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Abstract: The domain adaptation problem in transfer learning has received extensive attention in
recent years. The existing transfer model for solving domain alignment always assumes that the
label space is completely shared between domains. However, this assumption is untrue in the actual
industry and limits the application scope of the transfer model. Therefore, a universal domain
method is proposed, which not only effectively reduces the problem of network failure caused by
unknown fault types in the target domain but also breaks the premise of sharing the label space. The
proposed framework takes into account the discrepancy of the fault features shown by different fault
types and forms the feature center for fault diagnosis by extracting the features of samples of each
fault type. Three optimization functions are added to solve the negative transfer problem when the
model solves samples of unknown fault types. This study verifies the performance advantages of
the framework for variable speed through experiments of multiple datasets. It can be seen from the
experimental results that the proposed method has better fault diagnosis performance than related
transfer methods for solving unknown mechanical faults.

Keywords: fault diagnosis; rotating machinery; transfer learning; domain adaptation

1. Introduction

Existing deep neural networks have shown superior performance in various diagnos-
tic tasks for rotating component faults due to their impressive feature learning capabili-
ties [1–3]. Such networks include the convolutional neural network [4,5], recurrent neural
network [6], and restricted Boltzmann machine [7]. The outstanding performances of these
networks heavily depend on the pretraining of deep diagnostic networks with real sample
data from the same domain as the test data [8]. However, under actual operating conditions,
the dataset is often time-varying and unknowable. Improving the generalization capability
of a model under variable working conditions has been regarded as a potential solution for
solve unknown working conditions.

Domain discrepancy causes the model based on the previous training data to perform
poorly with the new test data set [9,10]. The typical solution to this problem is to pre-train
the model and fine-tune the diagnostic network trained from the source domain with the
feature distribution of the target domain [11], and the method for the marginal distribution
alignment of feature spaces is widely used to narrow the distance between two different
domains [12]. Li et al. [13] proposed a fault diagnosis model based on multi-scale permuta-
tion entropy (MPE) and multi-channel fusion convolutional neural networks (MCFCNN),
which constructs a feature vector set by permuting entropy so that the high accuracy
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and stability of fault diagnosis are realized. Guo et al. [14] reported a new transfer learn-
ing network, which gradually realized the multi-module operation of automatic features
learning and machine health status recognition through a one-dimensional convolutional
network. Singh et al. [15] presented a deep convolution model to diagnose the type of the
gearbox fault under the obvious change of speed. The model minimizes the cross-entropy
loss of the source domain and the maximum mean discrepancy loss between the two
domains to obtain superior diagnostic performance. Hasan et al. [16] proposed a transfer
diagnosis framework based on high-order spectral analysis and multitask learning, which
can diagnose non-stationary and non-linear rolling bearing signals in combination with
different modes of a given fault type. As can be seen from the above-mentioned networks,
solving the problem of domain discrepancies has become a tacit prerequisite for current
fault diagnosis.

Traditional diagnostic networks usually assume that the label space of the fault sam-
ples in the target domain and the source domain is consistent. However, in actual engi-
neering practice, the fault type of the target domain is often difficult to predict, and the
fault type label space is often smaller than the source domain fault label space. Therefore,
Cao et al. [17] proposed the use of selective weighting to maximize the positive migration
of shared tag space data; this approach can achieve the purpose of per-class adversarial
distribution matching. Zhang et al. [18] established an importance weighted adversarial
network. This network is especially suitable for partial domain adaptation where the
number of fault types in the target domain is less than the number of fault types in the
source domain, and can effectively reduce the distribution difference to realize knowledge
migration and the fault diagnosis of the target sample. Li et al. [19] suggested applying
unsupervised prediction consistency schemes and conditional data alignment for partial
domain adaptation. This method effectively solves the partial domain adaptation problem
that the target domain data under unsupervised training cannot cover the entire healthy
label space. Jia et al. [20] proposed a weighted subdomain adaptation network (WSAN),
and a weighted local maximum-mean-discrepancy (WLMMD) is introduced to obtain the
transferable information and weight of the sample to realize the diagnosis of the fault type.
The research on partial domain adaptation pushes the field of intelligent fault diagnosis
into a practical setting.

However, only a very small number of networks can cope with the identification
and diagnosis of sudden unknown fault types in the existing fault diagnosis models. We
cannot know that the fault type of the target samples must belong to the source domain
label space when providing unlabeled target samples. Therefore, open set recognition is
an urgent problem faced by transfer learning to broaden practical application scenarios.
Busto et al. [21] were the first to suggest marking the shared classes of the source and
target domains as general classes and constructed an iterative method to solve the labeling
problem. Saito et al. [22] modified the description of open set domain adaptation, which
allows only the target domain to contain the private label set. His team also added a
boundary between the source domain and the target domain to facilitate the separation of
unknown fault samples from known fault samples. This method has been widely evaluated
in the field. You et al. [23] provided a concept of universal domain in the field of image
recognition which allows intersection between source and target domains and provides a
benchmark for future related research.

Considering that the current domain transfer methods often assume that the fault
type of the test data is the same as the training data set, while ignores that the specific
working conditions and label types of the target domain samples are often unpredictable. It
is impossible to diagnose the fault type by directly comparing the distribution of the source
domain and the target domain. Thus, we propose a new universal domain adaptation
(UDA) method for fault diagnosis under the changing conditions of bearing speed. As
shown in Figure 1, the model allows different types of faults to exist between data sets
and generates a feature center belonging to each fault type for fault diagnosis by learning
the fault features of each fault sample. In order to solve the problem of negative model
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transfer caused by the input of unknown samples into the network, the model proposes
three optimization goals, and train the network gradually by optimizing the objective
function to alleviate the phenomenon of negative network transfer. The main contributions
of this model are as follows:

Figure 1. Universal domain adaptation setting (unshaded shapes indicate shared labels).

1. The proposed model breaks the assumption of the shared label space in the field of
mechanical fault diagnosis and proposes the universal domain to solve the fault type
samples that did not appear in the training dataset.

2. The proposed network innovatively proposes to rely on source domain samples to
generate feature centers of each fault type and determine the fault type based on the
distance between the feature extracted from the sample and the feature center.

3. The model introduces Wasserstein distance to measure the marginal probability
distribution between different data, and three optimization equations are added to
the network training to optimize the model to alleviate the negative transfer problem
of the network when solving unknown domains.

In this paper, a new transfer learning model based on universal domain adaptation
is proposed and the proposed model is described in detail. The specific article structure
is organized as follows. The details of the proposed method for fault diagnosis under
changing speed conditions are provided in Section 2. The fault diagnosis experiment with
two sets of bearing data is presented in Section 3. Finally, the conclusions are provided
in Section 4.

2. Research Methods
2.1. Proposed Framework

The frame structure of the proposed approach is shown in Figure 2.
The proposed framework adopts two modules, i.e., the feature extractor G and the

classifier C. The feature extractor G is composed of 4 fully connected layers, and the
dimensions of the samples extracted from each layer are 512, 128, 64, and 16 dimensions.
The classifier C is a two-layer Softmax classifier, which is used to diagnose fault sample
types. The original source time-domain signal is processed by FFT and input into the
feature extractor G to extract the features of the source domain fault sample. The extracted
fault features are then classified by the classifier C to extract the feature center of each
fault type from the feature signal of the source domain gradually. After the first model
pre-classification, the features of the target domain fault samples are added multiple times
with tiny noise containing their own features, and the distance from the feature center is
measured. The model realizes the fault diagnosis of the target domain samples after many
times of learning and training. The training process of the model is described in detail in
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Section 3.2. The model introduces the following target objects to improve the diagnostic
performance and generalization ability.

Figure 2. Framework diagram of the proposed method.

2.1.1. Classification Loss

Minimizing the classification error of source domain samples is the first optimization
goal of the proposed framework. The classifier learns classification knowledge from the
labeled samples in the source domain. The standard Softmax regression loss is selected as
the objective function [24]. The specific function formula and explanation are as follows:

LC = − 1
m
[∑m

i=1

(
1− y(i)

)
log
(

1− hθ

(
x(i)
))

+ ∑m
i=1 y(i) log hθ

(
x(i)
)
] (1)

where x(i) and y(i) represent the input signal of the i-th sample and the probability output
corresponding to the sample, and hθ(x(i)) is the set of probabilities of various fault types
corresponding to the i-th sample.

2.1.2. Feature Loss

Feature loss is used to correct the error loss caused by discarding useless fault type
features in the process of extracting feature centers. Feature loss can be expressed as the
absolute difference between the feature extracted from the source domain and the feature
center generated by the learning process. The function formula [25] is as follows:

LF(xc, oc) =
1
C

C

∑
c=1
| f (xc)− f (oc)| (2)

where xc and oc are the c-th features of the feature extraction and feature center.

2.1.3. Distance Loss

Wasserstein distance, which is often used to measure the discrepancy between differ-
ent distributions, can be understood as the minimum consumption under optimal path
planning. The Wasserstein distance is used as distance loss to reflect accurately the distance
between the two distributions with little to no overlap in the support set with the objec-
tive of measuring the overall distance between the feature center and the target domain
feature [26]. The function formula is as follows:

LD(P1, P2) = inf
γ∈∏ (p1,p2)

E(x,y)∼γ[‖x− y‖] (3)
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where ∏ (p1, p2) is the set of all possible joint distributions that combine the P1 and P2
distributions, and γ represents the joint distribution of each possible fault type. x represents
the feature center sample feature and y represents the target sample feature.

2.2. Training Process

The goal of the model is to identify the fault type of the target domain sample and
reduce the domain distance between two identical faults. At the same time, the fault types
of unknown samples in the target domain are identified. The training process of the model
is shown in the figure below:

Step 1: Figure 3 shows that the network learns the features of the fault types from
the source domain samples to form the characteristic centers of multiple fault types. The
classifier tries to pre-classify the target domain samples and attempts to shorten the dis-
tance discrepancy between domains. Therefore, the source domain classification loss is
introduced into the model. The mathematical equation used is as follows:

LC = − 1
m

[
m

∑
i=1

k

∑
j=1

I{y(i) = j} log
exp(θT

j · x(i))

∑k
l=1 exp(θT

l · x(i))

]
(4)

where m represents the number of samples in the source domain and I[·] is an index
function used to represent the value of the probability that the sample is true. θ1, θ2, ..., θk

ε <n+1 are the parameters of the model and 1/
(

∑k
j=1 eθT

j x(i)
)

normalizes the distribution

such that it sums to 1.

Figure 3. Model training steps.

Step 2: Tiny noise is mixed into the target domain samples in the classification, and
these tiny noises merge the features of the target domain sample extracted from the feature
extractor G. The fault features of the target domain samples mixed with the noise will then
undergo a slight change. Given that the mixed tiny noise is related to the target sample
features themselves, the extracted fault sample feature will be closer to the feature center
of its own fault type. The function formula is as follows:

Xto = Xt + λ ·_x ·t (5)

where λ represents the feature coefficient of the tiny noise.
_
x is the feature coefficient of

the extracted target domain, which is the sample feature extracted from the target domain
sample. ot is Gaussian white noise used as the tiny noise for network training.

Step 3: The network recalculates the distance between the features of the target sample
and the center of each fault type after the addition of noise, and the distance loss between



Entropy 2021, 23, 1052 6 of 13

the features of the target sample and the feature center is calculated to judge the fault. The
specific distance loss function [25] is shown in the following formula:

Ldis =

∣∣∣∣∣ 1
ms

ms

∑
i=1

T(xsi)−
1

mt

mt

∑
i=1

T(xti)

∣∣∣∣∣ (6)

where xsi and xti are the i-th features extracted from the target domain Xt and source
domain Xs through the fully connected layer.

The three steps of model training are looped continuously until the expected per-
formance is achieved as shown in Figure 3. The network repeatedly adds tiny noise
interference containing the characteristics of the target domain sample to the target domain
samples and measures the feature distance to ensure the accurate diagnosis of the fault
type of the target domain samples. The stable samples that have been classified accurately
do not undergo classification changes after multiple small disturbances are added, whereas
the active samples that have been classified incorrectly jump or leave the feature center.

3. Experimental Verification
3.1. Experimental Dataset Description

The intelligent fault diagnosis methods trained with the labeled data are required to
classify the unlabeled data accurately to validate the effectiveness of this method in universal
domain transfer learning. Therefore, as discussed in this section, the datasets acquired from
two dedicated rotating part workbenches are used for bearing fault diagnosis experiments.

CWRU: The Case Western Reserve University (CWRU) bearing dataset was collected
from an experimental platform provided by the CWRU [27]. The CWRU workbench
collected sample data of four health conditions at the 6 o’clock position (orthogonal area
of applied load) of the deep groove ball bearing on the drive end of the motor housing.
The four health conditions were normal condition (NC), inner race failure (IF), outer race
failure (OF), and ball failure (BF). The sampling frequency at the time of data collection is
set to 48 kHz, and each fault type was run with varying degrees of damage (0.007-, 0.014-,
and 0.021-inch fault diameters). Each type of fault data was collected by the test motor
running at three different motor speeds (i.e., 1772, 1750, and 1730 rpm) for fault diagnosis.
The CWRU dataset information is shown in Table 1.

Table 1. Information of the two datasets.

Dataset Class Label 1 2 3 4 5 6 7 8 9 10

CWRU Fault location N/A IF IF IF BF BF BF OF OF OF
Fault size (mil) 0 7 14 21 7 14 21 7 14 21

SDUST Fault location IF IF N/A OF OF RF RF ROF ROF
Fault size (mm) 0.2 0.4 0 0.2 0.4 0.2 0.4 0.2 0.4

SDUST: The Shandong University of Science and Technology (SDUST) bearing dataset
was collected from a diagnostic test bench specially designed for bearing faults. The time-
domain signal of bearings at different speeds of the motor is collected. Figure 4a shows that
the bearing fault test bench is composed of a motor, a rotor, a brake, a bearing seat, and two
shaft couplings. The cylindrical roller bearing faults in the SDUST dataset contains three
single types of fault and a type of composite fault, which are: OF, roller fault (RF), IF, and
roller and outer race fault (ROF). Figure 4 is a schematic diagram of the three single types of
fault bearings. The collected bearing signals of each type of fault are divided into two fault
severity levels: crack 0.2 mm and crack 0.4 mm. The NC time-domain signal was added
to the SDUST dataset to obtain nine types of faults as shown in Table 1. Each acceleration
sensor was respectively installed in different parts of the bearing seat, and the sampling
frequency was set at 25.6 kHz. The motor speed was set to 1500 r/min, 1800 r/min, and
2000 r/min during data collection, and a total of 200 samples were collected for each
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fault health status at different motor speeds, and each time-domain sample contained
6400 data points.

Figure 4. (a) Bearing fault test rig and (b) three single types of fault bearings.

3.2. Compared Methods Description

The proposed method shares the same experimental configuration and test dataset
with all the following comparison methods to evaluate the diagnostic advantages of the
proposed model.:

Baseline: First, a baseline method without a special technique is proposed to diagnose
the UDA problem [28]. The feature extractor and classifier are trained under supervision,
and the network is used directly for the fault diagnosis of the target domain dataset.

L1/2-SF: The L1/2-SF (L1/2 regularized sparse filtering) approach [29] is widely used
as an excellent method for bearing and gear fault diagnosis. This method follows the
traditional unsupervised machine learning model, thus providing a benchmark for the
proposed method.

WD-MCD: The Wasserstein Distance—Maximum Classifier Discrepancy (WD–MCD)
approach maximizes the output discrepancy of the classifier and combines marginal proba-
bility distribution adaptation to focus on the diagnosis of the transfer model [20]. This model
is compared with the proposed model because it is a popular transfer learning method.

BN–SAE: As a popular method, the Batch Normalization—Stacked AutoEncoders
(BNSAE) approach [30] is an adaptive reparametrization algorithm that aims not to opti-
mize but to regularize the model. The effect of the healthy data classification scheme can
thus be examined.

3.3. Experimental Results Display

As reported in this section, the UDA problem is experimentally verified. The model
parameters during the experiment are shown in Table 2 and are mainly determined in
accordance with the verification results of the diagnostic task.

Table 2. Parameters used in this study.

Parameter Value Parameter Value

Epochs in general training Es 2000 Sample dimension S 1200
Epochs in testing Et 500 Feature center dimension Cd 16

Batch size Bs 10 First-level feature dimension f 1 512
Dropout_rate D 0.1 Second-level feature dimension f 2 128
Learning rate Lr 0.001 the feature coefficient of the tiny noise λ 0.05
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The detailed task information is shown in Table 3. This information randomly selects
the fault type for fault diagnosis in the two datasets. In order to verify the fault diagnosis
performance of the framework under variable speed conditions, the experiment sets the
fault type diagnosis in the phase of gradually increasing bearing speed and the fault type
diagnosis in the phase of gradually decreasing speed. The “source classes” represent the
fault type of the source domain training sample, the type of fault marked red represents the
private type of the source domain (the category does not appear in the target domain fault
sample), and the “unknown class” represents the fault type that has not been learned during
source domain training. A total of 100 labeled samples under each machine condition are
randomly selected as source domain data for model training, and 100 unlabeled samples are
used as target domain samples for experimental verification. An average of 10 experiments
for each group of results is performed to reduce the effect of randomness.

Table 3. Universal domain transfer learning task information.

CWRU SDUST

Task Name Transfer (Speed) Source
Classes

Unknown
Class Task Name Transfer

(Speed)
Source
Classes

Unknown
Class

A1 1730→ 1750 1, 2, 3, 5, 8 6 B1 1500→ 1800 1, 3, 4, 6, 7 8
A2 1730→ 1750 1, 2, 3, 6, 9 8 B2 1500→ 1800 2, 3, 4, 5, 7 9
A3 1730→ 1750 1, 4, 5, 7, 10 2 B3 1500→ 1800 1, 3, 5, 6, 8 7
A4 1730→ 1750 No unknown fault B4 1500→ 1800 No unknown fault
A5 1730→ 1772 1, 2, 3, 5, 8 6 B5 1500→ 2000 1, 3, 4, 6, 7 8
A6 1730→ 1772 2, 3, 5, 7, 9 1 B6 1500→ 2000 1, 3, 4, 5, 6 8
A7 1730→ 1772 4, 5, 6, 8, 9 3 B7 1500→ 2000 1, 3, 5, 6, 8 2
A8 1750→ 1730 1, 2, 3, 5, 8 6 B8 1800→ 1500 1, 3, 4, 6, 7 8
A9 1750→ 1730 1, 4, 5, 7, 10 2 B9 1800→ 1500 1, 2, 3, 4, 8 6
A10 1772→ 1730 1, 2, 4, 5, 8 10 B10 2000→ 1500 1, 3, 4, 6, 8 9

3.3.1. CWRU Task Set Result Analysis

Table 4 shows the fault diagnosis results of the proposed model using the CWRU
dataset for different universal domain tasks. The selected comparison approaches are
currently the highly popular domain adaptive and transfer learning methods. The stable
diagnostic performance presented by the proposed method in the CWRU dataset task group
shows its superiority in solving universal domain adaptation. Furthermore, the proposed
method generally obtains smaller standard deviations than other models when performing
different tasks, indicating that it has good convergence in the experimental process.

Table 4. Means of the testing accuracies in different tasks with the CWRU dataset (%).

Method Baseline L1/2-SF WD-MCD DA-BNSAE Proposed

A1 54.67 (±12.4) 82.2 (±6.3) 80.08 (±2.6) 78.23 (±0.4) 82.98 (±2.1)
A2 43.2 (±8.4) 73.68 (±5.1) 75.02 (±3.2) 74.22 (±2.1) 80.32 (±1.4)
A3 57.46 (±3.7) 70.31 (±8.2) 82.38 (±5.0) 73.65 (±3.4) 90.31 (±2.7)
A4 72.56 (±6.2) 98.83 (±1.7) 99.43 (±0.5) 98.53 (±1.6) 99.88 (±0.2)
A5 55.07 (±4.6) 69.45 (±1.2) 80.2 (±0.4) 71.07 (±2.7) 80.96 (±6.5)
A6 47.9 (±3.0) 69.67 (±3.2) 72.15 (±3.8) 65.2 (±2.3) 77.38 (±9.3)
A7 33.3 (±6.4) 64.78 (±11.7) 73.06 (±5.4) 64.93 (±15.1) 92.37 (±2.2)
A8 48.47 (±10.7) 74.32 (±3.6) 79.6 (±3.3) 75.54 (±6.5) 84.31 (±3.8)
A9 48.78 (±7.1) 71.56 (±5.9) 70.34 (±8.4) 67.3 (±7.9) 88.01 (±4.5)

A10 44.7 (±15.3) 55.62 (±5.5) 71.62 (±7.8) 65.07 (±13.6) 85.96 (±7.4)
Average 50.61 73.04 78.39 73.37 86.25

The L1/2-SF, the WD-MCD, and the DA-BNSAE methods achieve relatively ideal
accuracy rates in the tasks with the CWRU dataset compared with the baseline method, and
their accuracy in some tasks is as high as 80 or more. These methods generally have good
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feature recognition capabilities in the diagnosis of minor faults. However, in serious fault
diagnosis, the proposed model has superior feature recognition and diagnosis performance.
Typical task cases are represented by tasks A3 and A7. The accuracy of the proposed
method is as high as over 90%, and high accuracy is also obtained in the process of solving
task 9. Task 4 is specially set as the task benchmark, which has no unknown fault type and
belongs to pure rotation speed transfer. It can be seen that the proposed method can still
guarantee high diagnostic accuracy. Comparing the standard deviation of each method
reveals that the proposed method exhibits relatively stable performance in multiple tasks,
further verifying its convergence performance. Although the performance in minor fault
diagnosis shown by the proposed method is not as good as that of the three comparison
methods, the superiority of the modified model can be seen in the overall task performance
comparison. Moreover, the proposed model is more suitable for fault diagnosis problems
in the universal domain than other comparison methods.

The t-distributed Stochastic Neighbor Embedding (t-SNE) method [31] is widely
used in the display of various fault diagnosis results. This approach can reduce the
dimensionality of the output of the high-dimensional features by the model and provide
visualization processing. The A1 task based on the CWRU dataset is selected as the
demonstration experiment for t-SNE dimensionality reduction processing for visually
displaying the fault diagnosis performance of each network as shown in Figure 5.

Figure 5. Feature visualization of the t-SNE results for the CWRU dataset in the A1 task.

The baseline approach exhibits poor fault diagnosis performance as illustrated in
Figure 5a. It not only fails to aggregate various types of faults completely, but it also
clusters BF14 faults and BF7 faults together. As can be seen in Figure 5b,d, the L1/2-SF,
and the DA-BNSAE approach incorrectly classify the BF14 fault as the BF7 fault, and the
L1/2-SF approach also shows that the target domain and the source domain samples of the
OF7 fault are not clustered. As presented in Figure 5c, although the WD-MCD approach
has a better fault clustering effect than the previous three methods, a situation wherein
the fault type BF14 is mistakenly classified as a healthy sample exists. The clustering
dimensionality reduction graph of the proposed method is shown in Figure 5e. Although
a small number of IF14 fault samples are close to the BF14 fault in the proposed method,
the target domain and the source domain samples of various types of faults have obvious
domain boundaries and show a good fault classification effect.

Figure 6 depicts that the training accuracy and testing accuracy of the method tends to
stabilize as the training progresses, and feature and distance losses in the model gradually
decrease as accuracy increases.
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Figure 6. Accuracy and training loss of the proposed method in the A1 task.

3.3.2. SDUST Task Set Result Analysis

The experimental accuracy for the SDUST dataset is shown in Table 5. Given that
this dataset has more drastic speed changes, diagnostic performance with this dataset is
worse than that with the CWRU dataset. It can be seen that the three comparison methods
show good diagnostic performance in individual tasks. However, the proposed method is
more convincing in terms of overall fault classification effect and stability. The model still
provides superior fault diagnosis accuracy under variable speed conditions that further
validates its robustness and superiority for UDA problems.

Table 5. Means of the testing accuracies in different tasks with the SDUST dataset (%).

Task Baseline L1/2-SF WD-MCD DA-BNSAE Proposed

B1 44.8 (±3.4) 79.44 (±4.6) 77.32 (±2.7) 77.18 (±3.9) 80.04 (±2.1)
B2 41.45 (±7.5) 72.72 (±2.4) 67.26 (±5.6) 68.67 (±7.2) 83.06 (±5.7)
B3 47.67 (±4.3) 71.32 (±8.5) 76.84 (±3.0) 76.57 (±2.9) 81.96 (±4.3)
B4 70.42 (±3.4) 97.53 (±1.4) 99.44 (±0.9) 98.94 (±1.1) 99.76 (±0.5)
B5 45.07 (±6.3) 75.97 (±3.2) 78.67 (±9.6) 64.87 (±4.1) 84.72 (±5.9)
B6 46.3 (±7.2) 67.05 (±10.5) 76.1 (±13.7) 58.31 (±17.3) 79.9 (±3.5)
B7 52.78 (±3.8) 72.14 (±7.2) 76.18 (±9.4) 72.23 (±4.5) 90.7 (±2.9)
B8 51.21 (±5.2) 78.3 (±5.9) 81.04 (±2.1) 64.01 (±7.9) 90.44 (±4.7)
B9 44.23 (±6.5) 49.52 (±17.8) 64.4 (±14.5) 60.03 (±15.9) 82.64 (±7.9)
B10 39.78 (±6.3) 57.23 (±5.6) 45.63 (±6.7) 57.22 (±9.0) 73.62 (±12.3)

Average 48.37 72.12 74.29 69.80 84.68

Considering that the experimental task is too heavy, the B1 task based on the SDUST
dataset is selected as the demonstration experiment for t-SNE dimensionality reduction pro-
cessing for visually displaying the fault diagnosis performance of each network (Figure 7).
Although the baseline approach provides a good clustering of the source domain fault
types, it shows a small amount of confusion between the fault type 3 (NC) and the fault
type 8 (ROF0.2), as well as between the fault type 8 (ROF0.2) and the fault type 1 (IF0.2)
in the target domain. The baseline approach mistakenly classifies the target domain fault
type 8 (ROF0.2) sample as the fault RF0.2 as shown in Figure 7a. As can be seen from
Figure 7c, the WD-MCD approach incorrectly classifies the NC samples at 1800 speed
as the OF0.2 fault, and some samples as the fault type 8 (ROF0.2) in the target domain
are mixed with the fault RF0.2. The DA-BNSAE network, one of the approaches used
for comparison, confuses the fault type boundaries of IF0.2, RF0.2, and ROF0.2 faults as
presented in Figure 7d. Comparing the proposed method with the L1/2-SF approach, it is
found that although the L1/2-SF method has a good clustering effect on the source domain
samples, there are still a small number of OF0.2, RF0.2, and ROF0.2 fault samples that
are misclassified. The proposed network not only has a more obvious clustering effect on
samples of various fault types but also has obvious separation between samples of different
fault types, as shown in Figure 7b,e.
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Figure 7. Feature visualization of the t-SNE results for the SDUST dataset in the B1 task.

Therefore, the proposed model can diagnose the samples of the unknown fault types
more effectively than other networks.

4. Conclusions

This paper presents a new UDA method for bearing fault diagnosis under different
working conditions, which breaks the assumption that the traditional domain adaptive
network shares the label space and attempts to solve the unknown scale domain by using
a universal label domain method. The proposed method was compared with the current
popular domain adaptation methods in the experimental verification stage. Under the
premise of sharing the experimental configuration and dataset, we set up multiple sets
of experimental tasks for different actual work needs. Through multiple experimental
verifications, it is concluded that the proposed method has higher classification accuracy
and robustness than the comparison methods in diagnosing bearing datasets under variable
conditions, and it can still guarantee high diagnostic performance even in the presence of
bearing samples of unknown fault types. Therefore, the proposed method is more suitable
for actual working conditions that change from time to time.

Author Contributions: Conceptualization, Z.Y. and J.W.; methodology, Z.Y.; software, H.B.; valida-
tion, Z.Z., X.Z., and B.H.; formal analysis, Z.Y.; investigation, Z.Y.; resources, J.W.; data curation,
Z.Y.; writing-original draft preparation, Z.Y.; writing-review and editing, Z.Y.; visualization, Z.Y.;
supervision, J.W.; project administration, G.L.; funding acquisition, J.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China, grant
number 52005303, the Project of China Postdoctoral Science Foundation, grant number 2019M662399,
and the Natural Science Foundation of Shandong Province, grant number ZR202020QE157.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: This research was supported by special funds and experimental equipment
from the Shandong University of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Notations

Bs Batch size
Cd Feature center dimension
D Dropout_rate
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Es Epochs in general training
Et Epochs in testing
f 1 First-level feature dimension
f 2 Second-level feature dimension
hθ(x(i)) The probability set of various fault types for the i-th sample
I[·] An index function used to represent the value of the probability
Lr Learning rate
m The number of samples in the source domain
ot The tiny noise used for network training
oc The c-th features of the feature center
S Sample dimension
x(i) The input signal of the i-th sample
_
x The feature coefficient of the extracted target domain
xc The c-th features of the feature extraction
xsi The i-th features extracted from the target domain
xti The i-th features extracted from the source domain
Xt The target domain
Xs The source domain
y(i) The probability output corresponding to the i-th sample
∏ (p1, p2) The set of all possible joint distributions that combine the P1 and P2 distributions
θ1,θ2,...,θk The parameters of the model
θC The parameters of the classifier
θG The parameters of the feature extractor
λ The feature coefficient of the tiny noise
γ The joint distribution of each possible fault type
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