
ONCOLOGY LETTERS  14:  6724-6734,  20176724

Abstract. Colorectal cancer (CRC) is one of the most frequently 
occurring malignancies worldwide. The outcomes of patients 
with similar clinical symptoms or at similar pathological stages 
remain unpredictable. This inherent clinical diversity is most 
likely due to the genetic heterogeneity. The present study aimed 
to create a predicting tool to evaluate patient survival based 
on genetic profile. Firstly, three Gene Expression Omnibus 
(GEO) datasets (GSE9348, GSE44076 and GSE44861) were 
utilized to identify and validate differentially expressed genes 
(DEGs) in CRC. The GSE14333 dataset containing survival 
information was then introduced in order to screen and verify 
prognosis-associated genes. Of the 66 DEGs, the present study 
screened out 46 biomarkers closely associated to patient overall 
survival. By Gene Ontology and Kyoto Encyclopedia of Genes 
and Genomes pathway analysis, it was demonstrated that these 
genes participated in multiple biological processes which were 
highly associated with cancer proliferation, drug-resistance 
and metastasis, thus further affecting patient survival. The five 
most important genes, MET proto-oncogene, receptor tyrosine 
kinase, carboxypeptidase M, serine hydroxymethyltransferase 
2, guanylate cyclase activator 2B and sodium voltage-gated 
channel a subunit 9 were selected by a random survival forests 
algorithm, and were further made up to a linear risk score 
formula by multivariable cox regression. Finally, the present 

study tested and verified this risk score within three indepen-
dent GEO datasets (GSE14333, GSE17536 and GSE29621), and 
observed that patients with a high risk score had a lower overall 
survival (P<0.05). Furthermore, this risk score was the most 
significant compared with other predicting factors including 
age and American Joint Committee on Cancer stage, in the 
model, and was able to predict patient survival independently 
and directly. The findings suggest that this survival associated 
DEGs-based risk score is a powerful and accurate prognostic 
tool and is promisingly implemented in a clinical setting.

Introduction

Colorectal cancer (CRC) is currently one of the most 
commonly diagnosed cancers worldwide, with an estimated 
1.4 million cases and 693,900 deaths occurring in 2012 (1). It 
is much more prevalent in Europe and Northern America than 
the developing countries, which however is also rising in the 
last decade (2). Though many advances have been achieved in 
the clinical management of CRC, the 5-year survival is usually 
only approximately 55% (3). Surgical resection remains the 
primary means of curative treatment. However, a proportion 
of patients will develop local recurrences and metastases 
thus having a poor prognosis after resection. Moreover, the 
outcomes of patients with similar clinical or pathologic stage 
remain unpredictable, especially when they are treated simi-
larly (4). This inherent clinical diversity is most likely due 
to the genetic heterogeneity of each patient (5). Therefore, 
identifying the diversity in the genetic profile of colorectal 
carcinoma that governs the prognosis as well as accurate risk 
evaluation based on genetic screening would lead to new and 
more effective clinical strategies in decision making.

Microarray technology allows comprehensive analysis of 
gene expression profiles in different diseases, which has been 
demonstrated in a variety of hematological tumors and solid 
tumors including lung (6), liver (7), pancreas (8), and breast (9). 
Biomarkers discovered by microarrays have a great potential in 
the prediction of clinical outcomes and survival as well as classi-
fication in different sub‑types (10-12). However, several reported 
survival-related biomarkers in CRC are not well performed when 
their ability was assessed in independent datasets (13-15). Their 
clinical implement may also limited due to lack of reproducibility 
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and/or standardization. This may be related to un-optimized 
parameters, different technique platforms, and small volume of 
samples. So an integrated strategy to combine several specific 
biomarkers together, which are verified by multiple data source, 
may be feasible in predicting CRC risk and prognosis.

In the present study, we identified and verified 
66 differentially expressed genes (DEGs) between CRC 
and normal tissue by bioinformatics analysis with multiple 
classifiers. Among them, we classified 46 biomarkers which 
were closely related to patient survival. We looked into the 
function of these genes via GO and KEGG pathway analysis. 
Finally, through random survival forests algorithm, we ranked 
these gene by importance and built a 5-genes-based linear risk 
score with multivariable cox regression model. Our findings 
suggest that this risk score is a powerful and arcuate prognostic 
tool and is promisingly implemented in the clinical setting.

Materials and methods

CRC datasets. The training and validation datasets were achieved 
from the Gene Expression Omnibus (GEO, https://www.ncbi.
nlm.nih.gov/geo/). GSE9348 (70 CRC and 12 normal, platform 
GPL570 [HG‑U133_Plus_2] Affymetrix Human Genome U133 
Plus 2.0 Array) was used as training set for DEGs to distinguish 
cancerous and non-cancerous samples, GSE44076 (98 pairs of 
CRC and adjacent normal tissues, platform GPL13667 [HG-U219] 
Affymetrix Human Genome U219 Array) and GSE44861 
(56 tumors and 55 adjacent normal tissues, by GPL3921 [HT_
HG‑U133A] Affymetrix HT Human Genome U133A Array) for 
validation. Three datasets with survival information generated by 
GPL570 [HG‑U133_Plus_2] Affymetrix Human Genome U133 
Plus 2.0 Array were introduced for calculating risk score formula. 
GSE14333 (n=226) was set for training set, and GSE17536 (n=177) 
as well as GSE29621 (n=65) for validation.

Data preprocessing. All microarray data preprocessing were 
processed in R software version 3.1.0 using packages from 
Bioconductor. Raw microarray data (CEL files) of tumors and 
normal samples were pre-processed with the RMA algorithm 
using the affy package (16). Gene expression values were arranged 
after background adjustment, quantile normalization and summa-
rizing probe values into one expression measure. If multiple probe 
sets mapping to a same gene, the averages of the probe values 
were taken as the expression values (17). Annotations for the 
probe arrays were downloaded from the GEO database.

Functional enrichment analysis. The GO and pathway func-
tional enrichment analysis was operated by the online software 
GENECODIS3 to facilitate the interpretation of biological roles 
of survival related-DEGs (http://genecodis.cnb.csic.es) (18). 
The GO functions of the survival related-DEGs were catego-
rized by biological process, molecular functions, and cellular 
components. Pathway enrichment analysis was based on the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base. P-values have been obtained through Hypergeometric 
analysis corrected by FDR method. Terms with P<0.05 were 
considered as significantly enriched.

Statistical analysis. SPSS software (version 20.0; IBM SPSS, 
Armonk, NY, USA) were applied for statistical analysis. 

Survival analysis was performed by Kaplan-Meier method and 
Mantel‑Cox log‑rank test was used to evaluate the statistical 
significance of the differences. Pearson’s Chi‑Square test was 
used to investigate the difference in live and dead status of 
patients with different risk score. Differences were considered 
as statistically significant when P<0.05.

Results

Identification of DEGs between cancerous and non‑cancerous 
tissues. GSE9348 was used as the training set to identify the 
DEGs between cancerous and non-cancerous tissues. This 
dataset included tumors from 70 patients and biopsies from 
12 healthy controls. We employed different classifiers, namely 
Compound Covariate (CC), Diagonal Linear Discriminant 
Analysis (DLDA), Bayesian CCP (BCCP), Nearest Neighbor 
(NN), Nearest Centroid (NC) and Support Vector Machines 
(SVM), to identify specific gene markers. Leave‑one‑out cross 
validation was introduced to make the result stable and accu-
rate. After processing, we got 66 DEGs, with high accuracy 
(classifier error rate <0.1) (data not shown). The distribution of 
the 66 genes in tumor and non-tumor tissue was clearly demar-
cated in the GSE9348 dataset (Fig. 1A). To further confirm 
the DEGs in cancerous and non-cancerous tissue, the human 
protein atlas immunohistochemistry database (www.protein-
atlas.org) was utilized to visualize the expression. We found 
that downregulated DEGs like SCN9A, UGP2 and CWH43 
were less stained even negative in CRC tissues (Fig. 1B), while 
upregulated DEGs as MET, MYC and SHMT2 were high 
stained in tumor parts (Fig. 1C).

As classifier CC, DLDA and SVM were linear classifiers, 
a linear discriminant with weight values could determine the 
cancerous status of samples. If one gene's weight value in a 
sample within a certain linear classifier was ωi, and its expres-
sion value xi, then Σiωi xi> threshold was defined as cancerous. 
The threshold of classifier CC, DLDA and SVM were calcu-
lated as -43.835, -234.08 and 0.409, respectively. The ROC 
curves of the three linear classifiers confirmed its high effec-
tiveness (AUC=1) (Fig. 1D). It should be noted that these ROC 
curves were derived from the training set GSE9348, in which 
the Σiωi xi discriminant of the three linear classifiers was set 
to compare with a calculated threshold adapting to GSE9348, 
so the sensibility and specificity was very high (Table I upper).

Validation of DEGs in independent CRC datasets. To avoid 
over‑fitting and ensure marker stability, two independent CRC 
datasets, GSE44076 (98 pairs of CRC and adjacent tissues) 
and GSE44861 (56 tumors and 55 adjacent tissues) were intro-
duced for verification. The classifiers utilized in GSE9348 
worked well in these datasets (Table II), and the sensibility 
and specificity of Σiωi xi discriminant in classification of 
cancerous samples were also tested and confirmed (Table I 
middle and lower). Gene expressions of the 66 DEGs derived 
from GSE9348 performed a similar style in GSE44076 and 
GSE44861 (data not shown). The reliability of the three linear 
classifiers (CC, DLDA and SVM) was guaranteed when they 
applied to GSE44076 and GSE44861. The AUCs of classifier 
CC, DLDA and SVM in GSE44076 were 0.9994, 0.9996 and 
0.9994 (Fig. 2A), while in GSE44861 the AUC values were 
0.9253, 0.9292 and 0.9318, respectively (Fig. 2B).
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Survival analysis of DEGs in CRC and their function annota‑
tion. The 66 biomarkers were significant differential genes 
in CRC, however, whether the expression of these genes 
were correlated with patient survival was unclear. We used 
GSE14333 which contained 226 samples with survival infor-
mation among total 290 patients as the training set for survival 
analysis. By univariable cox proportional hazards regression 
analysis and random permutation test, we obtained 46 genes 
correlated with patient survival (P<0.001) (Table III).

To elucidate the function of these survival related DEGs, 
we conducted GO and KEGG pathway analysis and revealed 
that many genes play an important role in ‘response to drug’, 
‘metabolic process’, ‘cell proliferation’, and ‘oxidoreductase 
activity’, which were highly correlated to drug resistance, 
altered cancer metabolism, ROS level and proliferation, and 
many genes also participated in multiple cancer pathways, 
such as MYC and CCND1 (Table IV).

Construction of risk score formula. In order to select the most 
weighted genes, we utilized random survival forests algorithm 
(Ntree =1,000, default parameters of Hemant Ishwaran algo-
rithm) (Fig. 3A), and set the 46 survival related genes as variables 
in this model. We ranked these 46 genes by their importance 
after the processing of random survival forests algorithm via 
R software (Fig. 3B). Five genes, namely MET, CPM, SHMT2, 
GUCA2B and SCN9A were selected as the most important 
candidates (relative importance >0.5). Relative importance 

means the relative value of a certain gene normalized to the 
gene MET, which was the most important gene in our random 
survival forests model (Fig. 3B, and detailed normalized data 
not shown). To investigate whether the 5 candidates could 
provide an accurate prediction of survival in CRC patients, 
the expression data of these genes were fit into a multivariable 
cox regression model as covariates of the training dataset. We 
obtained each gene's regression coefficient and then built a risk 
score formula for each individual as follows:

Risk score =-0.370* (expression value of CPM)‑0.122* 
(expression value of GUCA2B) + 0.332* (expression value of 
MET) + 0.088* (expression value of SCN9A) + 0.827* (expres-
sion value of SHMT2).

Cutting off by the median of the risk score, we defined risk 
score < median as low-risk group, and risk score > median 
as high-risk group. To assess the reliability of the risk-score 
formula in predicting patients survival, we ranked all the 
patients in the training set GSE14333, and divided them into 
either high‑risk group (n=116) or low‑risk group (n=113; 
Fig. 4). Patients in the low-risk group had a markedly longer 
overall survival than those in the high-risk group (P=0.001, 
by Mantel‑Cox log rank) (Fig. 4A). The distribution of the 
follow-up months of a certain risk score and the live/dead 
status were shown in Fig. 4B. However, the P-value by Pearson 
Chi‑Square test was 0.109, suggesting no significant difference 
between the live and dead status of patients with different risk 
score, indicating that our work was more valuable in predicting 

Table I. Survival related DEGs by univariable cox proportional hazards regression analysis.

Gene P-value HR Gene P-value HR

LOC339166 <1e-07 7.748 MYC 7E-07 0.581
SCN9A <1e-07 0.154 SQRDL 7E-07 0.513
LGI1 <1e-07 0.115 SHMT2 0.000001 0.509
P2RY1 <1e-07 3.592 PDE6A 2.1E-06 2.229
PRPF4 <1e‑07 0.245 UGDH 2.3E‑06 1.792
GUCA2B <1e-07 1.688 PTPRH 2.5E-06 1.733
ENOX2 <1e-07 0.193 PPP2R3A 8.4E-06 2.19
NPY <1e-07 4.787 HSPH1 2.62E-05 1.61
SCGN <1e-07 2.266 NR5A2 3.16E-05 0.585
TMEM9B <1e-07 3.445 TRIP13 3.21E-05 0.631
RNASEH2A <1e-07 0.438 CPM 6.06E-05 0.498
HSD11B2 <1e-07 0.647 DUSP14 0.000183 0.54
DENND2A <1e-07 0.299 RCL1 0.000274 0.415
ASPA <1e-07 3.507 ETV4 0.000396 0.672
CA7 <1e-07 2.626 SEMA6D 0.000472 1.9
LPHN3 <1e-07 0.247 HOMER1 0.000475 0.666
ABCG2 <1e-07 1.497 CCND1 0.000522 1.584
GALNT6 <1e-07 0.588 METTL7A 0.000543 2.012
PTGDR <1e-07 0.336 MET 0.000577 1.528
TST <1e-07 0.497 CWH43 0.0006 0.699
SMPDL3A 1E-07 0.428 DHRS11 0.000607 0.748
HSD17B11 1E-07 2.087 UGP2 0.000701 1.977
ETFDH 3E‑07 0.549 SLC22A18AS 0.000812 0.558

HR, hazard ratio.
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patient overall survival (Fig. 4A), not the final live/dead status. 
Moreover, the distribution of risk score in lower expression of 
SCN9A, CPM and GUCA2B as well as higher expression of 
MET and SHMT2 showed relative homogeneity and stability 
from patient to patient with high risk score (Fig. 4E upper).

In addition, we performed multivariable and univariate cox 
regression analysis to elucidate the relationship between risk 
score and other factors like sex, age of diagnosis and Dukes 
stage. It was shown that risk score was the most significant 
among other factors [P=0.005 (multivarible) and P=0.001 

Table II. GO analysis and KEGG pathway analysis of 46 survival related-DEGs (partial data).

Genes Hyp Hypa Annotations

Biological process
    5 4.7E-05 0.00408 GO:0042493: Response to drug (BP) 
    4 0.00079 0.02956 GO:0008152: Metabolic process (BP) 
    3 0.00804 0.03142 GO:0008283: Cell proliferation (BP) 
    3 0.00769 0.03249 GO:0007411: Axon guidance (BP) 
    3 0.01192 0.0359 GO:0008284: Positive regulation of cell proliferation (BP)
    3 0.02362 0.04835 GO:0045893: Positive regulation of transcription,
   DNA-dependent (BP)
Molecular function
  13 0.00391 0.02429 GO:0005515: Protein binding (MF) 
    7 1.6E‑06 0.00019 GO:0016491: Oxidoreductase activity (MF) 
    7 0.01988 0.04888 GO:0000166: Nucleotide binding (MF) 
    6 0.01607 0.0431 GO:0004872: Receptor activity (MF) 
    5 0.00871 0.03213 GO:0016787: Hydrolase activity (MF) 
    4 0.00865 0.03294 GO:0016740: Transferase activity (MF) 
    4 0.01535 0.04312 GO:0004930: G‑protein coupled receptor activity (MF) 
Cellular component
  15 0.00234 0.03334 GO:0005737: Cytoplasm (CC) 
  13 0.00169 0.03219 GO:0016020: Membrane (CC) 
  11 0.00562 0.03205 GO:0005886: Plasma membrane (CC) 
    9 0.00075 0.02125 GO:0005576: Extracellular region (CC) 
    7 0.0028 0.02656 GO:0005730: Nucleolus (CC) 
    6 0.00948 0.04156 GO:0005739: Mitochondrion (CC) 
    5 0.00357 0.02911 GO:0005615: Extracellular space (CC) 
    4 0.00072 0.04092 GO:0005743: Mitochondrial inner membrane (CC) 
    3 0.00236 0.02696 GO:0005759: Mitochondrial matrix (CC) 
KEGG pathway
    3 0.0089 0.0411 (KEGG) 05200: Pathways in cancer 
    2 0.00215 0.02152 (KEGG) 05213: Endometrial cancer 
    2 0.00258 0.02211 (KEGG) 05221: Acute myeloid leukemia 
    2 0.00304 0.02282 (KEGG) 05210: Colorectal cancer 
    2 0.00077 0.02304 (KEGG) 00040: Pentose and glucuronate interconversions 
    2 0.00207 0.02485 (KEGG) 00500: Starch and sucrose metabolism 
    2 0.00419 0.02514 (KEGG) 05220: Chronic myeloid leukemia 
    2 0.00386 0.02574 (KEGG) 05218: Melanoma 
    2 0.00184 0.02755 (KEGG) 00520: Amino sugar and nucleotide sugar metabolism 
    2 0.00141 0.02818 (KEGG) 05219: Bladder cancer 
    2 0.00551 0.03004 (KEGG) 05222: Small cell lung cancer 
    2 0.00063 0.03755 (KEGG) 05216: Thyroid cancer 
    2 0.01148 0.04919 (KEGG) 04110: Cell cycle
    2 0.01238 0.04953 (KEGG) 04360: Axon guidance

Partial data, genes involved ≥3 (GO analysis) or gene involved ≥2 (KEGG pathway analysis). Genes involved in all KEGG pathway above were 
MYC and CCND1. acorrected Hyp. Hyp, hypergeometric P‑value; BP, biological processes; MF, molecular function; CC, cellular component.
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Figure 2. ROC curves of linear classifier CC, DLDA and SVM of validation sets. ROC curves of linear classifier CC, DLDA and SVM in validation sets 
GSE44076 (A) and GSE44861 (B). FPR, false positive rate; TPR, true positive rate; AUC, area under curve.

Figure 1. DEGs in colorectal cancer. (A) Heatmap of 66 DEGs expression in cancer and non‑cancerous tissue of GSE9348. More detailed information could 
be achieved by contacting the corresponding author. (B) Immunohistochemistry (IHC) pictures of SCN9A, UGP2 and CWH43 as downregulated DEGs were 
archieved from the Human Protein Atlas database (HPA). (C) IHC results of MET, MYC and SHMT2 as upregulated DEGs from HPA. (D) ROC curves 
of three linear classifier CC, DLDA and SVM in training set GSE9348. FPR, false positive rate; TPR, true positive rate; AUC, area under curve; DEGs, 
Differentially expressed genes; T, tumor; N, normal.
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(univariable)], while age (P=0.016) and adjuvant radiation 
therapy (P=0.021) were univariable factors to prognosis as 
reported (19,20) (Table V upper). These data suggested that the 
risk score could predict patient survival directly and indepen-
dently.

Validation of risk score in predicting survival within indepen‑
dent CRC datasets. To further evaluate the clinical value of 
this risk score, we used 2 independent CRC datasets GSE17536 
(n=177) and GSE29621 (n=65) with survival information. We 
utilized the threshold in GSE14333 to classify high-risk and 

low-risk groups. Both datasets showed that high risk score 
patients had lower overall survival (P=0.001, GSE17536; 
P=0.038, GSE29621) (Fig. 4C and D). The 5 biomarkers of risk 
score (MET, CPM, SHMT2, GUCA2B and SCN9A) perform a 
similar stability in GSE17536 and GSE29621 as in GSE14333 
(Fig. 4E middle and lower). In addition, by multivariable and 
univariate cox regression analysis, we confirmed that this risk 
score was the most significant in GSE17536 [P=0.016 (multi-
varible) and P=0.003 (univariable)], while P-value of other 
factors >0.05 except age, which was a univariable significant 
only (P=0.016) (Table V middle). In GSE29621, risk score 

Table III. Multivariable and univariable model tests of risk score and other factors.

A, GSE14333

 Multivariable model Univariable model
 -------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------
Variables HR 95% CI of HR P‑value HR 95% CI of HR P‑value

Risk score 2.346 1.298 4.241 0.005 2.718 1.523 4.851 0.001
Location 0.965 0.814 1.144 0.683 0.892 0.76 1.047 0.163
Dukes stage 1.18 0.926 1.503 0.18 1.044 0.86 1.266 0.666
Age of diagnosis 1.008 0.994 1.023 0.257 1.105 1.002 1.028 0.02
Sex 0.926 0.683 1.255 0.62 0.877 0.651 1.182 0.39
Adj XRT 0.463 0.218 0.984 0.045 0.433 0.212 0.884 0.021
Adj CTX 0.867 0.568 1.325 0.51 0.847 0.618 1.16 0.3

B, GSE17536

 Multivariable model Univariable model
 -------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------
Variables HR 95% CI of HR P‑value HR 95% CI of HR P‑value

Risk score 2.745 1.204 6.262 0.016 3.283 1.489 7.236 0.003
Age 1.015 0.999 1.031 0.061 1.018 1.003 1.034 0.016
Sex 1.084 0.747 1.572 0.672 0.953 0.666 1.362 0.79
Ethnicity 0.967 0.728 1.284 0.817 0.915 0.685 1.221 0.545
AJCC stage 1.107 0.892 1.373 0.357 1.051 0.861 1.284 0.625
Grade 1.254 0.828 1.898 0.285 1.375 0.924 2.045 0.116

C, GSE29621

 Multivariable model Univariable model
 -------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------
Variables HR 95% CI of HR P‑value HR 95% CI of HR P‑value

Risk score 9.03 1.425 57.223 0.019 2.526 0.481 13.269 2.73E-05
Sex 1.243 0.513 3.014 0.63 1.508 0.649 3.505 0.34
T stage 0.449 0.091 2.209 0.325 1.048 0.438 2.509 0.915
N stage 1.583 0.604 4.143 0.35 2.688 1.526 4.734 0.001
M stage 2.065 0.368 11.592 0.41 4.934 2.188 11.124 1.19E-04
Histology grade 0.849 0.325 2.219 0.738 0.665 0.284 1.558 0.348
AJCC stage 1.965 0.518 7.45 0.321 2.708 1.615 4.542 1.59E-04

HR, hazard ratio; Adj XRT, adjuvant radiation therapy; Adj CTX, adjuvant chemotherapy.
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was also the most significant (P=0.019 (multivarible) and 
P=2.73E-05 (univariable)), while N, M stage (TNM staging) 
and AJCC stage were only univariable significant (Table V 
lower), as it was easy to comprehend that metastasis and stage 
was related to patient outcome (21). These data indicated that 
risk score could directly predict patient survival.

Discussion

In the present study, we have identified and verified 46 survival 
related-biomarkers from 66 DEGs in CRC and then built a 
prognostic risk score which could be translated into the clinical 
setting. The 46 survival related-biomarkers mainly located in 

Table IV. GO analysis and KEGG pathway analysis of 46 survival related-DEGs (partial data).

Genes Hyp Hypa Annotations

Biological process   
    5 4.7E-05 0.00408 GO:0042493: Response to drug (BP) 
    4 0.00079 0.02956 GO:0008152: Metabolic process (BP) 
    3 0.00804 0.03142 GO:0008283: Cell proliferation (BP) 
    3 0.00769 0.03249 GO:0007411: Axon guidance (BP) 
    3 0.01192 0.0359 GO:0008284: Positive regulation of cell proliferation (BP) 
    3 0.02362 0.04835 GO:0045893: Positive regulation of transcription, DNA-dependent (BP) 
Molecular function   
  13 0.00391 0.02429 GO:0005515: Protein binding (MF) 
    7 1.6E‑06 0.00019 GO:0016491: Oxidoreductase activity (MF) 
    7 0.01988 0.04888 GO:0000166: Nucleotide binding (MF) 
    6 0.01607 0.0431 GO:0004872: Receptor activity (MF) 
    5 0.00871 0.03213 GO:0016787: Hydrolase activity (MF) 
    4 0.00865 0.03294 GO:0016740: Transferase activity (MF) 
    4 0.01535 0.04312 GO:0004930: G‑protein coupled receptor activity (MF) 
Cellular component   
  15 0.00234 0.03334 GO:0005737: Cytoplasm (CC) 
  13 0.00169 0.03219 GO:0016020: Membrane (CC) 
  11 0.00562 0.03205 GO:0005886: Plasma membrane (CC) 
    9 0.00075 0.02125 GO:0005576: Extracellular region (CC) 
    7 0.0028 0.02656 GO:0005730: Nucleolus (CC) 
    6 0.00948 0.04156 GO:0005739: Mitochondrion (CC) 
    5 0.00357 0.02911 GO:0005615: Extracellular space (CC) 
    4 0.00072 0.04092 GO:0005743: Mitochondrial inner membrane (CC) 
    3 0.00236 0.02696 GO:0005759: Mitochondrial matrix (CC) 
KEGG pathway   
    3 0.0089 0.0411 (KEGG) 05200: Pathways in cancer 
    2 0.00215 0.02152 (KEGG) 05213: Endometrial cancer 
    2 0.00258 0.02211 (KEGG) 05221: Acute myeloid leukemia 
    2 0.00304 0.02282 (KEGG) 05210: Colorectal cancer 
    2 0.00077 0.02304 (KEGG) 00040: Pentose and glucuronate interconversions 
    2 0.00207 0.02485 (KEGG) 00500: Starch and sucrose metabolism 
    2 0.00419 0.02514 (KEGG) 05220: Chronic myeloid leukemia 
    2 0.00386 0.02574 (KEGG) 05218: Melanoma 
    2 0.00184 0.02755 (KEGG) 00520: Amino sugar and nucleotide sugar metabolism 
    2 0.00141 0.02818 (KEGG) 05219: Bladder cancer 
    2 0.00551 0.03004 (KEGG) 05222: Small cell lung cancer 
    2 0.00063 0.03755 (KEGG) 05216: Thyroid cancer 
    2 0.01148 0.04919 (KEGG) 04110: Cell cycle 
    2 0.01238 0.04953 (KEGG) 04360: Axon guidance

Partial data, genes involved ≥3 (GO analysis) or gene involved ≥2 (KEGG pathway analysis). Genes involved in all KEGG pathway above 
were MYC and CCND1. a, corrected hypergeometric P‑value; Hyp, Hypergeometric P‑value; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; BP, biological processes; MF, molecular function; CC, cellular component.
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Figure 3. Survival related‑DEGs ranked by variable importance. (A) Error rate of random survival forests algorithm (Ntree =1,000, default parameters of 
Hemant Ishwaran algorithm). (B) Variable importance of the 46 survival related‑DEGs. DEGs, differentially expressed genes.

Figure 4. Test and validation of risk score in independent GEO datasets. (A) Kaplan‑Meier survival curve of low and high risk patients in Training GSE14333 
(P=0.001, by Mantel‑Cox log rank). (B) Scatter diagram of live and dead outcome with different risk score value of GSE14333. Kaplan‑Meier survival curve 
of low and high risk patients in validation set GSE17536 (P=0.001) (C) and GSE29621 (P=0.038) (D). (E) Gene expression distribution of the 5 most important 
biomarkers in low and high risk patients in GSE14333, GSE17536 and GSE29621. Genes in GSE14333 were SCN9A, CPM, GUCA2B, MET and SHMT2 from 
top to bottom. Genes in GSE17536 and GSE29621 were SHMT2, MET, CPM, GUCA2B and SCN9A from top to bottom. GEO, Gene Expression Omnibus.
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cytoplasm, membrane and nucleolus, only a small portion in 
mitochondria and other sub-cellular parts. Their GO enrich-
ment showed that these genes involved in multiple biological 
processes such as response to drug, metabolic process, cell 
proliferation, and positive regulation of cell proliferation. 
Obviously, these biological processes played a pivotal role 
in cancer proliferation, drug-resistance, and metastasis, thus 
further affecting patient survival (22-24). Genes like MYC 
and CCND1 within CRC pathway in KEGG annotation also 
participated in other cancer pathway as endometrial cancer or 
chronic myeloid leukemia (25,26). After that, we ranked the 

46 survival-related genes by random survival forests algorithm 
and got five most important biomarkers namely MET, CPM, 
SHMT2, GUCA2B and SCN9A.

Recently, MET was reported gradually upregulated in the 
development and progression of CRC from normal epithelium 
to adenoma, colorectal carcinoma and metastases (27,28). 
Although others argued that the increase of MET in metastatic 
CRC was an acquired response to EGFR inhibition, not a de 
novo phenomenon (29), its prognostic value was confirmed by 
several independent researches (30,31). Moreover, suppressing 
MET by specific inhibitor or shRNA has a therapeutic role in 

Table V. Multivariable and univariable model tests of risk score and other factors.

A, GSE14333

 Multivariable model Univariable model
 ------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------
Variables HR 95% CI of HR P‑value HR 95% CI of HR P‑value

Risk score 2.346 1.298 4.241 0.005 2.718 1.523 4.851 0.001
Location 0.965 0.814 1.144 0.683 0.892 0.76 1.047 0.163
Dukes stage 1.18 0.926 1.503 0.18 1.044 0.86 1.266 0.666
Age of diagnosis 1.008 0.994 1.023 0.257 1.105 1.002 1.028 0.02
Sex 0.926 0.683 1.255 0.62 0.877 0.651 1.182 0.39
Adj XRT 0.463 0.218 0.984 0.045 0.433 0.212 0.884 0.021
Adj CTX 0.867 0.568 1.325 0.51 0.847 0.618 1.16 0.3

B, GSE17536

 Multivariable model Univariable model
 ------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------
Variables HR 95% CI of HR P‑value HR 95% CI of HR P‑value

Risk score 2.745 1.204 6.262 0.016 3.283 1.489 7.236 0.003
Age 1.015 0.999 1.031 0.061 1.018 1.003 1.034 0.016
Sex 1.084 0.747 1.572 0.672 0.953 0.666 1.362 0.79
Ethnicity 0.967 0.728 1.284 0.817 0.915 0.685 1.221 0.545
AJCC stage 1.107 0.892 1.373 0.357 1.051 0.861 1.284 0.625
grade 1.254 0.828 1.898 0.285 1.375 0.924 2.045 0.116

C, GSE29621

 Multivariable model Univariable model
 ------------------------------------------------------------------------------------------ ---------------------------------------------------------------------------------------------
Variables HR 95% CI of HR P‑value HR 95% CI of HR P‑value

Risk score 9.03 1.425 57.223 0.019 2.526 0.481 13.269 2.73E-05
Sex 1.243 0.513 3.014 0.63 1.508 0.649 3.505 0.34
T stage 0.449 0.091 2.209 0.325 1.048 0.438 2.509 0.915
N stage 1.583 0.604 4.143 0.35 2.688 1.526 4.734 0.001
M stage 2.065 0.368 11.592 0.41 4.934 2.188 11.124 1.19E-04
Histology grade 0.849 0.325 2.219 0.738 0.665 0.284 1.558 0.348
AJCC stage 1.965 0.518 7.45 0.321 2.708 1.615 4.542 1.59E-04

HR, hazard ratio; Adj XRT, adjuvant radiation therapy; Adj CTX, adjuvant chemotherapy.
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CRC (32,33). CPM was less reported, and only one literature 
revealed that it was the target of miR-146a which promoted 
cell migration and invasion in CRC via CPM/src‑FAK 
pathway (34). It was suggested that CPM has the potential 
to be a therapeutic target in cancer (35), but its function still 
need further discovery. SHMT2 participated in the cellular 
one-carbon metabolism, and has been implicated as a critical 
component for tumor survival. Its upregulation was correlated 
with tumor proliferation in several cancers (36,37). Kim et al 
found SHMT2 activity limits that of pyruvate kinase (PKM2) 
and reduces oxygen consumption, thus eliciting a metabolic 
switch that confers a profound survival advantage to cells in 
poorly vascularized regions (38). GUCA2B and SCN9A were 
rarely demonstrated in cancer and more light should shed 
on their role in CRC. The cause and progression of CRC are 
complicated and remains to be further elucidated, and we 
think the rest genes in Table III should have potential value in 
better interpreting the carcinogenesis and progression of CRC.

Moreover, we established a linear risk score as a survival 
predicting model based on the above five genes by multi-
variable Cox regression using highly reliable CRC datasets. 
This risk score predicted patients at high risk of mortality 
independently and directly in all validation datasets. Although 
more prospective studies are necessary to further validate the 
reliability and robustness of this risk score, our work provide 
an new method toward clinical applications of gene expression 
profiling in CRC, especially in future personalized prediction 
and precision medicine.
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