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Abstract

Background: Local similarity analysis (LSA) of time series data has been extensively used to investigate the dynamics
of biological systems in a wide range of environments. Recently, a theoretical method was proposed to approximately
calculate the statistical significance of local similarity (LS) scores. However, the method assumes that the time series
data are independent identically distributed, which can be violated in many problems.

Results: In this paper, we develop a novel approach to accurately approximate statistical significance of LSA for
dependent time series data using nonparametric kernel estimated long-run variance. We also investigate an
alternative method for LSA statistical significance approximation by computing the local similarity score of the
residuals based on a predefined statistical model. We show by simulations that both methods have controllable type I
errors for dependent time series, while other approaches for statistical significance can be grossly oversized. We apply
both methods to human and marine microbial datasets, where most of possible significant associations are captured
and false positives are efficiently controlled.

Conclusions: Our methods provide fast and effective approaches for evaluating statistical significance of dependent
time series data with controllable type I error. They can be applied to a variety of time series data to reveal inherent
relationships among the different factors.

Keywords: Data-driven local similarity analysis, Long-run variance, Nonparametric kernel estimate, Statistical
significance

Background
Next generation sequencing (NGS) technologies have
made it possible to generate a large amount of time series
data in both genomics and metagenomics. An important
question in time series data analysis is the identification
of associated factors, where the factors can be genes in
gene expression analysis or operational taxonomic units
(OTUs) in metagenomic studies. Specifically, the abun-
dance series of OTUs are used to investigate the temporal
variation of microbial communities in longitudinal stud-
ies [1]. Most commonly used approaches for identifying
associated factors are to calculate the Pearson correlation
coefficients (PCC) or Spearman correlation coefficients
(SPCC) among the factors and to identify the significantly
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associated pairs of factors. However, it was observed in
previous studies that factors can be associated in a subset
of time intervals (local) and maybe there are time-delays
between the factors. PCC and SPCC may fail to identify
such local associations with/without time-delays.
Several methods have been developed to understand

such associations and have been applied to analyze gene
expression profiles [2–4], regulatory network construc-
tion [5], co-occurrence patterns in microbial communities
[6–9] and many other fields [10, 11]. For example, Qian
et al. [2] proposed a local similarity method to iden-
tify potential local and time-shift relationships between
gene expression data. Ji and Tan [4] suggested a simi-
lar procedure that switched gene expression profiles into
distinctive changing trend states and calculated the local
similarity of the new time series. Ruan et al. [7] investi-
gated local relationships among microbial organisms and
environment factors in the San Pedro Channel in the
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North Pacific Ocean and visualized the graphical struc-
ture of significant local similarity associations. Xia et al.
[11] extended this method to investigate the replicated
time series data and obtained confidence interval of LSA
by bootstrap. In these studies, permutation test was used
to evaluate statistical significance of the local similar-
ity score, which is time-consuming if a large number of
factors are considered.
To overcome the computational issues of permuta-

tion test, several research groups developed theoretical
approaches to approximate the statistical significance of
LSA [12–14]. However, both permutation test and the the-
oretical approximations require the assumption that the
time series are independent identical distributed (i.i.d.),
which can be violated in most time series data.
In this study, we develop two new methods, referred

to as data-driven LSA (DDLSA) and LSA for residues
(LSAres), to more accurately approximate the statistical
significance of LSA. DDLSA employs long-run covariance
(described below) of stationary time series through non-
parametric kernel estimate to evaluate statistical signifi-
cance of the original LSA, while LSAres uses the residuals
from a predefined model as a substitute for the original
series to calculate the statistical significance, similar to the
idea of local trend analysis [14]. We investigate the size
and power of different approaches and show the valid-
ity of our methods using simulations. Further, we apply
these methods to analyze human microbiome and marine
microbial communities from different high-throughput
experiments and compare the identified associated fac-
tors using our newly developed methods and those from
previous theoretical approximations of LSA scores.

Methods
In this section, we first present an outline of the definition
of LSA as given in [2, 7] and the theoretical approximation
of statistical significance of the LSA score in [12]. Second,
we present our new data driven LSA (DDLSA) approach
for evaluating statistical significance of LSA for dependent
time series data. For easy reading, the details of the meth-
ods are given as additional information. Third, we present
the simulation strategies to evaluate the size and power of
the different approaches. Fourth, we describe the human
and marine metagenomic data used to demonstrate the
applications of our new approaches.

Outline of LSA and theoretical approximation of statistical
significance
Consider two time series Xt and Yt , t = 1, · · · , n, with
mean 0. The local similarity analysis [2, 7] was developed
to find intervals of the same length from each sequence
to maximize the similarity between the two time series. In
practice, biologists are only interested in a relatively small
number of delays. Therefore, it is required that the starting

positions of the intervals differ by at most D, a param-
eter set by the practitioners. A dynamic programming
algorithm was developed to calculate the largest similarity
score, referred to as local similarity (LS) score. The idea
was very similar to local sequence alignment in molecu-
lar sequence analysis [15]. In these early studies, statistical
significance of the LS score was evaluated using permu-
tations. Particularly, one of the time series data was fixed
and the other one was permutated many times, and the
resulting LS score was obtained using the dynamic pro-
gramming algorithm. The p-value was approximated by
the fraction of times the LS score of the permuted data is
larger than the LS score of the actual data.
There are several drawbacks to permutation test for

approximating the statistical significance of the LS score.
On the one hand, permutation test requires that data is
independent at different time points. However, in practi-
cal problems, this assumption is usually violated and time
series data may depend on the values of the previous time
points. On the other hand, the permutation procedure is
time-consuming, especially when the p-value precision is
small, as the time complexity is inversely proportional to
the p-value precision.When the number of factors is large,
all pairwise analysis of high-throughput data is computa-
tionally challenging. Therefore, fast and efficient methods
to obtain statistical significance approximation of LS score
are needed.
Xia et al. [12] and Durno et al. [13] independently

developed theoretical approximations for the p-value. Let
sD be the LS score with maximum delay of D between
Xt and Yt . Xia et al. [12] approximated the p-value by
LD

(
sD/(σ

√
n)

)
, where

LD(x) ≈ 1 − 82D+1

[ ∞∑

k=1

{
1
x2

+ 1
(2k − 1)2π2

}
exp

{
− (2k − 1)2π2

2x2

}]2D+1

,

(1)

and n is the number of time points. If both Xt and Yt
are i.i.d, σ 2 = var(XtYt). If both Xt and Yt are first
order Markov chains (such as DNA sequences in the
identification of CpG islands [16]), σ 2 = Eφ

(
Z2
1
) +

2
∑∞

k=1 Eφ(Z1Zk+1), with Zt = XtYt . Details on these
approximations are given in Additional file 1.

Statistical significance of LS score for dependent time series
Time series data in general depend on each other and
cannot be best modelled by Markov chains. Moreover,
it is challenging to obtain σ 2 defined above for Markov
models. Therefore, we provide a data driven approach
for evaluating the statistical significance of LS score for
dependent time series data.
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Assume Xt and Yt are weakly stationary time series
with mean 0. Here a time series Xt is weakly station-
ary if E|Xt|2 < ∞, E(Xt) is a constant (independent
of t) and Cov(Xt ,Xt+k) depends only on time delay k.
Under the null hypothesis H0 that the two time series
are not associated, Zt = XtYt is also weakly station-
ary with mean 0. Using similar arguments as in [12], we
can show that the p-value can again be approximated by
LD

(
sD/(ω

√
n)

)
, where the function LD is given in Eq. 1

and ω = limn→∞
√
var

(∑n
i=1 Zi

)
/n is referred to as the

long-run variance. The details of theoretical derivations
are given in the Additional file 1.
The estimate of ω plays a crucial role in deriving

the statistical significance of LS score and has an enor-
mous impact on the validity of local similarity analysis
for dependent data. Following Andrew [17], we used an
autoregressive (AR)(1) plug-in data dependent method to
estimate the long-run variance. The autoregressive model
specifies that the current value depends linearly on its own
previous values.
Let γ̂z(k) be the sample autocovariance function of Zt ,

defined as:

γ̂z(k) = 1
n

n−|k|∑

j=1

(
Zj − Z̄

) (
Zj+|k| − Z̄

)
, k = 1, 2, · · · , n− 1,

(2)

where Z̄ = 1
n

∑n
i=1 Zi is the mean of Zt . Under the null

hypothesis H0, we can approximate γ̂z(k) by γ̂x(k)γ̂y(k) if
the means of Xt and Yt are zero, where γ̂x(k), γ̂y(k) and
γ̂z(k) are the sample autocovariance functions of Xt , Yt
and Zt , respectively. We can estimate ω by

ω̂2
n = γ̂x(0)γ̂y(0) + 2

bw∑

k=1

(
1 − k

bw

)
γ̂x(k)γ̂y(k), (3)

where bω is the bandwidth parameter bω =⌊
1.1447(τ̂n)1/3

⌋
[17],

τ̂ = 4φ̂2
(
1 − φ̂2

)2 , φ̂ =

n∑

i=2
ûtût−1

n∑

i=2
û2t

, ût = Zt−Z̄.

(4)

In summary, given time series Xt and Yt , we first cal-
culate their LS score sD using the dynamic programming
algorithm in [7]. We then estimate the long-run vari-
ance using Eq. 3. Finally, the statistical significance of
the LS score for dependent data can be approximated as
LD(sD/(ω̂n

√
n)). Since we estimate the long-run variance

from real data, we refer to the new method as data driven
LSA (DDLSA).

Local similarity analysis based on residuals
We also modified the original theoretical approximation
of statistical significance of LS score [12] by considering
the residuals of the original time series. First we suppose
that time series data are generated from a pre-defined
model, such as autoregressive (AR) model or autoregres-
sive moving average (ARMA) model. We then use the
residuals from the model as the substitution of the orig-
inal data, since the correlation of data may come from
the relevance of the residuals. Because of the independent
property of the residuals, the statistical significance of LS
score of residuals can be obtained from the approximate
theoretical distribution of LSA for i.i.d. time series (Eq. 1).
We refer to this method as LSAres.

Simulation studies
We evaluated the size and power of six different methods
for determining the statistical significance of associations
between factors in time series data. The six methods are
described as follows.

1 PCC. Pearson correlation coefficient (PCC) is widely
used to identify correlation between random
variables. If the random variables Xt and Yt are from
a bivariate normal distribution and their PCC is r, the
statistic t = r

√
(n − 2)/(1 − r2) has a Student’s

t-distribution with degrees of freedom n − 2 under
the null hypothesis H0.

2 SRCC. Spearman rank correlation coefficient (SRCC,
rs) between Xt and Yt is defined as Pearson
correlation coefficient between the rank values of
those two variables. We can test for the significance
of rs using t = rs

√
(n − 2)/

(
1 − r2s

)
, which follows

approximately a Student t-distribution with degrees
of freedom n − 2.

3 Theoretical LSA (TLSA). We used the procedures
in [12] to calculate the p-value of the LS score
between Xt and Yt .

4 Permutation test. We fixed one time series Yt and
reshuffled Xt for N = 1000 times. Assuming that
X(k)
t , k = 1, · · · ,N were the permutations of Xt , we

computed the LS score between X(k)
t and Yt , denoted

as s(k)D . Then the p-value was approximated by the
fraction of times that s(k)D are at least as high as sD,
the LS score between Xt and Yt .

5 LSAres. We adopted the AR or ARMA models to
obtain the residuals of data, and calculated the
statistical significance of the residuals through TLSA,
which was regarded as the significance between Xt
and Yt .

6 DDLSA. In DDLSA, the time series data need to be
centered first. Specifically, time series data
Xt , t = 1, 2, · · · , n are centered as X̃t = Xt − X̄t ,



Zhang et al. BMC Bioinformatics           (2019) 20:53 Page 4 of 15

where X̄t = 1
n

∑n
t=1 Xt is the sample mean of Xt . Ỹt

is defined analogously. We utilized LD
(
sD/

(
ω̂n

√
n
))

to calculate the approximate statistical significance of
X̃t and Ỹt and took it as the significance between Xt
and Yt .

Comparison of the empirical size of different approaches
We investigated whether p-values obtained from these
statistics were close to the significance level which is the
probability rejecting the null hypothesis, given that it
were true. Here we used three different null models to
compare the size of the six approaches for calculating the
statistical significance of the LS score:

(1) The AR(1) model:

Xt = ρ1Xt−1 + εXt

Yt = ρ2Yt−1 + εYt
(5)

(2) The ARMA(1,1) model:

Xt = ρ1Xt−1 + εXt + 0.5 εXt−1

Yt = ρ2Yt−1 + εYt + 0.5 εYt−1
(6)

(3) The ARMA(1,1)-TAR(1) model:

Xt = ρ1Xt−1 + εXt + 0.5 εXt−1

Yt =
{

ρ2Yt−1 + εYt ,Yt−1 ≤ −1
0.5 Yt−1 + εYt ,Yt−1 > −1

(7)

where 0 < |ρ1|, |ρ2| < 1, εXt and εYt are independent
standard normal random variables. All these models were
stationary. For each model, we first generated X0 and Y0
from the standard normal distribution. Then we gener-
ated (Xt ,Yt), t = 2, · · · , 100 + n from these models.
Finally, we discarded the first 100 samples and took the
others as the true Xt and Yt . The procedure can guaran-
tee the stationarity of the time series generated from these
models.

Comparison of the empirical power of different approaches
Next we investigated the power of the six methods for
detecting the association between the factors under two
alternative models that the factors are associated. Our
objective is to identify the most powerful method for
detecting the associations between the factors.

The local AR model We studied a model that the two
factors are only associated in a subinterval:

X1 = εX1 , Xt = ρ1Xt−1 + εXt , t = 2, · · · , n,
Y1 = εY1 , Yt = ρ2Yt−1 + εYt , t = 2, · · · , n, (8)

where εX1 , ε
Y
1 ∼ N(0, 1), εXt ∼ N

(
0, 1 − ρ2

1
)
, εYt ∼

N
(
0, 1 − ρ2

2
)
, t = 2, · · · , n and they are independent. For

simplicity and symmetry, we generated time series data
that were correlated within the middle interval of length
np as follows, where p is the fraction of the time inter-
val that the two time series were correlated (shown in
Fig. 1). We first generated Xt using Eq. 8. Second, let
Yt = 1√

1+σ 2 (Xt + ξt) in the middle np time points of the
entire series where ξt ∼ N

(
0, σ 2) , σ 2 = (

1 − ρ2) /ρ2. In
the remaining n − np time points, Yt were generated by
the AR(1) model (Eq. 8) with ρ2 = ρ1/

(
1 + σ 2). We gen-

erated the time series data this way so that Xt followed a
stationary AR(1) model, Yt approximately followed a sta-
tionary AR(1) model, and Xt and Yt were correlated in the
middle np time points with correlation coefficient ρ.
The bivariate AR model We also investigated another

model, referred to as the bivariate AR(1) model, that was
used in [18] (Chapter 7, page 290).

X1 = εX1 , Xt = ρ1Xt−1 + εXt , t = 2, · · · , n,
Y1 = εY1 , Yt = ρ2Yt−1 + εYt , t = 2, · · · , n, (9)

where εX1 , ε
Y
1 ∼ N(0, 1), εXt ∼ N

(
0, 1 − ρ2

1
)
, εYt ∼

N
(
0, 1 − ρ2

2
)
, t = 2, · · · , n and the noise terms have

correlation coefficients:

Fig. 1 Diagrammatic sketch of data generating process in the local and bivariate AR models. The middle intervals of Xt and Yt are correlated and
both ends of them are independent. Here �·	 is the floor function which returns the greatest integer less than or equal to the input
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cor
(
εX1 , ε

Y
1
) = ρ,

cor
(
εXt , εYt

) = (1 − ρ1ρ2)ρ√(
1 − ρ2

1
) (
1 − ρ2

2
) , t = 2, · · · , n,

cor
(
εXi , εYj

)
= 0, i, j = 1, · · · , n, i 
= j.

(10)

The variances of both Xt and Yt are 1 and cor(Xt ,Yt) = ρ.
Similarly as above, we generated locally associated time
series data. In the middle np time points, we generated
(Xt ,Yt) using Eq. 9. In the remaining n − np time points,
we generated (Xt ,Yt) by the independent bivariate AR(1)
model with ρ = 0.

Applications to a human and amarine microbiome data
sets
We applied DDLSA and LSAres to analyze a human and
a marine microbiome time series data sets. The Moving
Pictures of the Human Microbiome (MPHM) data was
collected from two healthy subjects, one male (‘M3’) and
one female (‘F4’). Both individuals were sampled daily at
three body sites: gut (feces), mouth(tongue), and skin (left
and right palms) [19]. The data set consists of 130, 135
and 133 daily samples from ‘F4’, and 332, 372 and 357
samples from ‘M3’. There are 335, 373 and 1295 opera-
tional taxonomic units (OTUs) from feces, tongue and
palm (both left and right) sites of ‘F4’ and ‘M3’, where the
taxonomic level is Genus. We selected 41 ‘core’ OTUs that
were observed in at least 60% samples from the tongue of
‘F4’ and analyzed their relationships.
The PML data set is one of the longest microbial time

series consisting of monthly samples taken over 6 years
at a temperate marine coastal site off Plymouth, UK [20].
These samples were sequenced using high-resolution 16S
rRNA tag NGS sequencing. A total of 155 bacterial OTUs
were identified with the taxonomic level of Order. Among
them, we chose 62 abundant OTUs that were present in at
least 50% of the time points, and 13 environment factors
to analyze their association network.We filled the missing
values in the environment data using linear interpolation.

Results and discussion
DDLSA and LSAres have controlled type I error rates and
other approaches do not
We investigated the effects of the autoregressive coeffi-
cients ρ1 and ρ2 and the number of time points n on the
type I error rates of the six methods for evaluating sta-
tistical significance under the AR(1) (Eq. 5), ARMA(1,1)
(Eq. 6) and ARMA(1,1)-TAR(1) (Eq. 7) models. We chose
six different pairs of autoregressive coefficients from -
0.5 to 0.8 and the number of time points n from 100 to
1000. The results are shown in Tables 1, 2 and 3 for
the three models, respectively. For TLSA, Permutation

test, LSAres and DDLSA, we set the maximum time delay
D = 0 for simplicity. For LSAres, we needed to specify
the generative models for Xt and Yt . For given data, the
generative models are most likely unknown. We used AR
or ARMA models as generative models and denoted the
resulting methods as LSAres(AR) and LSAres(ARMA),
respectively. Throughout the simulations, we let the pre-
specified error rate to be 0.05.
Table 1 shows that, except for the case of ρ1 = 0, ρ2 = 0,

the empirical type I error rates of PCC, SRCC, TLSA and
the permutation approaches are all larger than the pre-
specified type I error. When ρ1 = 0, ρ2 = 0, the empirical
type I error rates of PCC, SRCC, TLSA and the permu-
tation approaches are well controlled, which is reasonable
as the time series are independent bivariate normally dis-
tributed. Further, the empirical type I error of TLSA is
somewhat smaller than the significance level of 0.05 indi-
cating that TLSA is conservative, consistent with findings
in [12]. The results of LSAres and DDLSA are similar to
that of TLSA. When ρ1 
= 0 and/or ρ2 
= 0, the PCC,
SRCC, TLSA and the permutation approaches are not
valid in the sense that their empirical type I error rates
are much higher than the pre-specified type I error. On
the other hand, both DDLSA and LSAres control the type
I errors reasonably well under all the simulated scenar-
ios. Their type I error approaches the significance level as
the number of time points increases. The performances of
LSAres(AR) and LSAres(ARMA) are similar.
Tables 2 and 3 show the similar results for ARMA(1,1)

and ARMA(1,1)-TAR(1) models, respectively. Under
the ARMA(1,1) and ARMA(1,1)-TAR(1) models with
ρ1 = −0.5, ρ2 = −0.5, Xt are i.i.d.. Therefore, the
type I error rates of PCC, SRCC, TLSA and permutation
approaches are well controlled. However, the empirical
type I error rates are much larger than the pre-specified
type I error rate of 0.05 under all the other parameter
settings. On the other hand, the type I error rates of
LSAres and DDLSA are well controlled under all situa-
tions. Further, the type I error rates of both LSAres(AR)
and LSAres(ARMA) are well controlled indicating that
LSAres is applicable even when the generative model is
mis-specified.
Finally, the simulation results for time delay D 
= 0 are

presented in the Additional file 2: Table S1-S3.

Comparing the power of LSAres and DDLSA
Since PCC, SRCC, permutation and TLSA could not con-
trol type I error, we only investigated the power of LSAres
and DDLSA. In the local AR model, we let ρ1 = 0.5, ρ =
0.3, 0.4, 0.5, p from 0.2 to 1, and the number of time points
n from 20 to 300. Figure 2 shows the power of DDLSA
and LSAres as a function of the number of time points.
The power of both LSAres and DDLSA increases with
the number of time points n, percentage of correlation
p, and serial correlation ρ. In particular, when the two
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Table 1 The empirical type I error rates for the six different methods (the third to ninth column): PCC, SRCC, TLSA, permutation,
LSAres(AR), LSAres(ARMA), and DDLSA, based on the AR(1) model

ρ1, ρ2 n PCC SRCC TLSA Permutation LSAres(AR) LSAres(ARMA) DDLSA

-0.5 -0.5 100 0.1315 0.1261 0.1183 0.1647 0.0302 0.0324 0.0407

200 0.1250 0.1216 0.1387 0.1714 0.0319 0.0359 0.0454

300 0.1321 0.1282 0.1498 0.1768 0.0400 0.0378 0.0526

500 0.1270 0.1209 0.1573 0.1809 0.0406 0.0359 0.0485

1000 0.1233 0.1144 0.1703 0.1908 0.0387 0.0455 0.0509

0 0 100 0.0460 0.0459 0.0296 0.0477 0.0289 0.0312 0.0303

200 0.0503 0.0501 0.0340 0.0485 0.0349 0.0319 0.0350

300 0.0500 0.0516 0.0353 0.0483 0.0365 0.0386 0.0366

500 0.0493 0.0502 0.0403 0.0502 0.0413 0.0388 0.0404

1000 0.0484 0.0487 0.0434 0.0504 0.0429 0.0471 0.0441

0.3 0.3 100 0.0725 0.0716 0.0533 0.0814 0.0271 0.0281 0.0411

200 0.0699 0.0691 0.0615 0.0824 0.0335 0.0371 0.0459

300 0.0713 0.0718 0.0644 0.0819 0.0346 0.0343 0.0467

500 0.0729 0.0737 0.0705 0.0838 0.0410 0.0426 0.0501

1000 0.0775 0.0734 0.0796 0.0857 0.0431 0.0403 0.0540

0.3 0.5 100 0.0881 0.0828 0.0665 0.1021 0.0329 0.0303 0.0427

200 0.0936 0.0906 0.0843 0.1101 0.0348 0.0368 0.0517

300 0.0904 0.0901 0.0903 0.1096 0.0370 0.0397 0.0487

500 0.0907 0.0900 0.0993 0.1141 0.0421 0.0396 0.0481

1000 0.0928 0.0892 0.1076 0.1213 0.0447 0.0430 0.0544

0.5 0.5 100 0.1273 0.1200 0.1070 0.1535 0.0304 0.0310 0.0477

200 0.1255 0.1199 0.1365 0.1705 0.0333 0.0333 0.0491

300 0.1279 0.1252 0.1480 0.1797 0.0406 0.0393 0.0517

500 0.1255 0.1190 0.1576 0.1815 0.0406 0.0381 0.0463

1000 0.1292 0.1234 0.1785 0.1936 0.0445 0.0408 0.0520

0.5 0.8 100 0.1886 0.1792 0.1904 0.2557 0.0314 0.0310 0.0401

200 0.1997 0.1927 0.2477 0.2940 0.0316 0.0373 0.0498

300 0.1991 0.1887 0.2688 0.3131 0.0391 0.0370 0.0488

500 0.2050 0.1957 0.3067 0.3405 0.0402 0.0380 0.0552

1000 0.1980 0.1917 0.3229 0.3459 0.0436 0.0431 0.0482

The first and second columns represent different autoregressive coefficients and number of time points, respectively. Note that we used the residuals from the estimated
AR(p) or ARMA(p, q) models by maximum likelihood estimate and the order selection was based on the Akaike Information criterion (AIC). The number of permutations was
1000. The pre-specified type I error was 0.05 and the number of replications was 10000

time series are associated in 60% of the time interval (p =
0.6) with correlation (ρ = 0.5), the power of DDLSA is
greater than 0.9 when the number of time points n is at
least 100. Under the AR model, the power of DDLSA is
higher than that of LSAres. Although we only show the
results for ρ1 = 0.5 and time lag D = 0, the results from
other simulations with different autocorrelation param-
eters and time delays are similar to the result shown
here. The simulation results under the local AR model

with time delay D > 0 are shown in Additional file 3:
Fig. S1-S3.
Similar to the simulations under the local AR model,

we also investigated the power of DDLSA and LSAres
with different parameters under the bivariate AR model
and the results are shown in Fig. 3. However, the power
of LSAres is higher than that of DDLSA, different from
the local AR model. Overall, LSAres in testing local asso-
ciation is more useful than DDLSA if we know that the
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Table 2 The empirical type I error rates for the six different methods (the third to ninth column): PCC, SRCC, TLSA, permutation, LSAres
(AR), LSAres (ARMA), and DDLSA, based on the ARMA(1,1) model

ρ1, ρ2 n PCC SRCC TLSA permutation LSAres(AR) LSAres(ARMA) DDLSA

-0.5 -0.5 100 0.0524 0.0504 0.0314 0.0510 0.0303 0.0316 0.0325

200 0.0506 0.0502 0.0357 0.0504 0.0359 0.0358 0.0369

300 0.0469 0.0482 0.0343 0.0480 0.0399 0.0338 0.0346

500 0.0487 0.0484 0.0390 0.0501 0.0396 0.0402 0.0399

1000 0.0496 0.0491 0.0420 0.0495 0.0420 0.0414 0.0423

0 0 100 0.0835 0.0795 0.0620 0.0983 0.0297 0.0295 0.0400

200 0.0830 0.0829 0.0784 0.1021 0.0372 0.0339 0.0443

300 0.0878 0.0828 0.0853 0.1086 0.0406 0.0374 0.0428

500 0.0823 0.0793 0.0890 0.1066 0.0411 0.0377 0.0433

1000 0.0883 0.0847 0.1009 0.1130 0.0465 0.0445 0.0482

0.3 0.3 100 0.1401 0.1368 0.1356 0.1875 0.0300 0.0316 0.0399

200 0.1350 0.1297 0.1539 0.1946 0.0376 0.0360 0.0407

300 0.1380 0.1339 0.1732 0.2066 0.0361 0.0370 0.0432

500 0.1377 0.1341 0.1839 0.2093 0.0376 0.0401 0.0442

1000 0.1418 0.1368 0.1959 0.2141 0.0449 0.0435 0.0497

0.3 0.5 100 0.1659 0.1570 0.1583 0.2182 0.0285 0.0282 0.0372

200 0.1662 0.1581 0.1942 0.2435 0.0368 0.0362 0.0401

300 0.1663 0.1599 0.2220 0.2623 0.0401 0.0408 0.0438

500 0.1616 0.1540 0.2339 0.2621 0.0415 0.0395 0.0444

1000 0.1670 0.1611 0.2511 0.2742 0.0389 0.0415 0.0513

0.5 0.5 100 0.2012 0.1926 0.2126 0.2824 0.0326 0.0290 0.0390

200 0.2016 0.1935 0.2668 0.3210 0.0377 0.0361 0.0416

300 0.2012 0.1937 0.2827 0.3244 0.0394 0.0338 0.0415

500 0.2118 0.2025 0.3188 0.3512 0.0376 0.0391 0.0481

1000 0.2061 0.1966 0.3396 0.3651 0.0412 0.0447 0.0473

0.5 0.8 100 0.2620 0.2522 0.3050 0.3832 0.0297 0.0270 0.0329

200 0.2737 0.2616 0.3842 0.4474 0.0328 0.0355 0.0370

300 0.2624 0.2539 0.4056 0.4562 0.0394 0.0373 0.0425

500 0.2577 0.2513 0.4439 0.4788 0.0438 0.0433 0.0433

1000 0.2590 0.2492 0.4857 0.5136 0.0430 0.0415 0.0428

The first and second columns represent different autoregressive coefficients and number of time points, respectively. Note that we used the residuals from the estimated
AR(p) or ARMA(p, q) models by maximum likelihood estimate and the order selection was based on the Akaike Information criterion (AIC). The number of permutations was
1000. The pre-specified type I error was 0.05 and the number of replications was 10000

time series come from the pre-defined model, such as
the ARMA model. The simulated results for the power of
DDLSA and LSAres under the bivariate AR(1) model with
time delayD > 0 are shown in Additional file 3: Fig. S4-S6.

Significantly associated OTU pairs from the MPHM data set
We analyzed the relationships among 41 OTUs that were
observed in at least 60% of the tongue samples of indi-
vidual ‘F4’. First, we found 21 significant autocorrelated
OTUs among 41 OTUs using the Box-Ljung test [21]

under the null hypothesis H0 : ρ(k) = 0 at the
5% significance level, where ρ(k) is the autocorrelation
function for lag k. Figure 4 shows two autocorrelated
OTUs. The first-order autocorrelation of Neisseria is 0.61
(P-value = 1.96 × 10−12) indicating high autocorrelation.
Although Clostridiales had relatively low autocorrelation
(0.21), the hypothesis of no autocorrelation can still be
rejected (P-value = 0.0148).
Second, we identified significantly locally associated

OTU pairs with both p-value and false discovery rate
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Table 3 The empirical type I error rates for the six different methods (the third to ninth column): PCC, SRCC, TLSA, permutation, LSAres
(AR), LSAres (ARMA), and DDLSA, based on the ARMA(1,1)-TAR(1) model

ρ1, ρ2 n PCC SRCC TLSA permutation LSAres(AR) LSAres(ARMA) DDLSA

-0.5 -0.5 100 0.0490 0.0509 0.0295 0.0492 0.0273 0.0292 0.0309

200 0.0511 0.0511 0.0369 0.0515 0.0341 0.0372 0.0387

300 0.0495 0.0499 0.0393 0.0529 0.0383 0.0393 0.0400

500 0.0511 0.0517 0.0414 0.0519 0.0388 0.0405 0.0407

1000 0.0493 0.0508 0.0440 0.0496 0.0401 0.0419 0.0426

0 0 100 0.0494 0.0494 0.0294 0.0502 0.0283 0.0304 0.0329

200 0.0532 0.0518 0.0330 0.0499 0.0323 0.0341 0.0359

300 0.0487 0.0466 0.0368 0.0510 0.0368 0.0360 0.0377

500 0.0776 0.0778 0.0841 0.0989 0.0373 0.0387 0.0445

1000 0.0813 0.0813 0.0901 0.1005 0.0447 0.0400 0.0454

0.3 0.3 100 0.1172 0.1121 0.0955 0.1391 0.0280 0.0321 0.0431

200 0.1181 0.1149 0.1191 0.1549 0.0329 0.0327 0.0438

300 0.1181 0.1136 0.1277 0.1557 0.0349 0.0373 0.0460

500 0.1135 0.1106 0.1436 0.1683 0.0411 0.0416 0.0469

1000 0.1186 0.1122 0.1585 0.1748 0.0430 0.0460 0.0486

0.3 0.5 100 0.1245 0.1196 0.1098 0.1586 0.0336 0.0310 0.0396

200 0.1369 0.1259 0.1400 0.1778 0.0315 0.0356 0.0449

300 0.1350 0.1275 0.1545 0.1839 0.0421 0.0390 0.0454

500 0.1355 0.1281 0.1690 0.1940 0.0423 0.0423 0.0466

1000 0.1336 0.1339 0.1823 0.2014 0.0422 0.0407 0.0518

0.5 0.5 100 0.1584 0.1527 0.1527 0.2091 0.0280 0.0347 0.0423

200 0.1589 0.1520 0.1827 0.2258 0.0352 0.0365 0.0433

300 0.1604 0.1516 0.2004 0.2391 0.0382 0.0383 0.0429

500 0.1545 0.1500 0.2203 0.2484 0.0358 0.0405 0.0472

1000 0.1601 0.1507 0.2396 0.2609 0.0422 0.0425 0.0471

0.5 0.8 100 0.2160 0.2031 0.2282 0.2985 0.0312 0.0335 0.0401

200 0.2157 0.2075 0.2858 0.3361 0.0351 0.0346 0.0399

300 0.2194 0.2064 0.3158 0.3595 0.0391 0.0367 0.0431

500 0.2144 0.2032 0.3221 0.3582 0.0402 0.0376 0.0444

1000 0.2257 0.2083 0.3643 0.3920 0.0410 0.0423 0.0506

The first and second columns represent different autoregressive coefficients and number of time points, respectively. Note that we used the residuals from the estimated
AR(p) or ARMA(p, q) models by maximum likelihood estimate and the order selection was based on the Akaike Information criterion (AIC). The number of permutations was
1000. The pre-specified type I error was 0.05 and the number of replications was 10000

(FDR) below 0.05 and compared the performance of
TLSA, DDLSA and LSAres with time delay up to 3.
For LSAres, the residuals were found based on the
ARMA(p,q) model and the orders were selected based
on the AIC criterion. In our study, we used FDR or
Q-value to adjust for multiple hypothesis testing using the
qvalue package in R [22]. Restricting the p-value P ≤ 0.05
and q-value Q ≤ 0.05, 317 pairs of significant associa-
tions are found among all 820 OTU pairs by TLSA, 189

by DDLSA, and 224 by LSAres, respectively (Table 4).
Among the associations found by TLSA, 143 (∼ 45%) are
not significant by DDLSA, and 111 (∼ 35%) are not sig-
nificant by LSAres (Fig. 5). Such associations identified by
TLSA but not by DDLSA or LSAres may be false posi-
tives caused by the autocorrelation of the raw data. If we
combine associated pairs fromDDLSA and LSAres, i.e. we
define significant pairs as those found significant by either
DDLSA or LSAres, 239 (∼ 89%) pairs out of 270 in total
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Fig. 2 The power of LSAres and DDLSA in testing for the local association of two time series data under the local AR model. Ten thousand random
samples were generated from the local AR model with ρ1 = 0.5. The LSAres approach used the residuals from the estimated ARMA(p, q) model by
maximum likelihood estimate and the order was selected using the AIC criterion. The type I error is 0.05

found by DDLSA or LSAres are also significant by TLSA.
This finding is interesting, and it suggests that the combi-
nation of DDLSA and LSAres exhibits better performance
than each alone. Note that DDLSA also finds some asso-
ciations missed by LSAres and vice versa. For instance,
DDLSA finds 189 and LSAres finds 224 significant associ-
ations but only 143 are found by both LSAres and DDLSA.
Therefore, either DDLSA or LSAres is not a substitute but
a complementary approach to the other one. For a com-
prehensive analysis of a data set, one should apply both
approaches. Table 4 shows the results with more strict
criteria of P ≤ 0.01 and Q ≤ 0.01.
We carefully investigated one of the OTU pairs identi-

fied by TLSA but not by DDLSA and LSAres: Leptotrichia
and Kingella (Fig. 6). The association is significant by
TLSA within a time interval of length 129 starting from
the first time point with 3 days delay where Leptotrichia
precedes Kingella (P-value = 0.003 and Q-value = 0.007
by TLSA) , while not significant by DDLSA (P-value =
0.16, Q-value= 0.38) and LSAres (P-value= 0.50, Q-value
= 0.55). The autocorrelograms of the two OTUs show
that both of them have the strong autocorrelation, where
TLSA can’t control the type I error. However, DDLSA and
LSAres work well in this situation.

In addition, we investigated if these site-specific signif-
icant associations are shared across the two individuals.
Sørensen index Qs [23] was used to evaluate the similarity
between significant associations of the two samples from
‘F4’ and ‘M3’. We considered only the common OTUs in
the two samples. The two individuals shared 40 and 41
OTUs in the feces and tongue samples, respectively. Let
S1 and S2 be the sets of significant associations between
common OTUs of the two samples. The Sorensen index
is defined as 2|S1∩S2||S1|+|S2| , where S1 ∩ S2 is the intersection
of S1 and S2 and | · | is the number of OTU pairs in a
set. Using LSAres, we identified 91 (Qs = 0.35) and 177
(Qs = 0.55) shared significant associations in the feces and
tongue samples ‘F4’ and ‘M3’, respectively. Using DDLSA,
the corresponding numbers are 61 (Qs = 0.32) and 122
(Qs = 0.46).

Significantly associated OTU pairs from the PML data set
The seasonality of particular OTUs is obvious in their
abundance profiles and autocorrelograms as shown in
[20]. The stronger the seasonal periodicity, the more
closely the autocorrelogram approaches a cyclical func-
tion. For example, there are significant seasonal cycles
in the autocorrelograms of Verrucomicrobiales and
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Fig. 3 The power of LSAres and DDLSA in testing for the local association of two time series data under the bivariate AR model. Ten thousand
random samples were generated from the bivariate AR model with ρ1 = 0.5, ρ2 = 0.5. The LSAres approach used the residuals from the estimated
ARMA(p, q) model by maximum likelihood estimate and order was selected using the AIC criterion. The type I error is 0.05

a b

c d

Fig. 4 The standardized abundance of Neisseria (a) and Clostridiales (b) from the tongue time series of ‘F4’ in the MPHM dataset. The
autocorrelograms (c, d) show the autocorrelation of the two time series responding to itself for different lags, respectively. The dashed line represents
the critical value of the statistics ± 1.96/

√
n, where n is the number of time points of the time series. The region bounded by the dashed lines give

the pointwise acceptance area for testing the null hypothesis that the autocorrelation functions of time series are zero at the 5% significance level
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Table 4 The numbers of significant associations found by TLSA, DDLSA and LSAres with different thresholds in the MPHM and PML
data sets

TLSA DDLSA LSAres TLSA DDLSA LSAres

Dataset # of OTUs P ≤ 0.01 P ≤ 0.01 P ≤ 0.01 P ≤ 0.05 P ≤ 0.05 P ≤ 0.05

Q ≤ 0.01 Q ≤ 0.01 Q ≤ 0.01 Q ≤ 0.05 Q ≤ 0.05 Q ≤ 0.05

MPHM F4 tongue 41 222 126 168 317 189 224

PML 75 413 227 36 761 371 98

Alphaproteobacteria (Fig. 7), and their periods are similar
(about 1 year). Therefore, the abundance profiles of bac-
teria are possibly similar at the same time point of every
year. However, the abundance may be somewhat differ-
ent in some years. For example, both Verrucomicrobiales
and Alphaproteobacteria are more abundant in the third
year. In addition, a total of 33 out of 75 factors are signifi-
cant autocorrelated based on the Box-Ljung test at the 5%
significance level, including 9 environment factors and 24
OTUs. We applied TLSA, DDLSA and LSAres to obtain
significant associations of these 75 factors and Table 4
shows the number of identified significant associations.
Among 2550 pairwise associations of all 75 factors, 761,

371 and 98 pairs were found significant with time delay 3
with both P-value and Q-value ≤ 0.05 by TLSA, DDLSA
and LSAres, respectively. The relatively large number of

significant associations identified by TLSA contain a large
fraction of false positives since the dependency of the time
series is not considered. The DDLSA and LSAres reduce
the number of significant associations resulting from the
factors’ autocorrelation. Figure 8 shows the Venn diagram
illustrating the relationship of the sets of significant asso-
ciations using the three approaches. There are 61 pairs
found by all three methods. All the 98 associations found
by LSAres are also significant by TLSA. This could be
due to the periodicity of OTUs that makes ARMA model
unsuitable for this dataset. We note that 486 (∼ 64%)
out of 761 significant pairs by TLSA is non-significant by
DDLSA, indicating that the autocorrelation of OTUs may
lead to many false positives in the TLSA test. On the other
hand, 275 out of the 371 (74%) significant associations
found by DDLSA are also found by TLSA indicating high

Fig. 5 Venn diagram of the relationship among significant associated pairs found by the TLSA, DDLSA and LSAres in the MPHM dataset. Red, green
and blue colors represent the number of pairs found by TLSA, DDLSA and LSAres, respectively
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a

b c

Fig. 6 The standardized abundance of Leptotrichia and Kingella (a) from the tongue of ‘F4’ in the MPHM dataset. The autocorrelograms (b, c) of
these bacterias show significant autocorrelation. The dashed line represents the critical value of the statistics ± 1.96/

√
n, where n is the number of

time points of the time series. The region bounded by the dashed lines give the pointwise acceptance area for testing the null hypothesis that the
autocorrelation functions of time series are zero at the 5% significance level

a b

c d

Fig. 7 The standardized abundance of Verrucomicrobia (a) and Alphaproteobacteria (b) in the PML dataset. The autocorrelograms (c, d) show the
autocorrelation of two time series responding to itself for different lags, respectively. Note that there are significant seasonal variations in the plot of
OTUs and their autocorrelograms throughout the 6-year period
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Fig. 8 Venn diagram of the relationship among significant pairs found by the TLSA, DDLSA and LSAres in the PML dataset. Red, green and blue
colors represent the number of pairs found by TLSA, DDLSA and LSAres, respectively

agreement with TLSA. If we combine the significant asso-
ciations found by DDLSA and LSAres, 312 (∼ 76%) pairs
out of 408 in total found by DDLSA or LSAres are also
significant by TLSA. This result displays that the combi-
nation of DDLSA and LSAres exhibits better performance
than each alone. In addition, the majority of associated
OTU pairs found by TLSA and DDLSA are between the
Proteobacteria, Actinobacteria and Verrucomicrobia phy-
lum members, while those found by LSAres are between
Proteobacteria, Verrucomicrobia and Gemmatimonadetes
phylum members.

Conclusions
The rapid development of high-throughput sequencing
technology generates massive amounts of sequencing data
effectively and economically. These developments make
large scale human metagenomics studies in a wide range
of environment possible. A variety of time series data
from these studies brings great opportunities for statisti-
cal methods to gain insight into the temporal and spatial
dynamics of biological systems. Therefore, for obtaining
more accurate and efficient results, it’s necessary to con-
sider the specific property of time series in these studies,
such as autocorrelation.
In this paper, we developed a theoretical statistical

significance approximation of local similarity score for
dependent time series data, which substitutes long-run
variance based on nonparametric kernel estimate for sam-
ple variance. Moreover, we developed another method to
approximate the statistical significance by using raw data’s
residuals from a predefined model. We considered differ-
ent dependent time series models to evaluate the type I
error and power of ourmethods compared with others, i.e.

original TLSA, permutation test, PCC and SRCC. Results
from our simulations showed that our methods can con-
trol type I error reasonably, but the other four approaches
cannot. Through simulations, we showed that DDLSA
performs better than LSAres for the local AR model,
but LSAres works better than DDLSA in the bivariate
AR model. Therefore, these two methods complement
each other under different correlation scenarios. Using
the MPHM and PML datasets, we demonstrated that
DDLSA and LSAres reduced the redundant associations
efficiently and captured the most possible relationships
among OTUs in metagenomics studies of microbial com-
munities. In addition, to obtain more complete sets of sig-
nificant associations, we suggested to integrate the results
from DDLSA and LSAres—apply DDLSA and LSAres to
the data set simultaneously and combine the significant
associations identified by at least one method as the final
significant associations. This will reduce false negatives
effectively.
However, one drawback of LSAres is the determination

of the data generative model. If we presume data from a
more complicated model, residuals from this model may
seem like normally distributed but may lose too much
information about the original data. We have to make a
tradeoff between employing complicated models and pre-
serving useful information. In the paper, we investigated
the impact on type I error by considering AR and ARMA
models as alternative models and both of them work well.
In the future, we will continue to study the influence of
model mis-specification.
We applied DDLSA and LSAres to time series data in

microbial communities. In fact, they can be used in any
type of data with the same length, such as medical (EEG or
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MEG signals), climate (temperature, solar irradiance, river
runoff or rainfall) and economic (stock price) time series
data. The time-delay associations of EEG time series play
an important role in discovering new information about
the activity of brain [24]. Climate time series often exhibit
positive serial dependence [18]. Potentially local and time
delayed associations are widespread in climate data, but it
will increase the number of false positives if we use TLSA
to calculate the statistical significance of their LS scores,
while DDLSA and LSAres can overcame this problem.
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