamma (PPARγ), a key
transcription factor in adipocyte differentiation, which
upregulates the synthesis ECM components collagen VI and
thrombospondin 1 (Okuno et al., 2002; Table 1). All in all,
the energetic substrate leads to metabolic changes that can
affect the expression of ECM proteins like fibronectin or collagen.

Hypoxia Induces a Stiffer Matrix
Another means by which the ECM can be modulated is through
oxygen availability, which can also affect the induction of
metabolic pathways, leading to mechanical modulation of the
ECM. In hypoxia, which is a low level of oxygen, more anaerobic
metabolic pathways are upregulated, and the expression of
collagen I is reduced while the expression of collagen IV is
increased (Tajima et al., 2001; McKay et al., 2017). However,
it is not just the ECM synthesis and composition that are affected
by metabolism; the physical properties of the ECM are also
influenced. When the metabolism of chondrocytes is affected
by hypoxia and there is a subsequent diminished glucose
oxidation, the collagen synthesis is also reduced (Stegen et al.,
2019). As the cells switch from a metabolism based on glucose
and fatty acids to glutamine, the enhanced α-ketoglutarate
formation from glutamine leads to increased proline and
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lysine hydroxylation of collagen (Stegen et al., 2019; Table 2).
This hydroxylation of collagen increases ECM stiffness and
prevents matrix degradation. As another example, in hepatic
stellate spheroids, the addition of the glycolytic metabolite
phosphoenolpyruvate has been shown to increase α-smooth
muscle actin, thereby stiffening the matrix (Fujisawa et al.,
2020; Table 2).

Metabolism can also affect the degradability of the ECM
through, for example, matrix metalloproteinases (MMPs).
Briefly, MMPs can be classified in specific groups, one of which
are the collagenases. These MMPs cleave collagen at specific sites,
except when the collagen is hydroxylated at a nearby proline or
lysine residue (Taddese et al., 2010). An example of how
metabolism affects the degradability of the ECM is the
activation of PPARγ, which increases the expression of MMP-1
(François et al., 2004; Table 2). Similar relationships are seen in
medicine, where obesity leads to adipocyte hypertrophy and
overgrowth, leading to hypoxia and decreased energy
production via the tricarboxylic acid cycle. This inhibits proline
hydroxylation, which increases ECM degradation by MMPs and
leads to ECM instability (Mariman and Wang, 2010). Finally, in
breast cancer cells, it has been shown that pyruvate metabolism
induces collagen hydroxylation by activating prolyl-4-hydroxylase,
which decreases MMP8 degradation and subsequently decreases
metastatic growth of the cancer cells (Elia et al., 2019; Table 2).
Overall, due to low oxygen, alternative metabolic pathways are
induced that affect ECM crosslinking or release enzymes that are
involved in ECM remodeling affecting its mechanical properties.

Other Interactions Between Cellular
Metabolism and ECM Properties
It is also interesting to note that in addition to the cellular
metabolism determining ECM properties, it is also the case
that the ECM conversely affects cellular metabolism. However,
this is outside of the scope of this mini-review and has been
extensively described elsewhere (Mah et al., 2018; Fernie et al.,
2020). For example, when cells detach from the ECM that leads to
decreased glucose uptake, glycolysis and oxidative

phosphorylation (Mason et al., 2017). In addition, a low level
of hyaluronan leads to diminished internalization of the glucose
transporter GLUT1 that subsequently decreases all glucose-
related cellular metabolism (Sullivan et al., 2018). Decreased
hyaluronan activates receptor tyrosine kinase (RTK), which
subsequently induces ZFP36. ZFP36 leads to thioredoxin
interacting protein (TXNIP) degradation and decreases
GLUT1 internalization (Katsu-Jiménez et al., 2019). ECM
detachment of ECM expression can both affect substrate
uptake or increase metabolism.

In summary, cellular metabolism can affect the ECM
synthesis, modification, composition, signaling, stiffness, and
degradation. In addition, the ECM can also influence the
cellular metabolism. These studies indicate interesting
metabolic targets that can be used to modulate the ECM.
Next, we will describe how (bio)materials scientists and tissue
engineers can harness this information.

A TOOLBOX FOR (BIO)MATERIAL
SCIENTISTS TO INFLUENCE METABOLISM
AND THEREBY AFFECT ECM
Methods to modulation the ECM by influencing cellular
metabolism can be incorporated in the design of materials or
scaffolds for tissue engineering. Material scientists have
previously developed various effective tools for drug delivery
that can be applied (Li et al., 2019). Depending on the drug of
interest, its characteristics, mechanism of action, cellular target
and application, different materials, and strategies to modify the
material can be chosen. ECM-like hybrid materials are very
suitable for the addition of a drug-delivery element and
application for regenerative medicine purposes (Hinderer
et al., 2016; Setayeshmehr et al., 2019; Zhu et al., 2019). All in
all, synthetic materials could be combined with a drug delivery
element depending on the drug of choice.

Different metabolic drugs exist to target different metabolic
pathways. A metabolic pathway can be targeted at different levels,
for example an essential co-factor can be scavenged or an

TABLE 1 | Metabolic pathways regulating ECM expression.

Metabolic target ECM expression References

AMP-activated protein kinase (AMPK) Fibronectin increase Xing et al. (2020)
Sterol regulatory element-binding proteins (SREBP) Collagen I increase (Sorrentino et al., 2014; Noguchi et al., 2018)
Peroxisome proliferator-activated receptor gamma (PPARγ) Collagen VI and thrombospondin 1 increase Okuno et al. (2002)

TABLE 2 | Metabolic pathways regulating ECM stiffness.

Metabolic target ECM Mechanical result References

α-ketoglutarate formation from glutamine Proline and lysine hydroxylation of collagen Stiffer matrix Stegen et al. (2019)
Phosphoenolpyruvate α-smooth muscle actin increase Stiffer matrix Fujisawa et al. (2020)
Peroxisome proliferator-activated receptor
gamma (PPARγ)

Matrix metalloproteinase-1 expression Softer matrix (François et al., 2004; Mariman and Wang, 2010;
Taddese et al., 2010)

Pyruvate Prolyl-4-hydroxylase activation Stiffer matrix Elia et al. (2019)
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inhibitory analog of an essential substrate with higher affinity can
be provided (Park et al., 2008; Zhdanov et al., 2015; Zhang et al.,
2016). Furthermore, a transcription factor can be inhibited
directly by keeping it in its inactive form (Gu et al., 2016). We
will first discuss the selection of a drug, which will be followed by
an overview of the delivery strategies that (bio)materials scientists
can employ.

Drugs can Target Metabolism by Affecting
Essential Co-Factors or Metabolic
Transcription Factors
There are many drugs that can target metabolism, for example,
by targeting a co-factor for a metabolic pathway or directly
targeting a transcription factor. Examples of drugs that target an
essential co-factor for a metabolic pathway are deferoxamine
(DFO) and dimethyloxalylglycine (DMOG), which both affect
the metabolic transcription factor HIF1α. DFO is an iron
chelator, while DMOG is a synthetic analogue of
α-ketoglutarate. Both iron and α-ketoglutarate are essential
substrates for prolyl-4-hydroxylase, which hydroxylates
HIF1α in normoxia to target HIF1α for proteosomal
degradation (Iommarini et al., 2017; Donneys et al., 2019).
However, during hypoxia or when adding DFO or the
competitive inhibitor DMOG, prolyl-hydroxylases do not
hydroxylate HIF1α. This leads to HIF1α-mediated signaling,
but also decreases proline and lysine hydroxylation of collagen,
which decreases matrix stiffness and leads to a higher sensitivity
of the matrix for degradation (Rappu et al., 2019; Stegen et al.,
2019).

An example of a metabolic drug that directly targets a
metabolic transcription factor is the inhibitor AS1842856 that
inhibits FOXO1 by binding to its active non-phosphorylated
form. FOXO1 mediates the activation of Glucose 6-
phosphatase and inhibits glucokinase. In hepatocytes, insulin
represses glucose production and enhances lipogenesis by
inhibiting FOXO1 activation (Langlet et al., 2017). Depending
on the metabolic pathway that needs to be activated, a different
metabolic drug can be chosen.

Criteria for Metabolic Drugs areMechanism
of Action, No Therapeutic Toxicity and
Potential for Clinical Use
In this strategy, it is important that the characteristics of the
drug of interest be taken into account. There are numerous
considerations that should be given to selecting a drug for
the purpose of modulating cellular metabolism and
thereafter the ECM. Firstly, it is essential that the drug
does not have any toxic effects on the cells at its effective
concentration and exposure time (Suzman et al., 2019; Hoy,
2020). Preferably, the drug is FDA/EMA-approved like
DFO, which has been approved for iron overload
(Kontoghiorghes and Kontoghiorghe, 2016; Sun et al.,
2020; Xu et al., 2020; Takpradit et al., 2021). After
selecting the drug of interest based on characteristics,
mechanism of action and cellular target, the next step

will be to include it in the right material and apply the
right release strategy.

The Mechanism of Action of the Metabolic
Drug Determines Which Material and
Coupling Strategy will be Chosen.
The physical properties of the tissue of interest is important for the
choice of the material, while the mechanism of action of the
metabolism-modulating drug defines the coupling strategy. For
example, depending on the stiffness of the ECM of the target tissue,
a different material could be selected, ranging from solid materials
to soft hydrogels. PEG, PVA, and PHEMA are frequently used for
engineering the ECM, and they can be co-polymerized with
different polymers to tune the physical properties (Unal and
West, 2020), which can also be an advantage in 3D printing
applications (Da Silva et al., 2020). For an optimal mechanical
strength, dynamic viscoelastic hydrogels are of particular interest
because of the tunability of their stiffness and their resemblance to
the ECM (Hafeez et al., 2018; Table 3).

The drug coupling or delivery method needs to be chosen
based on the drug of interest and its cellular target (Table 3). For
example, if the metabolic drug needs to be released to be
functional or taken up by the cell to induce its biological
effect, it is essential to include a reversible linker into the
material design. Biodegradable linkers can be used, including:
carbonates, anhydrides, esters, urethanes, amides, or orthoesters
(Elvira et al., 2005). If the drug of interest is of amphiphilic or
hydrophobic nature, it can self-associate in surfactant materials
(Schreier et al., 2000). In order to control drug release, linkers that
depend on the environmental stimulus could be applied or
designed to modulate the timing of drug release (Table 3).

For some metabolic modulators that regulate the ECM, a more
sustained release is required.Many strategies are available to induce a
sustained release, ranging from coupling, host-guest chemistry to
encapsulating in cellulose capsules (Bakker et al., 2018a; Bakker et al.,
2018b; Sun et al., 2019). Furthermore, many different intelligent
biomaterials have been developed that respond to the environment,
including cues such as pH, reactive oxygen species (ROS), MMPs, or
even mechanotransduction. Depending on the degradation rate by
MMPs, a different polymer can be chosen (Unal and West, 2020).
An example of how environmental cues can be used is in the setting
of an engineered tissue that lacks vasculature. This will lead to
hypoxia and enhanced glycolysis and lactic acidosis in the
surrounding tissue that decreases the pH. This pH decrease can
be used to prevent associated changes in the surrounding ECM by
releasing a drug that influences the metabolism and subsequent
ECM remodeling. A hydrazine linker is a commonly used pH-
inducible release linker, since it is cleaved in an acidic environment
(Rao N et al., 2012). Similarly, the decreased oxidative
phosphorylation present in hypoxia also leads to incomplete
mitochondrial respiration and the formation of ROS. These ROS
could be another stimulus that releases metabolic drugs influencing
ECM in response to metabolic changes. ROS can reduce disulfide
bonds inducing the release of the coupled drugmolecule. Next to the
disulfide bonds, there exist many different ROS or redox-responsive
linkers (Liang and Liu, 2016; Tao and He, 2018).
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In summary, the tissue of interest defines the material choice.
Depending on the local ECM stiffness and presence of local cells,
more or less metabolic modulator will be released, making
synthesis and stiffness of the ECM tissue-specific. In addition,
depending on the characteristics of the metabolic drug modulating
ECM and the local ECM, different drug delivery strategies should
be used. Because most metabolic drugs that affect the ECM require
cellular uptake for their function, reversible linkers should be
applied. Intelligent materials that respond to the pH, ROS,
MMPs, or mechanical signals from the environment enhance
the biological application of these materials.

DISCUSSION

To promote both the formation of a naturally complex ECM,
while preventing the variability in production, studies have

shown the potential of a synthetic material that functions as
a drug delivery system to release metabolic modulators that
influence the synthesis and modification of ECM in resident
cells (Figure 1).

AMPK, PPARγ, SREBP, or prolyl hydroxylases are metabolic
targets known to influence the composition and/or stiffness of
the ECM. Different metabolic drugs exist that target metabolic
pathways and thereby influence the ECM synthesis and/or
modification. The metabolic drugs can target co-factors or
substrates or interact with a metabolic transcription factor.
The characteristics, mechanism of action, cellular target and
application of the drug of interest inform the choices for the
synthetic materials and the drug-coupling strategy. If the
metabolic molecule needs to bind the intracellular enzymes
or transcription factors for performing its function, a
reversible linker could be used. These reversible linkers could
respond to metabolic (pH, ROS) or ECM-related (MMP-

TABLE 3 | Design criteria for synthetic materials that affect the extracellular matrix via cellular metabolism.

Biological criterium Material design choice Reason References

Tissue stiffness Dynamic viscoelastic
hydrogels

Tunability Hafeez et al. (2018)

Mechanism of action drug a) Reversible linker a) Transmembrane transport
essential

(Schreier et al., 2000; Elvira et al., 2005)

a) Intracellular target b) Nonreversible linker b) Extracellular binding sufficient
b) Extracellular target

Stimulus or time-responsive
effects

Intelligent materials Release based on environmental
stimulus

(Rao N et al., 2012; Liang and Liu, 2016; Tao and He, 2018; Unal and
West, 2020)

FIGURE 1 | Materials can affect the stiffness of the extracellular matrix by regulating cellular metabolism. The synthetic drug delivery system targets metabolic
mediators AMP-activated protein kinase (AMPK) and prolyl hydroxylases in tissue resident cells, which in their turn decreases ECM stiffness. There are two ways to
regulate the outcome of ECM stiffness, namely by affecting ECM expression or by affecting ECM crosslinking. This can be achieved by targeting metabolic pathways by
scavenging essential cofactors extracellularly or directly inhibiting metabolic targets.
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mediated degradation or mechanical forces)
microenvironmental stimuli.

In conclusion, we have described the potential of a synthetic
material with a drug-delivery element to modulate cellular
metabolism and thereby regulate the ECM. This strategy
confers reproducibility in production while capturing the
complexity of the tissue-specific ECM.

In the future, multidrug spatiotemporal controlled
hydrogels could contribute to induce a tunable time or
concentration-specific drug release. This is especially
important because biological systems are complex with
multiple (negative) feedback loops. During physiological
metabolism, a metabolic pathway is activated, which leads
to a new cue influencing the next pathway. This could be the
inspiration for the next step in material engineering.
Multidrug-responsive hydrogels could be designed that
contain multiple drug delivery elements that are also
capable of responding to a second cellular mediators, also
called intelligent multicommunicating materials (Brown and

Anseth, 2017; Leijten et al., 2017). These multidrug
spatiotemporal controlled hydrogels could be the next
generation of cell–material communication.
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