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Abstract

Summary: Ribosome profiling is a recently developed high-throughput sequencing technique that

captures approximately 30 bp long ribosome-protected mRNA fragments during translation.

Because of alternative splicing and repetitive sequences, a ribosome-protected read may map to

many places in the transcriptome, leading to discarded or arbitrary mappings when standard

approaches are used. We present a technique and software that addresses this problem by assign-

ing reads to potential origins proportional to estimated transcript abundance. This yields a more

accurate estimate of ribosome profiles compared with a na€ıve mapping.

Availability and implementation: Ribomap is available as open source at http://www.cs.cmu.edu/

�ckingsf/software/ribomap.

Contact: carlk@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ribosome profiling (ribo-seq) provides snapshots of the positions of

translating ribosomes by sequencing ribosome-protected fragments

(Ingolia et al., 2009, 2012). The distribution of ribo-seq footprints

along a transcript, called the ribosome profile, can be used to ana-

lyze translational regulation and discover alternative initiation (Gao

et al., 2015), alternative translation and frameshifting (Michel et al.,

2012), and may eventually lead to a better understanding of the

regulation of cell growth, the progression of aging (Kuersten et al.,

2013) and the development of diseases (Hsieh et al., 2012; Thoreen

et al., 2012). Different environmental conditions such as stress or

starvation alter the ribosome profile patterns (Ingolia et al., 2009;

Gerashchenko et al., 2012), indicating possible changes in transla-

tional regulation.

In higher eukaryotes, alternative transcription initiation, pre-

mRNA splicing, and 30 end formation result in the production of

multiple isoforms for most genes. The resulting isoforms can have

dramatically different effects on mRNA stability (Lareau et al.,

2007) and translation regulation (Sterne-Weiler et al., 2013).

However, to date ribosome profiling analyses have been conducted

at the gene, rather than isoform, level using either a single

‘representative’ isoform (e.g. Guo et al., 2010) or exon union pro-

files (e.g. Olshen et al., 2013). The lack of isoform-level analysis of

ribo-seq data is partially due to the absence of the necessary bio-

informatic tools. Here, we present a conceptual framework and soft-

ware (Ribomap) to quantify isoform-level ribosome profiles. By

accounting for multi-mapping sequence reads using RNA-seq esti-

mates of isoform abundance, Ribomap produces accurate isoform-

specific ribosome profiles.

The challenge in estimating isoform ribosome profiles is that a

short ribo-seq read may map to many different transcripts.

Ambiguous mappings are not rare in ribo-seq data and can be

caused by either repetitive sequences along the genome or alternative

splicing (Ingolia, 2014). For example, in the human Hela cell ribo-

seq data (GSM546920, Guo et al., 2010), among all mapped reads

(about 50% of all reads), only 14% can be uniquely mapped to a

single location of a single mRNA isoform, 22% can be mapped to

multiple regions on the reference genome due to repetitive se-

quences, and 64% can be mapped to multiple mRNAs due to alter-

native splicing. Ribomap deals with both types of ambiguous

mappings, and therefore does not discard multi-mapped reads, re-

sulting in more of the data being used. In this example, the mapping
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rate of Ribomap is 50% compared to 7% if only uniquely mapped

reads are used.

Estimation of mRNA isoform abundance from RNA-seq has

also had to deal with ambiguous mappings (Jiang and Wong, 2009;

Mortazavi et al., 2008; Pachter, 2011). However, unlike in RNA-

seq, coverage in ribo-seq is highly non-uniform regardless of

sequencing bias since ribosomes move along mRNAs at non-uni-

form rates, and it is in fact the non-uniformities that are of interest

(Ingolia, 2014). Further, ambiguous mappings are much worse for

ribo-seq data since the read length cannot exceed the ribosome size

(approximately 30 bp), while paired-end and longer reads can be

generated from RNA-seq experiments to reduce the problem of am-

biguous mappings. Methods developed for transcript abundance are

therefore not applicable to assigning ribo-seq reads.

By observing that ambiguous mappings are mainly caused by

multiple isoforms (Supplementary Fig. S2), Ribomap assigns ribo-

seq reads to locations using estimated transcript abundance of the

candidate locations. On synthetic data, our approach yields a more

precise estimation of ribosome profiles compared with a pure map-

ping-based approach. Further, the ribosome abundance derived

using our method correlates better with the transcript abundance on

real ribo-seq data.

2 Approach

Ribomap works in 3 stages (Fig. 1; see also Supplementary

Material):

I. Transcript abundance estimation. Since RNA-seq experiments

should always be performed in parallel with ribo-seq (Ingolia,

2014), the abundance at per base of each transcript t can be

estimated from the RNA-seq data using Sailfish (Patro et al.,

2014), an ultra-fast mRNA isoform quantification package.

Ribomap also accepts transcript abundance estimations from

cufflinks (Trapnell et al., 2010) and eXpress (Roberts and

Pachter, 2013).

II. Mapping ribo-seq reads to the reference transcriptome. We

obtain all the transcript-location pairs Lr where the read se-

quence r matches the transcript sequence by aligning the en-

tire set of ribo-seq reads R to the transcriptome with STAR

(Dobin et al., 2013).

III. Ribosome profile estimation. Let cr be the number of ribo-seq

reads with sequence r. Ribomap sets the number of footprints

crti with sequence r that originate from a specific location i on

transcript t to be proportional to the transcript abundance at

of transcript t: crti ¼ crat=
P
ðt0 ;i0 Þ2Lr

at0 , where the denominator

is the total transcript abundance with a sequence matching r.

The total number of reads cti that are assigned to transcript t,

location i, is then cti ¼
P

r2Rcrti. The cti give the profiles for

each transcript. The sum is needed here because there can

exist multiple read sequences being mapped to the same tran-

script location due to sequencing errors, so the final estimated

ribosome count for a transcript location should be the sum of

the estimated count for all matched read sequences.

3 Results and discussion

To evaluate the performance of Ribomap, we synthetically gener-

ated ribo-seq reads with known ground truth profiles using tran-

script abundance of GSM546921 RNA-seq data (Guo et al., 2010)

and a dynamic range of initiation rates. Ribosome occupancy proba-

bilities for locations on a given transcript were simulated using the

ribosome flow model (Reuveni et al., 2011). Errors were added to

the reads using a Poisson process with a rate of 0.5%, which was

estimated from the ribo-seq data GSM546920 (Guo et al., 2010).

For comparison, we also test a na€ıve approach, called ‘Star prime’,

that maps each read to a single candidate location. More details are

in Supplementary material.

The Pearson correlation coefficients between Ribomap’s ribo-

some profiles and the ground truth is significantly higher than

that of Star prime (Fig. 2): 81% of our profiles have a higher

Pearson correlation (Mann–Whitney U test p < 3� 10308) and

68% have a smaller root mean square error (Mann–Whitney U test

p ¼ 3:3� 10221). This suggests that Ribomap more accurately re-

covers the ribosome profiles than the standard mapping procedure

applied to isoforms.

The good correlation between the ground truth profile and the

estimated profile also leads to a good estimation of the total ribo-

some loads on a transcript. Ribomap’s ribosome loads estimation on

non-synthetic ribo-seq data (GSM546920, Guo et al., 2010) correl-

ates well with the estimated transcript abundance (Pearson

r¼0.71). We do not expect a perfect correlation due to isoform-

specific translational regulation. On the other hand, the pure map-

ping-based approach of Star prime does not correlate as well

(r¼0.28).

Through two lines of evidence, on real and synthetic ribo-seq data,

we show that Ribomap produces useful, high-quality ribosome pro-

files along individual isoforms. It can serve as a useful first step for

downstream analysis of translational regulation from ribo-seq data.

Fig. 1. Ribomap pipeline for estimating ribosome profiles

Fig. 2. Histogram of the Pearson correlation between the footprint assign-

ments and the ground truth profiles. Ribomap has a significant higher

Pearson correlation (median: 0.83) than Star prime (median: 0.28). The spike

at 0 of Star prime is due to STAR not assigning footprints to transcripts that

are estimated to be present
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