

Received 22 March 2017 Accepted 8 April 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; hydrazone: tridentate ligand; cadmium; bromide; iodide; hydrogen bonding.

CCDC references: 1543006; 1543005

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structures of dibromido{N-[(pyridin-2-yl- κN)methylidene]picolinohydrazide- $\kappa^2 N', O$ }cadmium methanol monosolvate and diiodido-{N-[(pyridin-2-yl- κN)methylidene]picolinohydrazide- $\kappa^2 N', O$ }cadmium

Ali Akbar Khandar,^a Farhad Akbari Afkhami,^a Harald Krautscheid,^b Kenneth Aase Kristoffersen,^c Zeliha Atioğlu,^d Mehmet Akkurt^e* and Carl Henrik Görbitz^c

^aYoung Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, ^bUniversität Leipzig, Fakultätfür Chemie und Mineralogie, Johannisallee 29, D-04103 Leipzig, Germany, ^cDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway, ^dİlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, and ^eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey. *Correspondence e-mail: akkurt@erciyes.edu.tr

The title compounds, $[CdBr_2(C_{12}H_{10}N_4O)] \cdot CH_3OH$, (I), and $[CdI_2(C_{12}H_{10}N_4O)]$, (II), are cadmium bromide and cadmium iodide complexes of the ligand (*E*)-*N'*-(pyridin-2-ylmethylene)picolinohydrazide. Complex (I) crystallizes as the methanol monosolvate. In both compounds, the Cd^{2+} cation is ligated by one O atom and two N atoms of the tridentate ligand, and by two bromide anions forming a Br_2N_2O pentacoordination sphere for (I), and by two iodide anions forming an I_2N_2O pentacoordination sphere for (II), both with a distorted square-pyramidal geometry. In the crystal of complex (I), molecules are linked by pairs of N-H···O and O-H···Br hydrogen bonds, involving the solvent molecule, forming layers parallel to (101). In the crystal of complex (II), molecules are linked by N-H···I hydrogen bonds, forming chains propagating along [010]. In complex (II), measured at room temperature, the two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2):0.25 (2).

1. Chemical context

The cadmium(II) ion, has a d^{10} electronic configuration and exhibits a variety of coordination geometries and modes. Hydrazone ligands are one of the most important classes of flexible and versatile polydentate ligands and show very high efficiency in chelating transition metal ions (Afkhami *et al.*, 2017*a*). Hydrazone ligands obtained from 2-pyridine carboxylic acid can act as ditopic ligands *via* two different donor sites (a tridentate coordination pocket and through an Ndonor pyridine group), and have the potential to form monoand multinuclear structures (Afkhami *et al.*, 2017*b*). Herein, we report on the crystal structures of two new Cd^{II} complexes based on the tridentate hydrazone ligand, (*E*)-*N'*-(pyridin-2ylmethylene)picolinohydrazide, obtained by condensation of an equimolar mixture of 2-pyridinecarbaldehyde and picolinic acid hydrazide in methanol.

2. Structural commentary

The molecular structures of compounds (I) and (II) are shown in Figs. 1 and 2, respectively. In compound (I), the ligand is almost planar with a dihedral angle between the pyridine rings

of 6.9 (3)°. The Cd1–Br1 and Cd1–Br2 bond lengths are 2.5585 (6) and 2.5490 (7) Å, respectively, and the Cd1–N2 bond length is 2.336 (4) Å. Atom Cd1 is ligated by one O atom (O1) and two N atoms (N1 and N2) of the tridentate ligand, and by two bromide anions, hence the Cd²⁺ cation has a fivefold Br₂N₂O coordination sphere with a distorted shape and a τ_5 value of 0.33 ($\tau_5 = 0$ for an ideal square-pyramidal coordination sphere; Addison *et al.*, 1984).

In compound (II), the ligand is also almost planar with a dihedral angle between the pyridine rings of 8.0 (2)°. The two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2):0.25 (2) for atoms I1A/I2A:I1B/I2B. Considering the major components only, the Cd1–I1A and Cd1–I2A bond lengths are 2.736 (3) and 2.7128 (19) Å, respectively, and the Cd1–N2 bond length is 2.336 (3) Å. Atom Cd1 is ligated by one O atom (O1) and two N atoms (N1 and N2) of the tridentate ligand, and by two iodide anions. Atom Cd1 has a fivefold I₂N₂O coordination sphere with a distorted shape and a τ_5 value of 0.28.

Figure 1

The molecular components in the structure of compound (I), with atom labelling. Displacement ellipsoids are shown at the 30% probability level.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for (I).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N3-H3N\cdots O2^{i}$	0.88	1.96	2.803 (5)	161
$O2-H2A\cdots Br1^{ii}$	0.84	2.70	3.456 (4)	150
$C2-H2\cdots Br2^{iii}$	0.95	2.90	3.734 (6)	147
$C4-H4\cdots Br2^{iv}$	0.95	2.91	3.826 (5)	162
$C10-H10\cdots Br1^{v}$	0.95	2.85	3.703 (5)	149

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Table 2	
Hydrogen-bond geometry (Å, °) for (II).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N3-H3 N ···I2 A^{i}	0.87 (4)	3.04 (4)	3.866 (3)	161 (3)

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

3. Supramolecular features

In the crystal of compound (I), molecules are linked by pairs of $N-H\cdots O$ and $O-H\cdots Br$ hydrogen bonds, involving the solvent molecule, forming dimeric units, which are linked by $C-H\cdots Br$ hydrogen bonds forming layers parallel to (101); see Table 1 and Fig. 3. In the crystal of complex (II), molecules are linked by $N-H\cdots I$ hydrogen bonds forming chains propagating along [010]; see Table 2 and Fig. 4.

4. Database survey

All bond lengths and angles in the title compounds fall within acceptable ranges and are comparable with those reported for related structures, such as bis{N'-[(E)-4-hydroxybenzylidene]-pyridine-4-carbohydrazide- κN^1 }diiodidocadmium methanol disolvate (Afkhami *et al.*, 2017*c*), dibromido{N'-[1-(pyridin-2-yl)ethylidene]picolinohydrazide- $\kappa^2 N'$,*O*}cadmium (Akkurt *et al.*, 2012), di- μ -chlorido-bis(chlorido{N'-[phenyl-(pyridin-2-yl- κN)methylidene]pyridine-2-carbohydrazide- $\kappa^2 N'$,*O*}cadmium)

Figure 2

The molecular structure of compound (II), with atom labelling. Displacement ellipsoids are shown at the 30% probability level. Only the major components of the disordered I atoms are shown.

research communications

Table 3Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$[CdBr_2(C_{12}H_{10}N_4O)]\cdot CH_4O$	$[CdI_{2}(C_{12}H_{10}N_{4}O)]$
M_r	530.50	592.44
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$
Temperature (K)	130	296
a, b, c (Å)	7.5482 (4), 15.7571 (8), 14.6407 (6)	7.5264 (7), 13.1325 (12), 16.5718 (15)
β (°)	95.132 (4)	94.384 (1)
$V(\dot{A}^3)$	1734.35 (15)	1633.2 (3)
Z	4	4
Radiation type	Cu Ka	Μο Κα
$\mu (\text{mm}^{-1})$	15.59	5.12
Crystal size (mm)	$0.08 \times 0.05 \times 0.04$	$0.48 \times 0.20 \times 0.02$
Data collection		
Diffractometer	Agilent SuperNova, Dual, Cu at zero, Atlas	Bruker D8 Venture diffractometer with Photon 100 CMOS detector
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2011)	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, \hat{T}_{\max}	0.561, 1.000	0.616, 0.903
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6773, 3458, 2764	3946, 3946, 3193
R _{int}	0.038	0.023
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.625	0.665
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.078, 1.02	0.023, 0.058, 1.06
No. of reflections	3458	3946
No. of parameters	201	204
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.63, -0.76	0.65, -0.39

Computer programs: CrysAlis PRO (Agilent, 2011), APEX3 and SAINT-Plus (Bruker, 2016), SHELXS2014/7 (Sheldrick, 2008), SHELXT (Sheldrick, 2015a), SHELXL2016/6 and SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

(Akkurt *et al.*, 2014), bis{2-[(2,4-dimethylphenyl)iminomethyl]pyridine- $\kappa^2 N, N'$ }bis(thiocyanato- κN)cadmium (Malekshahian *et al.*, 2012), and *cis*-diaquabis-[(*E*)-4-(2-hydroxybenzyl-ideneamino)benzoato- $\kappa^2 O, O'$]cadmium in which layers are built from strong O-H···O hydrogen bonds (Yao *et al.*, 2006).

Figure 3

A view normal to (101) of the crystal packing of compound (I). The hydrogen bonds are shown as dashed lines (see Table 1). For clarity, only the H atoms involved in hydrogen bonding have been included.

5. Synthesis and crystallization

A solution of the ligand N'-(pyridin-2-ylmethylene)picolinohydrazide (0.151 g, 0.5 mmol) in 30 ml of methanol was treated with a methanolic solution of the appropriate cadmium(II) salt (0.5 mmol); CdBr₂ for complex (I) and CdI₂ for (II). The solutions were heated under reflux for 4 h and then allowed to stand at room temperature. After slow evaporation of the solvent, single crystals separated out. They were collected, washed with ether and dried over P_4O_{10} in vacuum.

A view along the a axis of the crystal packing of compound (II). The hydrogen bonds are shown as dashed lines (see Table 2). For clarity, only the H atoms involved in hydrogen bonding and only the major components of the disordered I atoms have been included.

6. Refinement

Crystal data, data collection and structure refinement details for compounds (I) and (II) are summarized in Table 3. For complex (I), measured at 130 K, H atoms were placed in calculated positions (C-H = 0.95-0.98 Å, N-H = 0.88 Å and O-H = 0.84 Å) and included in the refinement in the ridingmodel approximation, with $U_{iso}(H) = 1.5U_{eq}(O)$ and $1.2U_{eq}(N,C)$ for other H atoms. Owing to poor agreement, two reflections, $(\overline{4} \ 4 \ 6 \ \text{and} \ \overline{7} \ 10 \ 3)$, were omitted from the final cycles of refinement. For complex (II), measured at 296 K, the C-bound H atoms were placed in calculated positions (C-H =0.93 Å) and included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$. The N-bound H atoms were located in a difference-Fourier map but were refined with a distance restraint of N-H = 0.86 (4) Å with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm N})$. In complex (II), the two iodide anions (I1 and I2) are each disordered over two sites, and their siteoccupation factors refined to 0.75 (2):0.25 (2).

Acknowledgements

We are grateful to the University of Tabriz Research Council for the financial support for this research.

Funding information

Funding for this research was provided by: University of Tabriz Research Council.

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017a). *CrystEngComm*, **19**, 1389–1399.
- Afkhami, F. A., Khandar, A. A., White, J. M., Guerri, A., Ienco, A., Bryant, J. T., Mhesn, N. & Lampropoulos, C. (2017b). *Inorg. Chim. Acta*, **457**, 150–159.
- Afkhami, F. A., Krautscheid, H., Atioğlu, Z. & Akkurt, M. (2017c). Acta Cryst. E73, 28–30.
- Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
- Akkurt, M., Khandar, A. A., Tahir, M. N., Afkhami, F. A. & Yazdi, S. A. H. (2014). Acta Cryst. E70, m213–m214.
- Akkurt, M., Khandar, A. A., Tahir, M. N., Yazdi, S. A. H. & Afkhami, F. A. (2012). *Acta Cryst.* E68, m842.
- Bruker (2016). *APEX3*, *SAINT-Plus* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Malekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218–m219.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yao, S.-Q., Zhu, M.-L., Lu, L.-P. & Gao, X.-L. (2006). Acta Cryst. C62, m183–m185.

Acta Cryst. (2017). E73, 698-701 [https://doi.org/10.1107/S2056989017005308]

Crystal structures of dibromido{N-[(pyridin-2-yl- κN)methylidene]picolinohydrazide- $\kappa^2 N'$,O}cadmium methanol monosolvate and diiodido{N-[(pyridin-2-yl- κN)methylidene]picolinohydrazide- $\kappa^2 N'$,O}cadmium

Ali Akbar Khandar, Farhad Akbari Afkhami, Harald Krautscheid, Kenneth Aase Kristoffersen, Zeliha Atioğlu, Mehmet Akkurt and Carl Henrik Görbitz

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011) for (I); *APEX3* (Bruker, 2016) for (II). Cell refinement: *CrysAlis PRO* (Agilent, 2011) for (I); *SAINT-Plus* (Bruker, 2016) for (II). Data reduction: *CrysAlis PRO* (Agilent, 2011) for (I); *SAINT-Plus* (Bruker, 2016) for (II). Program(s) used to solve structure: *SHELXS2014/7* (Sheldrick, 2008) for (I); SHELXT (Sheldrick, 2015a) for (II). Program(s) used to refine structure: *SHELXL2016/6* (Sheldrick, 2015b) for (I); *SHELXL2014* (Sheldrick, 2015b) for (II). Molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) for (I); *Mercury* (Macrae *et al.*, 2008) for (II). Software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009) for (I); *SHELXL2014* (Sheldrick, 2015b) for (II).

(I) Dibromido{N-[(pyridin-2-yl- κN)methylidene]picolinohydrazide- $\kappa^2 N'$,O}cadmium methanol monosolvate

Crystal data

[CdBr ₂ (C ₁₂ H ₁₀ N ₄ O)]·CH ₄ O
$M_r = 530.50$
Monoclinic, $P2_1/n$
a = 7.5482 (4) Å
<i>b</i> = 15.7571 (8) Å
c = 14.6407 (6) Å
$\beta = 95.132 \ (4)^{\circ}$
$V = 1734.35 (15) \text{ Å}^3$
Z = 4

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.561, T_{\max} = 1.000$ F(000) = 1016 $D_x = 2.032 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.5418 Å Cell parameters from 2435 reflections $\theta = 3.0-74.4^{\circ}$ $\mu = 15.59 \text{ mm}^{-1}$ T = 130 KPrism, light yellow $0.08 \times 0.05 \times 0.04 \text{ mm}$

6773 measured reflections 3458 independent reflections 2764 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 74.6^{\circ}, \theta_{min} = 4.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -18 \rightarrow 19$ $l = -18 \rightarrow 10$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: tun	neighbourning sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.0275P)^2]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
3458 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
201 parameters	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	24		-	II */II	
	X	У	2	$U_{\rm iso} / U_{\rm eq}$	
C1	0.3542 (9)	0.3896 (4)	0.5136 (4)	0.0494 (16)	
H1	0.3566	0.4180	0.4565	0.059*	
C2	0.2666 (9)	0.4292 (4)	0.5819 (4)	0.0482 (16)	
H2	0.2058	0.4814	0.5708	0.058*	
C3	0.2712 (8)	0.3898 (4)	0.6662 (3)	0.0376 (12)	
H3	0.2154	0.4151	0.7150	0.045*	
C4	0.3584 (7)	0.3128 (3)	0.6786 (3)	0.0315 (11)	
H4	0.3643	0.2850	0.7364	0.038*	
C5	0.4375 (6)	0.2763 (3)	0.6056 (3)	0.0259 (10)	
C6	0.5190 (6)	0.1927 (3)	0.6130 (3)	0.0257 (9)	
H6	0.5270	0.1620	0.6690	0.031*	
C7	0.7080 (6)	0.0589 (3)	0.4588 (3)	0.0239 (9)	
C8	0.7879 (6)	-0.0271 (3)	0.4567 (3)	0.0261 (10)	
C9	0.8393 (6)	-0.0581 (3)	0.3740 (3)	0.0311 (11)	
H9	0.8205	-0.0258	0.3192	0.037*	
C10	0.9185 (7)	-0.1374 (4)	0.3737 (3)	0.0338 (11)	
H10	0.9544	-0.1609	0.3185	0.041*	
C11	0.9440 (6)	-0.1815 (3)	0.4546 (3)	0.0306 (11)	
H11	1.0005	-0.2354	0.4566	0.037*	
C12	0.8857 (7)	-0.1459 (3)	0.5335 (3)	0.0321 (11)	
H12	0.9033	-0.1772	0.5890	0.039*	
C13	0.2406 (12)	0.4864 (5)	0.2809 (5)	0.083 (3)	
H13A	0.3593	0.5002	0.2631	0.124*	
H13B	0.2374	0.4268	0.2999	0.124*	
H13C	0.2133	0.5229	0.3321	0.124*	
N1	0.4340 (6)	0.3153 (3)	0.5234 (3)	0.0333 (10)	
N2	0.5791 (5)	0.1625 (3)	0.5414 (2)	0.0240 (8)	
N3	0.6507 (5)	0.0828 (3)	0.5400 (2)	0.0265 (8)	
H3N	0.6589	0.0495	0.5884	0.032*	
N4	0.8071 (5)	-0.0709 (3)	0.5358 (2)	0.0267 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

01	0.6971 (5)	0.1057 (2)	0.3907 (2)	0.0291 (7)	
02	0.1154 (6)	0.4997 (3)	0.2070 (2)	0.0401 (9)	
H2A	0.1202	0.5505	0.1898	0.060*	
Cd1	0.57044 (5)	0.24361 (2)	0.40754 (2)	0.02814 (10)	
Br1	0.34115 (7)	0.21728 (4)	0.27099 (3)	0.03309 (13)	
Br2	0.82753 (8)	0.34184 (4)	0.37807 (4)	0.03634 (14)	
Br1 Br2	0.34115 (7) 0.82753 (8)	0.21728 (4) 0.34184 (4)	0.27099 (3) 0.37807 (4)	0.03309 (13) 0.03634 (14)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.081 (5)	0.035 (4)	0.033 (3)	0.020 (3)	0.011 (3)	0.004 (2)
C2	0.076 (4)	0.028 (3)	0.041 (3)	0.024 (3)	0.012 (3)	-0.003 (2)
C3	0.049 (3)	0.027 (3)	0.038 (3)	0.003 (2)	0.009 (2)	-0.011 (2)
C4	0.042 (3)	0.024 (3)	0.029 (2)	-0.004 (2)	0.006 (2)	-0.001 (2)
C5	0.031 (2)	0.021 (3)	0.026 (2)	-0.003 (2)	0.0001 (17)	-0.0046 (18)
C6	0.031 (2)	0.022 (3)	0.024 (2)	-0.003 (2)	0.0019 (17)	0.0018 (18)
C7	0.022 (2)	0.017 (2)	0.032 (2)	-0.0017 (18)	-0.0005 (17)	-0.0006 (19)
C8	0.026 (2)	0.023 (3)	0.029 (2)	-0.0033 (19)	-0.0015 (17)	-0.0036 (19)
C9	0.031 (2)	0.032 (3)	0.030 (2)	0.003 (2)	0.0019 (19)	-0.001 (2)
C10	0.034 (3)	0.030 (3)	0.039 (3)	0.002 (2)	0.008 (2)	-0.001 (2)
C11	0.027 (2)	0.020 (3)	0.045 (3)	0.0005 (19)	0.003 (2)	-0.002 (2)
C12	0.031 (2)	0.025 (3)	0.039 (2)	0.000 (2)	0.001 (2)	0.003 (2)
C13	0.123 (8)	0.050 (5)	0.065 (4)	0.023 (5)	-0.045 (5)	-0.006 (4)
N1	0.050 (3)	0.025 (2)	0.0260 (18)	0.004 (2)	0.0066 (17)	-0.0026 (17)
N2	0.0269 (19)	0.023 (2)	0.0222 (16)	-0.0018 (16)	0.0007 (14)	-0.0002 (15)
N3	0.033 (2)	0.021 (2)	0.0258 (18)	0.0001 (17)	0.0004 (15)	0.0017 (16)
N4	0.0272 (19)	0.024 (2)	0.0295 (18)	0.0008 (17)	0.0035 (15)	-0.0002 (16)
01	0.0388 (19)	0.0215 (19)	0.0274 (16)	0.0022 (15)	0.0046 (13)	0.0044 (14)
O2	0.060 (2)	0.032 (2)	0.0284 (17)	0.0022 (19)	0.0041 (16)	-0.0001 (15)
Cd1	0.03855 (18)	0.0225 (2)	0.02370 (15)	0.00179 (15)	0.00451 (12)	0.00180 (13)
Br1	0.0344 (3)	0.0331 (3)	0.0313 (2)	-0.0030 (2)	0.00060 (19)	0.0069 (2)
Br2	0.0439 (3)	0.0243 (3)	0.0413 (3)	-0.0036 (2)	0.0063 (2)	-0.0008 (2)

Geometric parameters (Å, °)

C1—N1	1.319 (7)	С9—Н9	0.9500
C1—C2	1.394 (7)	C10—C11	1.370 (7)
C1—H1	0.9500	C10—H10	0.9500
С2—С3	1.378 (8)	C11—C12	1.391 (7)
С2—Н2	0.9500	C11—H11	0.9500
C3—C4	1.385 (8)	C12—N4	1.324 (7)
С3—Н3	0.9500	C12—H12	0.9500
C4—C5	1.395 (6)	C13—O2	1.388 (7)
C4—H4	0.9500	C13—H13A	0.9800
C5—N1	1.349 (6)	C13—H13B	0.9800
С5—С6	1.453 (7)	C13—H13C	0.9800
C6—N2	1.271 (6)	N1—Cd1	2.351 (4)
С6—Н6	0.9500	N2—N3	1.368 (6)

C7—O1	1.236 (5)	N2—Cd1	2.336 (4)
C7—N3	1.354 (6)	N3—H3N	0.8800
C7—C8	1.485 (7)	O1—Cd1	2.396 (3)
C8—N4	1.344 (6)	O2—H2A	0.8400
C8—C9	1.393 (6)	Cd1—Br2	2.5490 (7)
C9-C10	1.385(7)	Cd1—Br1	2 5585 (6)
	1.505 (7)		2.0000 (0)
N1—C1—C2	124.1 (5)	C12—C11—H11	120.6
N1—C1—H1	118.0	N4—C12—C11	123.9 (5)
C2—C1—H1	118.0	N4—C12—H12	118.1
$C_{3}-C_{2}-C_{1}$	1177(5)	C11—C12—H12	118.1
$C_3 - C_2 - H_2$	121.1	Ω^2 — $C13$ —H13A	109.5
C1 - C2 - H2	121.1	O_2 C_{13} H_{13B}	109.5
C_{2}^{-} C_{3}^{-} C_{4}^{-}	119 1 (5)	H13A_C13_H13B	109.5
$C_2 = C_3 = C_4$	119.1 (5)	$\begin{array}{c} 113X \\ 02 \\ 013 \\ 113C $	109.5
$C_2 = C_3 = H_3$	120.5	H_{12} C_{13} H_{12} H_{12}	109.5
$C_4 - C_5 - H_5$	120.3	HI3A—C13—HI3C	109.5
$C_3 = C_4 = C_5$	119.4 (5)	HISB-CIS-HISC	109.5
C3—C4—H4	120.3	CI-NI-C5	118.3 (4)
C5—C4—H4	120.3	CI—NI—Cdl	125.0 (3)
N1—C5—C4	121.3 (5)	C5—N1—Cd1	116.7 (3)
N1—C5—C6	117.0 (4)	C6—N2—N3	121.8 (4)
C4—C5—C6	121.6 (4)	C6—N2—Cd1	120.1 (3)
N2—C6—C5	117.3 (4)	N3—N2—Cd1	118.1 (3)
N2—C6—H6	121.4	C7—N3—N2	115.3 (4)
С5—С6—Н6	121.4	C7—N3—H3N	122.4
O1—C7—N3	122.6 (4)	N2—N3—H3N	122.4
O1—C7—C8	121.7 (4)	C12—N4—C8	116.7 (4)
N3—C7—C8	115.7 (4)	C7—O1—Cd1	117.1 (3)
N4—C8—C9	123.5 (5)	C13—O2—H2A	109.5
N4—C8—C7	117.6 (4)	N2—Cd1—N1	68.80 (14)
C9—C8—C7	118.9 (4)	N2—Cd1—O1	66.95 (12)
C10—C9—C8	118.2 (5)	N1—Cd1—O1	135.60 (13)
С10—С9—Н9	120.9	N2—Cd1—Br2	120.65 (9)
С8—С9—Н9	120.9	N1—Cd1—Br2	102.70(12)
$C_{11} - C_{10} - C_{9}$	118.8 (5)	O1-Cd1-Br2	102.51 (8)
$C_{11} - C_{10} - H_{10}$	120.6	N^2 —Cd1—Br1	102.01(0) 122(22(9))
C_{10} H_{10}	120.6	$N_2 C d_1 B r_1$	122.22(9) 109.42(11)
C_{10} C_{11} C_{12}	118.0 (5)	$O_1 Cd_1 Br_1$	109.42(11)
$C_{10} = C_{11} = C_{12}$	110.9 (5)	D_{1} C_{1} D_{1} D_{1}	91.20(6)
	120.0	BI2—Cu1—BI1	115.99 (2)
N1 C1 C2 C2	22(11)	$C_2 = C_1 = N_1 = C_4 I$	176 9 (5)
N1 - C1 - C2 - C3	5.2(11)	$C_2 = C_1 = N_1 = C_1$	1/0.8(3)
$C_1 - C_2 - C_3 - C_4$	-1.3(10)	C4 - C3 - N1 - C1	0.4(0)
$C_2 = C_3 = C_4 = C_5$	-0.8(8)	$C_0 - C_0 - N_1 - C_1$	17.2(3)
U3-U4-U3-NI	1.4 (8)	C4 - C5 - N1 - Cd1	-1/9.2(4)
U3-U4-U5-U6	-1/5.4(5)	C6-C5-N1-Cd1	-2.3(6)
NI-C5-C6-N2	-0.6 (7)	C5—C6—N2—N3	-176.9 (4)
C4—C5—C6—N2	176.2 (5)	C5—C6—N2—Cd1	3.4 (6)
O1—C7—C8—N4	174.9 (4)	O1—C7—N3—N2	0.2 (6)

N3—C7—C8—N4	-4.3 (6)	C8—C7—N3—N2	179.3 (4)
O1—C7—C8—C9	-5.0 (7)	C6—N2—N3—C7	179.5 (4)
N3—C7—C8—C9	175.9 (4)	Cd1—N2—N3—C7	-0.8 (5)
N4—C8—C9—C10	-1.7 (7)	C11—C12—N4—C8	-1.6 (7)
C7—C8—C9—C10	178.1 (4)	C9—C8—N4—C12	2.7 (7)
C8—C9—C10—C11	-0.5 (7)	C7—C8—N4—C12	-177.1 (4)
C9-C10-C11-C12	1.5 (7)	N3-C7-O1-Cd1	0.5 (6)
C10-C11-C12-N4	-0.5 (8)	C8-C7-O1-Cd1	-178.6 (3)
C2-C1-N1-C5	-2.7 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H3N····O2 ⁱ	0.88	1.96	2.803 (5)	161
O2—H2A···Br1 ⁱⁱ	0.84	2.70	3.456 (4)	150
C2—H2···Br2 ⁱⁱⁱ	0.95	2.90	3.734 (6)	147
C4—H4····Br2 ^{iv}	0.95	2.91	3.826 (5)	162
C10—H10···Br1 ^{v}	0.95	2.85	3.703 (5)	149

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x+1, -y+1, -z+1; (iv) x-1/2, -y+1/2, z+1/2; (v) -x+3/2, y-1/2, -z+1/2.

(II) Diiodido{N-[(pyridin-2-yl- κN)methylidene]picolinohydrazide- $\kappa^2 N'$,O}cadmium

Crystal data

 $\begin{bmatrix} CdI_2(C_{12}H_{10}N_4O) \end{bmatrix} \\ M_r = 592.44 \\ Monoclinic, P2_1/n \\ a = 7.5264 (7) Å \\ b = 13.1325 (12) Å \\ c = 16.5718 (15) Å \\ \beta = 94.384 (1)^\circ \\ V = 1633.2 (3) Å^3 \\ Z = 4 \end{bmatrix}$

Data collection

Bruker D8 Venture diffractometer with Photon 100 CMOS detector Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3 pixels mm⁻¹ Sets of exposures each taken over $0.5^{\circ} \omega$ rotation scans Absorption correction: multi-scan (SADABS; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.058$ S = 1.063946 reflections F(000) = 1088 $D_x = 2.409 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6468 reflections $\theta = 2.5-28.0^{\circ}$ $\mu = 5.12 \text{ mm}^{-1}$ T = 296 KPlate, light yellow $0.48 \times 0.20 \times 0.02 \text{ mm}$

 $T_{\min} = 0.616, T_{\max} = 0.903$ 3946 measured reflections
3946 independent reflections
3193 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$ $\theta_{\text{max}} = 28.2^{\circ}, \theta_{\text{min}} = 2.0^{\circ}$ $h = -9 \rightarrow 10$ $k = -17 \rightarrow 17$ $I = -21 \rightarrow 21$

204 parameters0 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0256P)^{2} + 0.6207P] \qquad \Delta \rho_{max} = 0.65 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.5553 (5)	0.3164 (3)	0.9481 (2)	0.0622 (9)	
H1	0.5027	0.2525	0.9506	0.075*	
C2	0.6695 (5)	0.3481 (3)	1.0130 (2)	0.0691 (10)	
H2	0.6933	0.3064	1.0578	0.083*	
C3	0.7462 (5)	0.4426 (3)	1.0092 (2)	0.0662 (9)	
Н3	0.8220	0.4664	1.0520	0.079*	
C4	0.7095 (4)	0.5017 (3)	0.9414 (2)	0.0591 (8)	
H4	0.7609	0.5657	0.9376	0.071*	
C5	0.5948 (4)	0.4646 (2)	0.87896 (18)	0.0481 (7)	
C6	0.5559 (4)	0.5222 (2)	0.80398 (18)	0.0503 (7)	
H6	0.5999	0.5879	0.7986	0.060*	
C7	0.3276 (4)	0.4766 (2)	0.61592 (18)	0.0488 (7)	
C8	0.2989 (4)	0.5342 (2)	0.53845 (18)	0.0498 (7)	
C9	0.2074 (5)	0.4925 (3)	0.4719 (2)	0.0635 (9)	
Н9	0.1609	0.4269	0.4732	0.076*	
C10	0.1865 (5)	0.5520 (3)	0.4020 (2)	0.0695 (10)	
H10	0.1230	0.5271	0.3558	0.083*	
C11	0.2590 (5)	0.6460 (3)	0.4019 (2)	0.0692 (10)	
H11	0.2461	0.6865	0.3558	0.083*	
C12	0.3516 (6)	0.6809 (3)	0.4704 (2)	0.0727 (11)	
H12	0.4031	0.7453	0.4695	0.101 (15)*	
N1	0.5174 (3)	0.3727 (2)	0.88258 (15)	0.0496 (6)	
N2	0.4609 (3)	0.48064 (19)	0.74667 (15)	0.0473 (6)	
N3	0.4243 (4)	0.5284 (2)	0.67483 (16)	0.0508 (6)	
H3N	0.461 (5)	0.590 (3)	0.668 (2)	0.061*	
N4	0.3717 (5)	0.6265 (2)	0.53900 (18)	0.0659 (8)	
O1	0.2696 (3)	0.39087 (18)	0.62576 (14)	0.0592 (6)	
Cd1	0.32992 (3)	0.32196 (2)	0.76532 (2)	0.05080 (8)	
I1A	0.4779 (3)	0.1408 (2)	0.7239 (2)	0.0549 (3)	0.75 (2)
I2A	-0.0093 (3)	0.31832 (13)	0.81000 (15)	0.0555 (4)	0.75 (2)
I1B	0.4749 (10)	0.1451 (7)	0.7364 (9)	0.0654 (16)	0.25 (2)
I2B	0.0012 (11)	0.3249 (6)	0.8180 (7)	0.0787 (18)	0.25 (2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.071 (2)	0.060 (2)	0.055 (2)	0.0027 (17)	0.0032 (17)	0.0053 (16)
C2	0.073 (2)	0.081 (3)	0.053 (2)	0.018 (2)	-0.0004 (17)	0.0083 (18)
C3	0.058 (2)	0.088 (3)	0.0519 (19)	0.0085 (19)	-0.0055 (15)	-0.0109 (18)
C4	0.0529 (18)	0.065 (2)	0.0587 (19)	-0.0021 (16)	0.0016 (15)	-0.0105 (16)
C5	0.0423 (15)	0.0520 (18)	0.0500 (16)	0.0055 (13)	0.0039 (12)	-0.0044 (13)
C6	0.0490 (17)	0.0468 (18)	0.0551 (18)	-0.0015 (13)	0.0048 (13)	-0.0003 (14)
C7	0.0480 (16)	0.0503 (18)	0.0485 (16)	0.0069 (13)	0.0062 (13)	-0.0016 (13)
C8	0.0491 (17)	0.0503 (17)	0.0502 (17)	0.0049 (13)	0.0059 (13)	0.0020 (13)
C9	0.067 (2)	0.065 (2)	0.058 (2)	-0.0120 (17)	0.0011 (16)	-0.0026 (17)
C10	0.071 (2)	0.088 (3)	0.0490 (19)	-0.004 (2)	-0.0041 (16)	0.0038 (18)
C11	0.075 (2)	0.077 (3)	0.055 (2)	0.006 (2)	0.0017 (17)	0.0150 (18)
C12	0.096 (3)	0.058 (2)	0.063 (2)	-0.003 (2)	-0.001 (2)	0.0137 (18)
N1	0.0526 (15)	0.0482 (15)	0.0478 (14)	0.0044 (11)	0.0029 (11)	-0.0017 (11)
N2	0.0469 (14)	0.0479 (15)	0.0473 (13)	0.0069 (11)	0.0043 (11)	0.0008 (11)
N3	0.0601 (16)	0.0426 (14)	0.0494 (14)	0.0027 (12)	0.0028 (12)	0.0037 (11)
N4	0.088 (2)	0.0536 (18)	0.0547 (17)	-0.0011 (15)	-0.0024 (15)	0.0027 (13)
O1	0.0695 (15)	0.0508 (13)	0.0565 (13)	-0.0077 (11)	-0.0013 (11)	0.0046 (10)
Cd1	0.05478 (14)	0.04400 (13)	0.05349 (14)	-0.00171 (9)	0.00328 (10)	-0.00142 (9)
I1A	0.0610 (5)	0.0468 (4)	0.0568 (7)	0.0081 (3)	0.0034 (5)	-0.0055 (4)
I2A	0.0516 (5)	0.0512 (7)	0.0641 (5)	0.0071 (3)	0.0069 (4)	0.0103 (3)
I1B	0.0736 (17)	0.0486 (12)	0.077 (4)	0.0009 (11)	0.0232 (18)	-0.0098 (15)
I2B	0.065 (2)	0.097 (3)	0.077 (2)	0.0126 (15)	0.0233 (17)	0.0117 (15)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N1	1.326 (4)	C9—C10	1.396 (5)
C1—C2	1.389 (5)	С9—Н9	0.9300
C1—H1	0.9300	C10—C11	1.350 (6)
C2—C3	1.372 (6)	C10—H10	0.9300
С2—Н2	0.9300	C11—C12	1.365 (6)
C3—C4	1.376 (5)	C11—H11	0.9300
С3—Н3	0.9300	C12—N4	1.341 (5)
C4—C5	1.384 (5)	C12—H12	0.9300
C4—H4	0.9300	N1—Cd1	2.407 (3)
C5—N1	1.343 (4)	N2—N3	1.355 (4)
C5—C6	1.465 (4)	N2—Cd1	2.336 (3)
C6—N2	1.268 (4)	N3—H3N	0.86 (4)
С6—Н6	0.9300	O1—Cd1	2.493 (2)
C7—O1	1.223 (4)	Cd1—I1B	2.626 (10)
C7—N3	1.355 (4)	Cd1—I2B	2.687 (6)
С7—С8	1.492 (4)	Cd1—I2A	2.7128 (19)
C8—N4	1.329 (4)	Cd1—I1A	2.736 (3)
C8—C9	1.370 (5)		
N1—C1—C2	123.2 (4)	C12—C11—H11	120.4

N1—C1—H1	118.4	N4—C12—C11	122.9 (4)
C2—C1—H1	118.4	N4—C12—H12	118.6
C3—C2—C1	118.3 (4)	C11—C12—H12	118.6
С3—С2—Н2	120.8	C1—N1—C5	118.1 (3)
C1—C2—H2	120.8	C1—N1—Cd1	125.6 (2)
C2—C3—C4	119.2 (3)	C5—N1—Cd1	116.3 (2)
С2—С3—Н3	120.4	C6—N2—N3	121.6 (3)
С4—С3—Н3	120.4	C6—N2—Cd1	120.3 (2)
C3—C4—C5	119.1 (4)	N3—N2—Cd1	118.0 (2)
C3—C4—H4	120.5	N2—N3—C7	117.6 (3)
С5—С4—Н4	120.5	N2—N3—H3N	120 (2)
N1—C5—C4	122.1 (3)	C7—N3—H3N	122 (2)
N1—C5—C6	116.3 (3)	C8—N4—C12	117.4 (3)
C4—C5—C6	121.6 (3)	C7—O1—Cd1	114.6 (2)
N2—C6—C5	118.5 (3)	N2—Cd1—N1	68.43 (9)
N2—C6—H6	120.7	N2—Cd1—O1	66.56 (8)
С5—С6—Н6	120.7	N1—Cd1—O1	134.63 (8)
O1—C7—N3	122.9 (3)	N2—Cd1—I1B	125.4 (2)
O1—C7—C8	123.5 (3)	N1—Cd1—I1B	99.6 (3)
N3—C7—C8	113.6 (3)	O1—Cd1—I1B	101.6 (3)
N4—C8—C9	123.5 (3)	N2—Cd1—I2B	116.02 (18)
N4—C8—C7	115.1 (3)	N1—Cd1—I2B	103.4 (3)
C9—C8—C7	121.4 (3)	O1—Cd1—I2B	100.9 (2)
C8—C9—C10	117.5 (3)	I1B—Cd1—I2B	118.5 (2)
С8—С9—Н9	121.3	N2—Cd1—I2A	117.87 (7)
С10—С9—Н9	121.3	N1—Cd1—I2A	106.89 (9)
C11—C10—C9	119.5 (4)	O1—Cd1—I2A	98.69 (7)
C11—C10—H10	120.2	N2—Cd1—I1A	123.94 (9)
C9—C10—H10	120.2	N1—Cd1—I1A	102.63 (9)
C10-C11-C12	119.2 (4)	O1—Cd1—I1A	97.56 (9)
C10-C11-H11	120.4	I2A—Cd1—I1A	117.57 (7)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N3—H3 <i>N</i> ···I2 <i>A</i> ⁱ	0.87 (4)	3.04 (4)	3.866 (3)	161 (3)

Symmetry code: (i) -x+1/2, y+1/2, -z+3/2.